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Highlights 29 

 Myelin in intrahemispheric scene-network tracts increases beyond late childhood 30 

 Tracts connecting OPA and hippocampus, V1, and V2, also show prolonged myelination 31 

 Diffusion tensor imaging parameters do not mirror myelin water fraction results 32 

Abstract 33 

The visual scene-network—comprising the parahippocampal place area (PPA), retrosplenial cortex 34 

(RSC), and occipital place area (OPA)—shows a prolonged functional development. Structural 35 

development of white matter that underlies the scene-network has not been investigated—despite its 36 

potential influence on scene-network function. The key factor for white matter maturation is 37 

myelination. However, research on myelination using the gold standard method of post-mortem 38 

histology is scarce. In vivo alternatives diffusion tensor imaging (DTI) and myelin water imaging (MWI) 39 

so far report broad-scale findings that prohibit inferences concerning the scene-network. Here, we 40 

combine MWI, DTI tractography, and fMRI to investigate myelination in scene-network tracts in middle 41 

childhood, late childhood, and adulthood. We report increasing myelin from middle childhood to 42 

adulthood in lRSC-lOPA, rPPA-rRSC, and lPPA-lRSC tracts. Moreover, tracts connecting the OPA to 43 

the key input regions hippocampus, V1, and V2 showed myelin increases beyond late childhood. Our 44 

findings indicate that structural development coincides with functional development in the scene 45 

network, possibly enabling structure-function interactions. 46 

Keywords 47 

white matter, maturation, connectivity, diffusion tensor imaging, scene recognition, high-level vision 48 
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1 Introduction 50 

The human cortical visual system contains three high-level areas that preferentially respond to 51 

scenes compared to other stimuli, e.g. objects or faces: the parahippocampal place area (PPA, Epstein 52 

and Kanwisher, 1998), the retrosplenial cortex (RSC, O'Craven and Kanwisher, 2000), and the 53 

occipital place area (OPA, Grill-Spector, 2003; Hasson et al., 2003). This functional network is 54 

strongly involved in scene processing (e.g. Bettencourt and Xu, 2013; Dilks et al., 2011; Epstein et al., 55 

2007a), but also in orientation and navigation (e.g. Epstein, 2008; Julian et al., 2016). The scene-56 

network’s components are already evident in middle childhood but at least for the PPA and the OPA 57 

there is evidence for a protracted development in terms of functional size and scene-selectivity beyond 58 

late childhood, possibly until adulthood (Chai et al., 2010; Golarai et al., 2007; Meissner et al., 2019b). 59 

Despite this beginning understanding of the developmental trajectory of scene-network 60 

function between middle childhood and adulthood, the development of the white matter structure that 61 

underlies the scene-network has not received attention so far. However, white matter microstructure 62 

changes in corresponding brain areas were shown to be an underlying mechanism for specific 63 

cognitive development or differences, as has been shown for musical proficiency (Bengtsson et al., 64 

2005), vocabulary development (Pujol et al., 2006), and many other cognitive abilities (for an 65 

overview, see Fields, 2008). Thus, maturational status of scene-network white matter structure might 66 

influence scene-network gray matter functional development, or vice versa (Fields, 2015; Zatorre et 67 

al., 2012).  68 

Given that the PPA, RSC, and OPA contribute to the complex tasks of scene processing and 69 

navigation through (at least partially) distinct functional response properties (Baldassano et al., 2016; 70 

Epstein et al., 2007b; Epstein and Higgins, 2007; Hutchison et al., 2014; Vass and Epstein, 2013), 71 

mature, i.e. efficient transmission of signals between these areas is considered to be crucial for 72 

building an integrated perception for scenes. Signal transmission can be optimized through increasing 73 

speed, synchrony, or reliability—all of which are mediated by increases in axon myelination (Miller, 74 

