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Abstract 

Background 

Several small molecule biomarkers have been reported in the literature for prediction and diagnosis 

of (pre)diabetes, its co-morbidities and complications. Here, we report the development and 

validation of a novel, quantitative, analytical method for use in the diabetes clinic. This method 

enables the determination of a selected panel of 36 metabolite biomarkers from human plasma. 

Methods 

Based on a review of the literature and our own data, we selected a panel of metabolites indicative 

of various clinically-relevant pathogenic stages of diabetes. We combined these candidate 

biomarkers into a single ultra-high-performance liquid chromatography-tandem mass 

spectrometry (UHPLC-MS/MS) method and optimized it, prioritizing simplicity of sample 

preparation and time needed for analysis, enabling high-throughput analysis in clinical laboratory 

settings. 

Results 

We validated the method in terms of limit of (a) detection (LOD), (b) limit of quantitation (LOQ), 

(c) linearity (R2), (d) linear range, and (e) intra- and inter-day repeatability of each metabolite. The 

method’s performance was demonstrated in the analysis of selected samples from a diabetes cohort 

study. Metabolite levels were associated with clinical measurements and kidney complications in 

type 1 diabetes (T1D) patients. Specifically, both amino acids and amino acid-related analytes 

were associated with macro-albuminuria. Additionally, specific bile acids were associated with 

kidney function, anti-hypertensive medication, statin medication and clinical lipid measurements.  

Conclusions 

The developed analytical method is suitable for robust determination of selected plasma 

metabolites in the diabetes clinic. 
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Background 

The incidence of type 2 diabetes (T2D) is rising globally, currently estimated to exceed 450 million 

patients worldwide. In addition, the prevalence of prediabetes is approximately 2-3 times higher 

than for diabetes. Prediabetes is a condition with a high risk of progression to T2D, with a yearly 

conversion rate of 5%-10% (1, 2). It is also known that excessive hepatic fat accumulation is a 

typical feature of T2D patients and plays an important, pathogenic role in disease development 

and progression. Particularly, non-alcoholic fatty liver disease (NAFLD) may have an important, 

deleterious impact on diabetic patients, increasing the risk of cardiovascular complications. 

Moreover, there is evidence of associations between prediabetes and complications of diabetes 

such as early nephropathy, small fiber neuropathy, early retinopathy and risk of macrovascular 

disease (2). Therefore, there is a need for predictive tools for efficient and accurate tracking of the 

progression from the state of normal glucose tolerance (NGT) to pre-diabetes and finally to T2D, 

as well as a need for the identification of those individuals with T1D and T2D who are at risk of 

developing diabetic complications. There is also a need for improved stratification of those 

individuals who already have the disease based on their risk of developing complications. Finally, 

there is a pressing need to then tailor intervention strategies to these individuals. Ideally, 

knowledge about the underlying pathophysiological characteristics associated with either fasting 

or postprandial glucose dysregulation would be utilized in order to optimize the efficacy of any 

interventions (3). 

The complex etiology of diabetes makes effective screening, diagnosis, prognosis and intervention 

challenging. Several studies have shown changes in the circulating levels of specific metabolites 

prior to an individual developing overt T2D. For example, the Framingham Offspring, European 

Investigation into Cancer and Nutrition (EPIC) Potsdam, Metabolic Syndrome in Men (METSIM), 

Cardiovascular Risk in Young Finns (CRY) and Southall and Brent Revisited (SABRE) studies 

have replicated the finding of increased levels of branched-chain amino acids and their derivatives, 

aromatic amino acids and α-hydroxybutyrate, even years ahead of conversion to overt T2D (4-9). 

Amino acids, particularly tyrosine, were found to be associated with risk of microvascular disease 

(10). Also other metabolites, e.g. 1,5-anhydroglucitol, norvaline and l-aspartic acid, were found to 

be associated with macroalbuminuric diabetic kidney disease (11, 12), while glutamine, glutamic 
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acid and symmetric dimethylarginine (ADMA) were suggested as potentially-predictive 

biomarkers of diabetic complications (13-15). Several metabolites (e.g., α-hydroxybutyrate, β-

hydroxypyruvate and 1,5-anhydroglucitol (1,5-AG)), were associated with regulation of glycemic 

control (16, 17). Many lipids were identified as predictive biomarkers of diabetes. Specifically, 

triglycerides of low carbon number and double bond count as well as lysophosphatidylcholine, 

LPC(18:2), were identified as early predictors of T2D (18, 19). Notably, these markers were 

unaffected by obesity (18). Additionally, bile acids were associated with T2D and insulin 

resistance (20, 21). Mannose (22), 2-aminoadipic acid (23, 24) as well as indoxyl-sulfate and 

cresyl-sulfate (26) were suggested as possible biomarkers and, finally, creatinine(25) is already 

routinely implemented as an estimate of renal function. 