1994; Zatorre et al., 2012).  75 
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Measuring myelin accurately is only feasible in post-mortem histological studies. However, 76 

post mortem-studies are rare in general and most studies focus on newborns’ and young infants’ gray 77 

matter myelin content. In the only study investigating white matter myelin development beyond 78 

middle childhood based on histological observations, the authors report tract-specific maturation 79 

patterns featuring peak myelin growth rates within the first two years after birth as well as continued 80 

maturation up middle childhood (Yakovlev and Lecours, 1967). Evidence for development beyond 81 

childhood was limited to intracortical neuropil and association areas but should be regarded as rather 82 

anecdotal due to the low number of investigated tracts and specimens in that age group. 83 

Due to the very limited availability of specimens for gold standard myelin assessment, the 84 

advance of diffusion tensor imaging (DTI), a non-invasive magnetic resonance imaging (MRI) method 85 

that has the potential to inform about myelin in vivo, was a milestone. DTI has been applied to probe 86 

developmental changes in white matter myelination extensively. However, most studies focused on 87 

major long fiber tracts, such as the internal capsule or the corticospinal tract, that can be readily 88 

identified (semi-) automatically using brain atlases (e.g. Lebel and Beaulieu, 2011; Mukherjee et al., 89 

2001). As most long tracts are not directly involved in the visual scene-processing system and effects 90 

of age on white matter maturation were shown to be tract-specific (e.g. Rollins et al., 2010), the 91 

current literature is not informative on scene-network white matter development. Short-range tracts, 92 

which are crucial for relaying information in specialized functional networks over short distances, 93 

such as the scene-network, are understudied. The only relevant findings suggest ongoing myelination 94 

in temporal and parietal lobe short-range tracts (Oyefiade et al., 2018) or in white matter adjacent to 95 

dorsal and ventral visual stream cortical areas (Barnea-Goraly et al., 2005; Loenneker et al., 2011) and 96 

thus remain to unspecific for any inference on scene-network developmental trajectories. 97 

DTI’s sensitivity to myelin stems from its sensitivity to the diffusion of water because myelin 98 

reduces the inter-axonal space, increasing the anisotropy of water diffusion as a consequence 99 

(Feldman et al., 2010). However, several microstructural properties, such as axon diameter, axon 100 

packing density (Takahashi et al., 2002), axon membrane permeability (Ford et al., 1998), and fiber 101 

geometry (van Wedeen et al., 2005) affect DTI parameters, too. Therefore, deducing myelination or 102 
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maturational status from DTI parameters alone is challenging in most and speculative in some cases 103 

(Jones et al., 2013).  104 

Myelin water imaging (MWI, MacKay et al., 1994), another MRI technique, is sensitive to 105 

myelin, highly reproducible (Meyers et al., 2009), and not affected by other microstructural changes, 106 

(Laule et al., 2008; Laule et al., 2006; Moore et al., 2000). Thus, it gives a more direct estimation of 107 

the status of myelination than interpretation of DTI parameters alone. Yet, MWI became available in 108 

pediatric research settings only recently, thanks to the implementation of parallel imaging (SENSE, 109 

Pruessmann et al., 1999) and advances in sequence design (Deoni et al., 2008; Prasloski et al., 2012) 110 

which both drastically sped up acquisition time.  111 

A series of MWI studies investigated infants and young children and found steep increases of 112 

myelin from birth to age two and a moderate increase thereafter (e.g. Dean et al., 2015; Dean et al., 113 

2014; Deoni et al., 2015; Deoni et al., 2012; Deoni et al., 2011). Recent findings indicate that while 114 

myelin does not seem to increase between middle and late childhood, a pronounced increase of myelin 115 

occurs in adolescence in major white matter tracts (Geeraert et al., 2018; Meissner et al., 2019a). 116 

However, scene-network specific data was not analyzed until now. 117 

To complement recent findings regarding the functional development of scene-network 118 

regions PPA, RSC, and OPA (Meissner et al., 2019b), we combined MWI and DTI-based probabilistic 119 

tractography to probe the structural maturation, i.e. myelin water fraction (MWF), of white matter that 120 

underlies scene-network function in middle childhood (7-8 years), late childhood (11-12 years), and 121 

adulthood (19-24 years). Further, we tested if tracts that connect the scene-network with other key 122 

input areas, such as V1 and V2, or the hippocampus, which has been hypothesized to be part of the 123 

scene-network (Hodgetts et al., 2016), show increases myelination over time. In an extended analysis, 124 

we tested if DTI parameters mirror our MWI results. 125 

  126 
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2 Methods 127 

2.1 Participants 128 

We analyzed data of 18 children aged 7-8 (M = 7.56, SD = 0.51; 7 female; henceforth: 7-8yo), 129 