Most of the studies described above have been performed with non-targeted metabolomics 

methods, using workflows which are difficult to apply in routine clinical laboratory settings. 

Herein, our goal was to develop a fast and robust method for quantitative analysis of a selected 

panel of metabolite biomarkers, which are informative as to the prediction and diagnosis of 

(pre)diabetes and its co-morbidities / complications, as well as in follow-up of interventions. We 

developed a method which includes 36 metabolites, representing several metabolite classes, 

including amino acids, bile acids, carnitines, phenolic compounds and small organic acids. The 

method is based on simple sample preparation and fast, quantitative ultra-high-performance liquid 

chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS) analysis. Both sample 

preparation and the subsequent analyses were optimized and validated. Additionally, the method 

was demonstrated in a subset of samples from a cohort of diabetic patients, who were observed at 

the Steno Diabetes Center Copenhagen between 2009 and 2011 (27). 

Materials and methods 

Chemicals and standard solutions 

Information on the chemicals used for this work is given in Supplemental Methods. Additionally, 

the structures of the compounds (Supplemental Figures S1A-C) and the preparation of standards 

and stock solutions is also described in Supplemental Methods and in Tables 1 and 2.  
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Samples 

Plasma samples from a previously-described cohort (27, 28) were used for validation of the 

method. In short, during 2009-2011, a total of 1285 patients were invited to enter a study 

examining diabetic complications at the Steno Diabetes Center Copenhagen (SDCC). The study 

conformed to the Declaration of Helsinki and was approved by the Danish National Committee on 

Biomedical Research Ethics (2009-056; NCT01171248). Additionally, all patients gave written, 

informed consent. Of the invited 1285 patients, 676 accepted to participate and for our purposes, 

to demonstrate method functionality, a subset of 50 patient samples was analyzed. In addition to 

these plasma samples, pooled plasma samples from the SDCC were used for method development 

and validation as well as for quality control. All plasma samples were stored at -80 °C until 

analysis. 

Sample preparation 

Sample preparation included protein precipitation and derivatization. 10 µL of 1 M 5-

sulphosalisylic acid dehydrate (SSA) solution was added to 30 µL of plasma sample, samples were 

vortex mixed and centrifuged at 9000 RCF (5 minutes at 4 °C) after which 20 µL of the upper 

phase was collected, After addition of  20 µL of the ISTD MIX 20 µL of a 6-aminoquinoline-N-

hydroxy-succinimidyl carbamate-reagent (AQC-reagent) (5 mg mL-1, at 55 °C) was added, and 

the samples were vortex mixed and stored at -80 °C until analysis. 

The samples in the validation study were randomized before sample preparation and again before 

analysis. Calibration curves were created at the beginning and at the end of the sample analyses. 

Additionally, blank samples and pooled plasma samples were included in the analytical sequence 

for quality control purposes. Samples were injected three times, resulting in three technical 

replicate measurements for each of the 50 samples. 

Ultra high-performance liquid chromatography (UHPLC) - Mass spectrometry 

The UHPLC-QQQ-MS system is described in detail in Supplemental Methods. Briefly, the 

UHPLC analysis was performed on a Kinetex® F5 column (100 × 2.1 mm, particle size 1.7 µm) 

with a flow rate of 0.4 mL min-1 and an injection volume of 2 µL. H2O + 0.1% HCOOH (A) and 
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ACN:IPA (2:1, v/v) + 0.1% HCOOH (B) were used as the mobile phases for gradient elution. Both 

positive and negative ion mode MS- and MS/MS-spectra (scan range m/z 40-600) were acquired 

(Supplemental Tables S1 and S2).  

Results  

Based on our earlier diabetes-related studies, as well as on the results published in the literature, 

we selected 36 specific metabolites for this study (Table 1) (2, 4-7, 9, 10, 13, 16-20, 22, 23, 31-

33). Our aim was to develop a robust and fast analytical assay in terms of both sample preparation 

and analysis, for quantitative determination of these selected metabolites. However, analyzing both 

highly polar and nonpolar metabolites in a single method is highly problematic. As some of the 

candidate biomarkers (e.g., very polar sugar derivatives and neutral lipids such as triacylglycerols) 

would have required a second sample preparation step and/or analytical method, these were 

excluded from the final method. The method was validated in terms of (a) limit of detection (LOD), 

(b) limit of quantitation (LOQ), (c) linearity (R2) and linear range and (d) intra- and inter-day 

repeatability of each analyte.  

Sample preparation 

The main goal in the selection of conditions for sample preparation was the development of a 

workflow that is simple, robust and feasible to automate, while taking into consideration the LC-

MS method as well. Here, we combined a simple protein precipitation with acid followed by 

derivatization of amino acids and structurally-related compounds. For the protein precipitation, 

acidic conditions were chosen, as protein precipitation with methanol or acetonitrile would have 

required evaporation of the solvent prior to derivatization and analysis. The amount of 

derivatization reagent, the amount and type of the solvent and buffer as well as the time for the 

derivatization reaction were optimized. Since the derivatization reagent has an impact on the MS 

detection, the conditions were optimized to decrease ion suppression as well as to improve the 

overall robustness of the method. Dry ACN was used for dissolving the AQC-reagent, as even 

trace amounts of water in the solvent can react with the reagent. The final sample preparation 

conditions included protein precipitation with SSA, followed by neutralization and pH adjustment 

using a mixture of carbonate buffer and NaOH) prior to the derivatization with AQC in anhydrous 
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ACN. The MS spectra showed that only amino acids and related compounds with amino acid 

functionality (namely the amino acids, AADA, ADMA, SDMA, kynurenine and taurine) were 

derivatized and not any of the other targeted compounds.  

LC-MS 

MS- and MS/MS-spectra were acquired for each of the analytes in order to select optimal precursor 

and product ions for selected reaction monitoring (SRM) analyses (Supplemental Figures S2A-

E). Depending on the ionization properties of the different analytes, protonated ([M+H]+) or 

deprotonated ([M-H]-) molecules were chosen as precursor ions (Supplemental Tables S1 and 

S2). MS/MS-spectra were acquired and the most selective and intense product ions were selected 

for SRM analyses. When possible, one ion transition was chosen for quantification and another 

ion transition was chosen as the qualifying ion transition to ensure correct measurements of the 

analytes. Finally, the analysis parameters (fragmentor voltage, collision energy, cell accelerator 

voltage) were optimized for each ion transition (Supplemental Tables S1 and S2). All the 

derivatized amino acids and related compounds (Figure 1) produced the product ion [M-H-170]-. 

These were then selected for SRM analyses together with one other diagnostic product ion (where 

possible). Among the bile acids, CDCA and UDCA were not fragmented and, therefore, the only 

chosen product ions for these two analytes were their deprotonated molecules. For isomeric 

compounds (GCDCA, GDCA and GUDCA; TCDCA, TDCA and TUDCA) the MS and MS/MS-

spectra are similar to the same three main product ions and their separation depends on 

chromatographic separation. In addition, TCA shows the same three main product ions as TCDCA, 

TDCA and TUDCA, but has different precursor ion.  

In the optimization of the LC-MS method, different columns (Ascentis Express RP-Amide, 

Poroshell 120 SB-AQ, Acclaim RSLC PolarAdvantage, Acclaim Trinity P2 and Kinetex® F5 

column) and different LC modes were tested. Based on the resolution of the chromatographic 

separation, the Kinetex® F5 column was chosen for further optimization. The conditions were 

optimized to include sufficient retention for the most polar compounds. Therefore, the gradient 

elution was initiated at 99% of the aqueous eluent. The UHPLC method showed good chromato-

graphic performance (Figure 2), fulfilling general acceptance criteria for an analytical method 

(Section 3.3). For a few of the analytes, the resolution was, however, insufficient to achieve 
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baseline separation and due to very similar MS/MS-spectra these analytes (α(R)-OHB & α(S)-

OHB, Leu & Ile, TDCA & TCDCA, GCDCA & GDCA, ADMA & SDMA) were quantified 

together. 