13 children aged 11-12 (M = 11.23, SD = 0.44; 8 female; henceforth: 11-12yo) and 16 adults aged 19-130 

24 (M = 20.69, SD = 1.14; 7 female) for this study. The original sample included one additional 7-8yo 131 

that was excluded due to severely impaired data quality in the DTI scan, one 7-8yo that did not 132 

complete the myelin water imaging scan, and one 11-12yo, in which our localizer failed to reveal any 133 

scene-selective ROIs. Participants took part in a larger study with several associated research 134 

questions. Thus, most participants‘ localizer data (see 2.2.2, Region of interest definition) was 135 

analyzed in a previous publication, which also holds detailed information on recruitment and 136 

compensation (Meissner et al., 2019b). All participants were healthy, had normal or corrected-to-137 

normal vision, and had been born at term. No participant had past or current neurological or 138 

psychiatric conditions, or structural brain abnormalities. 139 

2.2 Neuroimaging 140 

All magnetic resonance images were acquired at the Neuroimaging Centre of the Research 141 

Department of Neuroscience at Ruhr University Bochum’s teaching hospital Bergmannsheil on a 3.0T 142 

Archieva scanner (Philips, Amsterdam, The Netherlands) using a 32-channel head coil. Acquisition of 143 

data reported in this manuscript were part of a longer protocol that included further functional scans. 144 

To reassure children and parents as well as to provide the possibility for low-threshold contact, 145 

children were accompanied by one of the experimenters in the scanner room throughout the entire 146 

procedure. Children who had not participated in an MRI study before were accustomed to the scanning 147 

environment, experimental procedure, and localizer task in a custom-built mock scanner at least one 148 

day prior to scanning. Participants were presented with short movie clips of a children’s TV program 149 

during the acquisition of structural MRI. 150 
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2.2.1 High-resolution anatomical imaging and cortical parcellation 151 

To co-register magnetic resonance images from different sequence types (EPI, DTI, GRASE) 152 

as well as for gray-white matter segmentation and cortical parcellation, we acquired a T1-weighted 153 

high resolution anatomical scan of the whole head (MP-RAGE, TR = 8.10 ms, TE = 3.72 ms, flip 154 

angle = 8°, 220 slices, matrix size = 240 × 240, voxel size = 1 mm × 1 mm × 1 mm). We excluded 155 

non-brain parts of the head using FSL BET (Smith, 2002).  156 

We used FreeSurfer (RRID: SCR_001847, version 6.0.0) for automated cortical parcellation 157 

and segmentation of the T1-weighted images. The details of the applied recon-all analysis pipeline 158 

have been described elsewhere (Dale et al., 1999; Fischl et al., 2004; Fischl et al., 2002; Fischl et al., 159 

1999; Ségonne et al., 2004) and the procedure has been shown to be valid for all age groups in our 160 

study to the same extent (Ghosh et al., 2010).  161 

To localize the primary and secondary visual area (V1 and V2) as well as the hippocampus, 162 

we used FreeSurfer’s implemented probabilistic atlases (Fischl et al., 2008). We converted V1, V2, 163 

and hippocampus FreeSurfer surface labels to ROI masks in FSL anatomical T1 space using 164 

FreeSurfer’s bbregister and mri_label2vol commands. Next, we registered V1, V2, and hippocampus 165 

masks to DTI space using FSL FLIRT (FMRIB's Linear Image Registration Tool, Greve and Fischl, 166 

2009; Jenkinson et al., 2002; Jenkinson and Smith, 2001) for probabilistic tractography (Figure 1, top, 167 

middle). 168 
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2.2.2 Region of interest definition 169 