Method validation 

The quantitative performance of the developed UHPLC-ESI-MS/MS method was evaluated with 

respect to (a) limit of detection (LOD), (b) limit of quantitation (LOQ), (c) linearity (R2) and linear 

range and (d) intra- and inter-day repeatability (Table 3). The LODs (at S/N ≥ 3) were measured 

from standard samples and are remarkably different for different analytes, with the lowest LOD 

being < 2.5 ng mL-1 (being the lowest measured concentration) for Ala, AzelA, GCDCA, GDCA, 

Leu, Ile, N-MNA, Phe and TCA. The highest LOD, on the other hand, was 25000 ng mL-1 for 

α(R)-OHB & α(S)-OHB. These results indicate an acceptable sensitivity within the concentration 

ranges normally detected in blood samples for most of the analytes, (34) except for α(R)-OHB & 

α(S)-OHB, for which the LODs are clearly higher than the lowest amounts previously detected in 

blood samples (3120 ng mL-1). Calibration curves and the intra- and inter-day repeatability were 

determined by using normalized peak areas. For the analytes which were quantified together (i.e., 

GCDCA and GDCA, ADMA and SDMA, and TDCA and TCDCA), only one ISTD was used. 

The ISTDs used for GCDCA and GDCA, ADMA and SDMA, and TDCA and TCDCA were 

GDCA-d6, ADMA-d7 and TCDCA-d9, respectively. Additionally, for a few analytes (i.e., GBB, 

Crea, α(R)-OHB, α(S)-OHB and β-OHB), the ISTD signal was not repeatable and therefore, the 

validation parameters of these analytes were measured without normalization to an ISTD. The 

calibration curves were determined within a concentration range of 2.5-75000 ng mL-1. The linear 

ranges showed a broad variation between the different analytes (Table 3). This variability is, 

however, acceptable since the biological concentration of each analyte is within the measured 

linear range. The coefficients of determination (R2) were higher than 0.97 for all analytes and 

above 0.99 for most analytes. This shows that the method has both good linearity and quantitation 

ability for each analyte, with accuracies well within the general requirement of 80-120%. 

For the repeatability studies, three standard samples (c= 100 ng mL-1, 1000 ng mL-1 and 10000 ng 

mL-)1 were analyzed in four consecutive runs and in three runs on five consecutive days for intra-

day and inter-day repeatability measurements, respectively. Relative standard deviations (%RSD) 
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were calculated for both the intra- and inter-day studies (Table 3). The %RSDs for the intra-day 

repeatability studies were generally below 1.5% and 20.8% for the retention times and normalized 

peak area ratios, respectively. There are a few exceptions to these results for the analytes with no 

internal standards (Crea, GBB and β-OHB). The %RSDs for the intra-day and inter-day 

repeatability for these three analytes was between 17.8 and 20.9% and between 3.5 and 24.5%, 

respectively. 

Feasibility of the method for the analysis of samples from a diabetes cohort 

The feasibility of the developed UHPLC-ESI-MS/MS method for the analysis of biological 

samples was demonstrated by analyzing plasma samples from individuals with diabetes who had 

a wide range of albuminuria. Albuminuria is a pathological condition where the protein albumin 

is present in the urine in abnormal amounts. It is a sign of diabetic kidney disease, which often 

occurs in especially subjects with type 1 diabetes (28). In healthy subjects (normo-albuminuric), 

only trace amounts of albumin (< 30 mg/24 hours) are present in the urine while subjects with 

elevated amounts of albumin in the urine, on the other hand, can be classified as either micro-

albuminuric (c = 30 – 299 mg/24 hours) or macro-albuminuric (c ≥ 300 mg/24 hours). 

In total, 50 samples were selected from a previously-described study cohort of a total of 676 

participants (28). The subset was created with computational sampling, aiming at finding a small 

random subset of the cohort, where the distributions of potentially confounding clinical variables 

are as similar as possible between the two study groups. This allowed us to study associations 

between metabolites and albuminuria even in this small sample set whilst avoiding the 

confounding effects of other factors. The clinical variables assessed were age, antihypertensive 

medication, BMI, duration of diabetes, glycated hemoglobin (HbA1c), insulin day dose, sex, 

smoking, systolic blood pressure, total cholesterol and total triglycerides. 

Selection of the best random subsample was done in four steps: (1) In total, 1 million n=25+25 

sub-samples were drawn with random sampling, (2) the correlation between each clinical variable 

and the albuminuria group variable was computed for each subsample, (3) the highest absolute 

value of correlation in each subsample was identified, and (4) the random subsample with the 
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lowest value of maximum correlation was selected for being the least-confounded random subset 

for analysis. 

Computational selection resulted in a balanced subset of samples from 25 normo-albuminuric and 

25 macro-albuminuric participants. The highest Pearson correlation to the albuminuria group 

variable among the clinical variables was 0.21 for total triglycerides. All other clinical variables 

had a lower absolute correlation to the group variable, suggesting that the selected small subset 

was not confounded by imbalance in the clinical characteristics. 

Associations between metabolite concentrations and relevant clinical variables were tested with 

metabolite-specific mixed-effects models using the R-package limma (35). Metabolite 

concentrations entered the model as the dependent variable, participant identity as the random 

effect and the following clinical variables as fixed effects: albuminuria group, age, BMI, estimated 

globular filtration rate (eGFR; kidney function), glycated hemoglobin (HbA1c; glycemic control), 

sex, systolic blood pressure, total cholesterol, total triglycerides. Significance tests of coefficients 

were corrected for multiple testing over the metabolites with the Benjamini-Hochberg method 

(36). 

Associations indicated by significant model coefficients (multiple-testing-corrected p < 0.05) were 

visualized as a bipartite network (Figure 3) between clinical variables and metabolites with the R-

package ggplot2   (37). Strength (log-10-transformed coefficients) and the signs of each 

association were shown in the width and the color of the line, respectively. Metabolomic 

associations to albuminuria group and eGFR, which are the key variables of the present study, 

were highlighted with opaque lines. 

The target panel included metabolites which have previously been associated particularly with 

kidney functions The analysis resulted in estimates of concentrations of the measured metabolites 

in 50 participants with T1D. Macro-albuminuria, which is an indicator of kidney disease, was 

associated with elevated GCDCA & GDCA, Tyr and decreased Kynu (Figure 3). Estimated 

globular filtration rate (eGFR; kidney function) , was associated with ADMA & SDMA, Cit, Gln, 

taurine and Tyr. Glycated hemoglobin (HbA1c; glucose control) was associated with decreased 

GCDCA & GCDA, Glu and HCit. Smoking was associated with elevated Glu, α-OHB and 
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decreased Gln as well as to a disruption in the balance of the bile acids GCDCA and GDCA. 

Although no metabolomic associations were found with age or BMI in this small sub-study, several 

metabolites were associated with sex, statin medication, systolic blood pressure, total cholesterol 

and total triglycerides. It should, however, be noted that as our target panel is based on reported 

markers of (pre)diabetes and diabetic complications, and does not cover the entire metabolome, a 

comprehensive pathway analysis could be biased and not fully reliable. The quantitative results 

are presented in Supplemental Table S3. 

Overall, our results agree with the previously-published results. Elevated levels of phenylalanine 

and of arginine, citrulline and ornithine have been reported in T2D patients with macroalbuminuria 

and microalbuminuric patients, respectively (38). Additionally, increased levels of  plasma 

homocysteine have been found to be related to macroalbuminuria in diabetic patients (39). ADMA, 

on the other hand, has been suggested as a candidate biomarker for diabetic kidney complications, 

whilst elevated levels of ADMA have been shown to predict a more accelerated course of renal 

function loss and promoted the development of renal damage (14, 15, 40). Our results are also in 

line with literature data showing that bile acid metabolism is altered in T2D patients (41). Overall, 

our results demonstrate that the developed analytical method is feasible for performing targeted 

metabolomic analysis of plasma samples from diabetic patients, and that it can be used for the 

stratification of diabetic patients. 

Conclusions 

The method developed here proved to be fast (with a sample analysis time of less than 10 minutes) 

and robust, and thus suitable for routine analyses in the diabetes clinic. Validation of the method 

showed that the selected panel of markers can be effectively used for classification of subjects with 

diabetic complications, such as macro-albuminuria. Further evaluation of the clinical relevance of 

the method is now merited in order to evaluate the full potential of this diagnostic panel in the 

stratification of prediabetes, metabolic and diabetic complications. 
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Table 1. Standard compounds acquired for quality control and for quantitation. 
 