To define scene-selective regions of interest (ROIs), we obtained functional MRI during a 170 

four-run scene localizer block design experiment that included scenes, objects, and a rest condition 171 

using a blood oxygen level dependent (BOLD) sensitive T2-weighted sequence across 33 slices (TR = 172 

2000 ms, TE = 30 ms, flip angle = 90°, FOV = 240 mm × 240 mm, voxel size = 3 mm × 3 mm × 3 173 

mm, slice gap = 0.4 mm). Details of the scene localizer experimental design are reported elsewhere 174 

(Meissner et al., 2019b).  175 

We used FSL FEAT (FMRIB's Software Library, version 5.0.11, RRID: SCR_002823, 176 

Jenkinson et al., 2012; FMRI Expert Analysis Tool, version 6.0.0, Woolrich et al., 2001) for 177 

preprocessing and statistical analysis of functional MRI localizer data. Preprocessing of functional 178 

data included brain extraction, slice time correction, motion correction, high-pass temporal filtering 179 

(cutoff: 91 s) and registration to the T1 anatomical image for each run in a first-level analysis. First-180 

level statistical results were then entered into a mixed-effects second-level analysis (FLAME 1 option; 181 

Figure 1: Analysis pipeline overview. The anatomical image in T1 

space was used as a common intermediate registration template and 

connecting link between DTI space and non-diffusion spaces, i.e. 

BOLD and GRASE space. Numbers in circles indicate the order of 

analysis steps in DTI space. green = seed and target ROI (here: rRSC 

& rOPA) for probabilistic tractography, heatmap arch = result for 

probabilistic tractography in which brighter colors indicate more 

samples crossing that voxel, blue = merged and thresholded TOI 

mask. 
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Woolrich et al., 2004), yielding statistical t-value maps for the scene > object contrast for each 182 

participant  183 

To define ROIs, we registered each participant’s t-value maps to her/his anatomical T1 image 184 

using sinc interpolation with FSL FLIRT (Figure 1, top, left). Using FSLeyes (version 0.22.6, 185 

McCarthy, 2018), we manually defined subject-specific PPA, RSC, and OPA in each hemisphere at 186 

plausible locations (Figure 1, top, middle; for exemplary ROIs, see Figure 2a). For the PPA and RSC, 187 

we included contiguous voxels whose scenes > objects contrast exceeded the t-value of 5.75. For the 188 

OPA, we chose a more liberal threshold of t > 4, because the OPA can rarely be detected at the same 189 

threshold as the PPA and RSC (without melting PPA and RSC at liberal thresholds or not detecting the 190 

OPA a conservative thresholds; cf. Meissner et al., 2019b).  191 

For all ROIs, this approach yielded in high detection rates that did not differ between age 192 

groups as determined using Fisher’s exact test (S1 Table). One 11-12yo was excluded from 193 

subsequent analyses, because activations for the scenes > objects contrast did not exceed the set 194 

thresholds. We registered each ROI from anatomical T1 space to native DTI space using nearest 195 

neighbor interpolation with FSL FLIRT. For six ROIs, interpolation to the target space using the 196 

nearest neighbor algorithm failed. To still include these ROIs in the analysis, we applied a trilinear 197 

interpolation approach, followed by binary-coding the resulting continuous ROI-map at its median 198 

value.  199 

Figure 2: Scene-selective areas (a) and fiber tracts (b) for an exemplary 7-8yo participant. Areas and tracts are reconstructed in 

native 3D DTI space on top of a FA map. Areas, tracts, and FA map are smoothed for better visualization. Tracts are displayed 

in uniform color for easier identification; for an example of a tract probability (heat-)map, see Figure 3, bottom, left.  
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2.2.3 Diffusion weighted imaging 200 

For fiber tracking and diffusion parameter analysis, a diffusion-weighted single-shot spin-echo 201 