Compound Abbreviation Group Vendor Solvent, stock solution 
L-Glutamine Gln Amino acids + 

related 
metabolites 

Sigma-Aldrich H2O 
Glycine Gly 0.1 M HCl 
L-Alanine Ala 
L-Leucine Leu 
L-Isoleucine Ile 
L-Phenylalanine Phe 
L-Tryptophan Trp 
L-Tyrosine Tyr 
L-Glutamic Acid Glu 
L-Citrulline Cit 
L-Homocitrulline HCit SCB 
Asymmetric dimethylarginine ADMA 
Symmetric dimethylarginine SDMA 
DL-2-Aminoadipic Acid AADA Sigma-Aldrich 
L-Kynurenine Kynu 
Taurine Taurine 
Deoxycholic Acid DCA Bile acids Sigma-Aldrich MeOH 
Glychochenodeoxycholic Acid GCDCA 
Glycodeoxycholic Acid GDCA 
Glycocholic Acid GCA 
Taurodeoxycholic Acid TDCA 
Taurochenodeoxycholic Acid TCDCA 
Deoxychenocholic Acid CDCA 
Cholic Acid CA 
Taurocholic Acid TCA 
Glycoursodeoxycholic Acid GUDCA CIL 
Ursodeoxycholic Acid UDCA 
Tauroursodeoxycholic Acid TUDCA 
Creatinine Crea Other 

metabolites 
Sigma-Aldrich 10% MeOH 

Indoxyl Sulfate IndS 
N-methyl-nicotinamide N-MNA SCB 
Gamma-butyrobetaine GBB 
Azelaic Acid AzelA Small organic 

acids 
Sigma-Aldrich MeOH 

L-3-hydroxybutyric Acid β-OHB 10% MeOH 
R-2-hydroxybutyric Acid α(R)-OHB 
S-2-hydroxybutyric Acid α(S)-OHB 
 
Vendor information: 
Sigma-Aldrich (Steinheim, Germany) 
SCB: Santa Cruz Biotechnology, Inc. (Dallas, TX, USA) 
CIL: Cambridge Isotope Laboratories Inc. (Tewksbury, MA, USA)   
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Table 2. Internal standards, with concentrations in ISTD MIX, acquired for quality control and for quantitation. 
 
Internal standard Abbreviation Group Vendor Solvent, 

stock solution 
Concentration in 
ISTD MIX (ng mL-1) 

d5-Glutamine d5-Gln 

Amino acids 
+ related 

metabolites 

CIL H2O 30 000 
d10-L-Leucine d10-Leu CDN 

0.1 M HCl 

5 000 

2H4-L-Homocitrulline 2H4-HCit Alsachim 
Glycine-1-13C,2,2-d2 13C, d2-Gly 

Sigma-Aldrich d4-DL-Alanine d4-Ala 
d5-L-Glutamic Acid d5-Glu 
d10-Isoleucine d10-Ile 

CIL 

d5-L-Phenylalanine d5-Phe 500 
d8-Tryptophan d8-Trp 5 000 d7-Tyrosine d7-Tyr 
d4-Citrulline d4-Cit 500 
d3-L-2-Aminoadipic Acid d3-AADA 10 000 
d7-Asymmetric dimethylarginine d7-ADMA 5 000 
13C6-Kynurenine 13C6-Kynu Alsachim 30 000 
d4-Taurine d4-Taurine 500 
d4-Deoxycholic Acid d4-DCA 

Bile acids 

CDN 

MeOH 

500 
d4-Glycocholic Acid d4-GCA 250 
d4-Deoxychenocholic Acid d4-CDCA 500 
d4-Glycoursodeoxycholic Acid d4-GUDCA 5 000 
d4-Cholic Acid d4-CA 500 
d4-Ursodeoxycholic Acid d4-UDCA 250 
d4-Glychochenodeoxycholic Acid d4-GCDCA 

CIL 

5 000 
d6-Glycodeoxycholic Acid d6-GDCA 30 000 
d9-Taurochenodeoxycholic Acid d9-TCDCA 500 d4-Taurocholic Acid d4-TCA 
d4-Tauroursodeoxycholic Acid d4-TUDCA 250 
d5-Creatinine d5-Crea 