EPI sequence along 33 isotropically distributed directions using a b-value of 1000 s/mm2 (TR = 7234 202 

ms, TE = 89 ms, flip angle = 90°, 60 slices, matrix size = 128 × 128, voxel size = 2 × 2 × 2 mm) was 203 

obtained. Prior to this sequence, one reference image was acquired without diffusion weighting (b = 0 204 

s/mm2). For analysis of diffusion weighted data, we used FSL’s FDT (FMRIB's Diffusion Toolbox). 205 

Preprocessing of DTI data included eddy current and motion artefact correction using FSL 206 

eddy_correct, diffusion gradient vectors reorientation to match the correction-induced rotations, as 207 

well as brain extraction (Figure 1, bottom, #1).  208 

We performed probabilistic tractography on our data in native diffusion space using FSL 209 

BEDPOSTX and PROBTRACKX (Behrens et al., 2007; Behrens et al., 2003) with default settings, 210 

but 25,000 tract-following streamlines originating from each seed mask voxel (Figure 1, bottom, #2). 211 

For each participant, fiber tracking was done for 24 intrahemispheric tracts. In turn, each of the six 212 

scene selective ROIs—as defined by our localizer (see 2.2.2, Region of interest definition)—was set as 213 

the seed mask. For each seed mask, i.e. for each scene selective ROI, five ipsilateral target masks were 214 

set: 1-2) the two other scene ROIs, 3) the hippocampus, 4) V1, and 5) V2 (Figure 3). For these 24 215 

seed-target pairs, probabilistic tractography was done in both directions. That is, after the initial seed-216 

to-target tracking was done, a target-to-seed tracking estimated the same tract in reverse direction (cf. 217 

Genç et al., 2011). For both directions, target masks were also set as waypoint and termination masks 218 

to ensure that only tracts would be retained that entered the target mask and that did not project onto 219 

other areas. Our rationale for employing this dual-direction approach was to control for any direction 220 

specific biases in probabilistic tractography, avoiding under- or overrepresentation of tract size or 221 

detectability. We refrained from interhemispheric tracking, as DTI and MWI parameters from these 222 

tracts would be masked by a major share of general corpus callosum development adding little—if 223 

any—insight into scene-network specific development (for corpus callosum development, see 224 

Meissner et al., 2019a). 225 
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For each voxel, the resulting probability maps indicate how many of the streamlines that 226 

successfully connected seed-to-target crossed this voxel. However, these probability maps include 227 

low-probability voxels that are likely to be spurious connections. To remove these spurious 228 

connections, we threshold individual tract maps at 20% of their robust maximum (99th percentile) 229 

value (cf. Koldewyn et al., 2014) and then merged seed-to-target and target-to-seed tracts using a 230 

logical and-condition (Figure 1, bottom, #3; for exemplary tracts, see Figure 2b). Like other 231 

thresholding approaches, this accounts for systematically different ROI sizes. Moreover, in contrast to 232 

thresholding based on the number of initiated or successful streamlines, our approach provides a better 233 

interpretability, as the number of initiated or successful streamlines offers little insight into the actual 234 

probability map value distribution.  235 

To evaluate white matter microstructural integrity in fiber tracts of interest, we fit diffusion 236 

tensors, modelled by three pairs of eigenvectors (ε1, ε 2, ε 3) and eigenvalues (λ1, λ2, λ3) that describe the 237 

direction and magnitude of water diffusion along three orthogonal axes, to each voxel of our 238 

preprocessed DTI data using FSL DTIFIT. We then calculated axial, radial and mean diffusivity (AD 239 

= λ1, RD = (λ1 + λ2) 2⁄ , MD = (λ1 +  λ2 +  λ3) 3⁄ ), as well as fractional anisotropy (FA = 240 

√3 2⁄ × √(λ1 − MD)2 + (λ2 − MD)2 +  (λ3 − MD)2 √λ1
2 + λ2

2 +  λ3
2⁄ ) as diffusion parameters of 241 

Figure 3: Schematic exemplary seed region (rRSC) with target 

regions and tract connections. For each scene selective ROI, fiber 

tracking was done with the ipsilateral V1, V2, hippocampus (HC), and 

the other two ipsilateral scene selective ROIs (here: PPA and OPA). 