Polar 
metabolites 

CDN 10% MeOH 

10 000 
d4-N-methyl-nicotinamide d4-N-MNA 250 
d9-Gamma-butyrobetaine d9-GBB 500 
d4-Indoxyl Sulfate d4-IndS Sigma-Aldrich 5 000 
d14-Azelaic Acid d14-AzelA Small organic 

acids CDN MeOH 5 000 
d4-3-Hydroxybutyric Acid d4-β-OHB 10% MeOH 100 000 
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d3-2-Hydroxybutyric Acid d3-α-OHB 
 
Vendor information: 
Sigma-Aldrich (Steinheim, Germany) 
CDN: C/D/N Isotopes, Inc. (Quebec, Canada) 
CIL: Cambridge Isotope Laboratories Inc. (Tewksbury, MA, USA) 
Alsachim (Illkirch Graffenstaden, France) 
SCB: Santa Cruz Biotechnology, Inc. (Dallas, TX, USA) 
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Table 3. Limit of detection (LOD), limit of quantitation (LOQ), linearity (R2), linear range, intra- and inter-day repeatability. 
 

Compound Linearity (R2) 
Range 

(ng mL-1) 

LOD 
(ng/ml-1) 

%RSD_Rt, 
intra-day 

%RSD_Area, Intra-day (N = 4) %RSD_Rt, 
inter-day 

%RSD_Area, Inter-day (N = 15) 

100 ng mL-1 1000 ng mL-1 10000 ng mL-1 100 ng mL-1 1000 ng mL-1 10000 ng mL-1 
α(R)-OHB 
& α(S)-
OHB 

0.995 
25 000 – 75 000 

25 000 - - - - - - - - 

AADA 0.984 
5 000 – 75 000 

500 0.2 
(N = 4) 

- - 9.1 0.1 
(N = 15) 

- - 8.7 

ADMA & 
SDMA 

0.992 
2 500 – 50 000 

500 0.2 
(N = 8) 

- 5.6 0.8 0.2 
(N = 30) 

- 8.5 4.2 

Ala 0.996 
500 – 50 000 

< 2.5 0.2 
(N = 8) 

- 4.5 3.0 0.1 
(N = 30) 

- 9.8 13.6 

AzelA 0.995 
500 – 10 000 

< 2.5 0.5 
(N = 8) 

- 11.4 3.9  - 15.8 8.4 

β-OHB 0.970 
2 500 – 75 000 

75 0.6 
(N = 4) 

- - 20.9 1.2 
(N = 15) 

- - 24.5 

CA 0.996 
10 – 10 000 

7.5 0.2 
(N = 12) 

2.4 3.1 5.2 0.7 
(N = 45) 

20.8 18.1 20.2 

CDCA 0.999 
25 – 2 500 

7.5 0.2 
(N = 8) 

4.0 4.9 - 0.2 
(N = 45) 

4.3 5.1 14.2 

Cit 0.984 
500 – 10 000 

250 0.2 
(N = 8) 

- 7.7 6.7 0.2 
(N = 30) 

- 9.1 8.3 

Crea  
 

0.973 
250 – 7 500 

25 0.8 
(N = 4) 

- 17.8 - 0.0 
(N = 15) 

- 3.5 - 

DCA 0.996 
5 – 2 500 

2.5 0.2 
(N = 8) 

5.8 6.1 - 0.3 
(N = 30) 

4.3 8.3 - 

GBB 
 

0.974 
250 – 10 000 

50 0.5 
(N = 8) 

- 18.7 15.9 1.5 
(N = 30) 

- 27.3 28.5 

GCA 0.997 
50 – 25 000 

25 0.1 
(N = 12) 

4.6 4.2 4.2 0.4 
(N = 45) 

6.8 5.1 7.3 

GCDCA & 
GDCA 

0.997 
25 – 2 500 

< 2.5 0.2 
(N = 8) 

1.9 4.2 - 0.5 
(N = 30) 

16.4 16.1 - 

Gln 0.987 
750 – 50 000 

5 0.1 
(N = 8) 

- 5.0 7.7 0.5 
(N = 30) 

- 10.5 11.5 

Glu 0.990 
750 – 75 000 

500 0.2 
(N = 8) 

- 13.9 10.7 0.3 
(N = 30) 

- 10.9 5.2 
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Compound Linearity (R2) 