Note that in order to show all seed and target regions in one 

comprehensive display, this is a schematic drawing that does not 

reflect the appropriate absolute or relational position and size of 

target and seed regions. 
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interest (Figure 1, bottom, #4). Weighted DTI metric values for each tract were obtained that 242 

considered each voxel’s DTI metric value and tract probability (voxel weight: number of streamlines 243 

crossing through a voxel in relation to the sum across all voxels, Figure 1, bottom, #5).  244 

2.2.4 Myelin water imaging 245 

To examine the myelination state of white matter tracts, a 3D multi-echo (ME) gradient spin 246 

echo (GRASE) sequence with refocusing sweep angle was acquired (TR = 800 ms; TE = 10 - 320 ms, 247 

32 echoes in steps of 10 ms, partial Fourier acquisition in both phase encoding directions, parallel 248 

imaging SENSE = 2.0, flip angle = 90°, 60 slices, matrix size = 112 × 112, voxel size = 2 × 2 × 2 mm, 249 

acquisition duration = 7.25 min). Parameter maps estimating the fraction of water molecules located 250 

between myelin layers—the myelin water fraction (MWF, MacKay et al., 1994 )—for each voxel were 251 

created as described elsewhere (Prasloski et al., 2012). MWF maps were then registered to native DTI 252 

space using FSL FLIRT (Figure 1, top, right and middle). Here, for high-accuracy transformations, we 253 

employed a two-step procedure. First, we registered the TE = 10 ms of the GRASE sequence to 254 

anatomical T1 space using trilinear transformation. The resulting transformation matrix was then used 255 

to register the MWF map to anatomical T1 space using sinc interpolation. Second, we registered the 256 

T1 anatomy to the b=0 DTI image using trilinear transformation. The resulting transformation matrix 257 

was then used to register the MWF map from anatomical T1 space to DTI space using sinc 258 

interpolation. As for DTI parameters, weighted mean MWF values for each tract were obtained that 259 

considered each voxel’s MWF value and tract probability (Figure 1, bottom, #5).  260 

2.3 Neuroimaging data quality control 261 

We screened preprocessed 4D DTI data and FA maps for visible artefacts that were not 262 

corrected by the preprocessing steps and excluded one 7-8yo participant from subsequent analyses. 263 

Further, to control for possible age group differences in DTI data quality, we quantified two 264 

registration-based and two intensity-based data quality measures implemented in the FreeSurfer 265 

TRACULA toolbox (Yendiki et al., 2011).  For the registration-based measures, mean volume-to-266 

volume translation and rotation parameters were obtained from affine registration matrices of each 267 

volume to the first (b=0) volume. This was to capture global, slow between-volume motion. Our 268 

analysis of variance (ANOVA) on both translation and rotation parameters did not reveal any 269 
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significant between-group differences (Figure 4; rotation: F(2,44) = 1.52, p = .230, η2 = .065 270 

translation: F(2,44) = 2.27, p = .115, η2 = .094) 271 

For the intensity-based measures, we calculated a signal intensity drop-out score for each slice 272 

in each volume in reference to the corresponding slice in the b=0 volume as proposed by Benner et al. 273 

(2011). This was to capture the effect of rapid within-volume motion (note: TR = 7234 ms). We then 274 

quantified the percentage of slices with suspect signal drop-out across the scan—indicated by a score 275 

greater than 1—as well as the average signal drop-out severity for those “bad” slices. Four 7-8yo, two 276 

11-12yo, but no adults displayed any slices with strong signal dropout (Figure 4). In participants with 277 

signal dropout, we observed a maximum portion for “bad” slices of 0.21 %. Due to the low number of 278 

participants with signal dropout, and no signal dropout in the adult group (i.e. no variance) any 279 

ANOVA-based group comparison for the drop-out slice score or percentage of drop-out slices would 280 

lack validity. Thus, we employed Fisher’s exact test and found that the number of participants with 281 

any signal-dropout did not differ between age groups (ꭓ2(2) = 3.87, p = .152).  282 