Range (ng mL-1) 
LOD 

(ng/ml-1) 
%RSD_Rt, 
intra-day 

%RSD_Area, Intra-day (N = 4) %RSD_Rt, 
inter-day 

%RSD_Area, 
Inter-day (N = 15) 

100 ng mL-1 1000 ng mL-1 10000 ng mL-1 100 ng mL-1 1000 ng mL-1 10000 ng mL-1 
Gly 0.993 

7 500 – 75 000 
1 000 0.03 

(N = 4) 
- - 16.2 0.6 

(N = 15) 
- - 19.6 

GUDCA 0.994 
75 – 10 000 

25 0.1 
(N = 12) 

5.0 9.0 10.6 0.3 
(N = 45) 

13.1 10.9 6.2 

HCit 0.995 
500 – 25 000 

250 0.2 
(N = 8) 

- 8.3 2.6 0.5 
(N = 30) 

- 11.1 16.4 

IndS 0.986 
5 000 – 75 000 

750 0.3 
(N = 4) 

- - 11.3 0.3 
(N = 15) 

- - 15.4 

Kynu 0.993 
500 – 75 000 

250 0.2 
(N = 8) 

- 11.2 7.4 0.4 
(N = 30) 

- 7.7 4.4 

Leu & Ile 0.997 
25 – 75 000 

< 2.5 0.4 
(N = 12) 

4.6 4.3 1.5 0.5 
(N = 45) 

13.0 14.0 5.7 

N-MNA 0.998 
25 – 10 000 

< 2.5 0.5 
(N = 12) 

1.6 6.4 3.7 1.0 
(N = 45) 

20.1 18.5 6.5 

Phe 0.995 
250 – 25 000 

< 2.5 0.4 
(N = 0.4) 

- 5.9 6.6 0.4 
(N = 30) 

- 10.1 4.6 

Taurine 0.994 
250 – 25 000 

10 0.2 
(N = 8) 

- 8.3 5.7 0.5 
(N = 30) 

- 8.4 8.7 

TCA 0.983 
2 500 – 25 000 

< 2.5 0.1 
(N = 4) 

- - 4.5 0.3 
(N = 15) 

- - 15.5 

TDCA & 
TCDCA 

0.984 
1 000 – 25 000 

10 0.7 
(N = 8) 

- 0.4 5.7 0.7 
(N = 30) 

- 2.6 4.2 

Trp 0.996 
25 – 25 000 

25 0.4 
(N = 12) 

9.0 2.9 4.7 0.5 
(N = 45) 

18.8 5.4 5.3 

TUDCA 0.990 
250 – 10 000 

10 0.1 
(N = 8) 

- 5.5 4.5 0.7 
(N = 30) 

- 1.8 3.0 

Tyr 0.992 
50 – 75 000 

25 0.2 
(N = 12) 

10.3 9.1 4.4 0.3 
(N = 45) 

5.7 8.4 3.4 

UDCA 0.991 
50 – 50 000 

25 0.2 
(N = 12) 

1.5 3.5 3.3 0.2 
(N = 45) 

3.5 10.3 5.6 
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Figure captions 

Figure 1. Derivatization reaction of amino acids and amino acid related compounds. 

Figure 2. Chromatograms representing the chromatographic separation of the analytes. The peak 

numbers correspond to the following analytes:  (1) Crea, (2) GBB, (3) α(R)-OHB & α(S)-OHB, (4) β-

OHB, (5) N-MNA, (6) Kynu, (7) Leu & Ile, (8) Phe, (9) AzelA, (10) Trp, (11) TUDCA, (12) TCA, (13) 

GCA, (14) GUDCA, (15) TDCA & TCDCA, (16) CA, (17) CDCA, (18) GCDCA & GDCA, (19) UDCA, 

(20) DCA, (21) Gly, (22) Gln, (23) ADMA & SDMA, (24) Taurine, (25) Phe, (26) Gln, (27) HCit, (28) 

Ala, (29) AADA, (30) IndS and (31) Tyr.  

Figure 3. Associations between clinical measurements (left) and the quantified analytes (right) in the 

T1D cohort. The lines indicate statistical associations (red: positive association and blue: 

inverse/opposite association; line width: strength of the association). Associations directly related to 

diabetic kidney disease are highlighted with opaque lines. 
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