As the 3D signal acquisition method of the GRASE sequence is not volume-based, affine 283 

registration matrices and corresponding motion estimates, like for functional MRI or DTI cannot be 284 

computed for 3D ME-GRASE data. However, we visually screened all raw GRASE images as well as 285 

MWF maps for motion artefacts but found none.  286 

2.4 Experimental design, statistical analysis 287 

Our study investigated the effect of the between-subject factor age group (with three levels) on 288 

the outcome variables MWF, FA, MD, RD, and AD for six scene selective fiber tracts. In an 289 

Figure 4: Between-group data quality comparison after matching for 

the percentage of drop-out slices. Light gray = 7-8-year-old children, 

medium gray = 11-12-year-old children, dark gray = adults. White 

circles = individual data points. Gray diamonds = group mean. Error 

bars show 95% confidence intervals for the mean. 
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exploratory analysis, further tracts were tested between all six scene selective ROIs and the V1, V2, 290 

and HC, respectively. To test for differences between age groups, we employed analysis of variances 291 

(ANOVAs) for each fiber tract independently. To correct for multiple comparison, the default 292 

significance threshold of α = .05 was Bonferroni-corrected for 6 tracts to α = .0083. To improve the 293 

usability of our results for colleagues whose research interest focuses on one or a particular region or 294 

tract of interest only, we also report age group effects that reached the uncorrected significance 295 

threshold of α = .05 in a second step. Statistical data analysis was performed using R (version 3.2.2, 296 

RRID: SCR_001905, R Core Team, 2015) in RStudio (version 0.99.491; RRID: SCR_000432). 297 

  298 
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3 Results 299 

This study combined myelin water imaging with a functional MRI scene localizer and DTI-300 

based tractography to determine the degree of myelination in white matter tracts underlying the 301 

Figure 5: Myelin water fraction (MWF) and DTI 

parameters for intrahemispheric connections between 

scene-network areas. Light gray = 7-8-year-old children, 

medium gray = 11-12-year-old children, dark gray = 

adults. Error bars show 95% confidence intervals for the 

mean. Asterix and plus signs indicate significance with 

Bonferroni correction (α = .0083) and without correction 

for multiple comparisons (α = .05), respectively. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 6, 2019. ; https://doi.org/10.1101/662809doi: bioRxiv preprint 

https://doi.org/10.1101/662809
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

16 

 

cortical scene-network in three age groups. We examined possible differences in myelin water fraction 302 

between eighteen 7-8yo, thirteen 11-12yo, and sixteen adults to identify if the scene-network’s white 303 

matter structural connectivity follows a similar or divergent pattern in reference to scene-network’s 304 

functional development. Further, we investigated connections between the scene-network and key 305 

input areas, such as V1 and V2, or the hippocampus. In an extended analysis, we tested if DTI 306 

parameters showed the same pattern as MWF. 307 

3.1 Myelin water imaging 308 

Regarding within-scene-network tracts, the MWF in fibers connecting lRSC and lOPA 309 

increased with age (F(2,24) = 6.61, p = .0051, η2 = .355, Figure 5). We observed further increases, 310 

albeit only significant without Bonferroni correction for the lPPA-lRSC tract (F(2,29) = 4.48, p = 311 

.0201, η2 = . 236) and the rPPA-rOPA tract (F(2,26) = 3.82, p = .0352, η2 = . 227).  312 

For connections between the HC and scene-network areas, we found increasing MWF with 313 

age in tracts connecting to the lOPA (F(2,36) = 8.20, p = .0012, η2 = . 313). MWF also increased in 314 

the rOPA, albeit only significant without Bonferroni correction (F(2,35) = 4.77, p = .0147, η2 = . 214, 315 

Figure 6, top left).  316 

V1-scene-network connections showed increasing MWF with age in connections to the lOPA 317 

(F(2,32) = 6.45, p = .0044, η2 = . 287, Figure 6, top middle). We observed further increases that did 318 

not survive Bonferroni-correction for connections to the rOPA (F(2,33) = 5.04, p = .0123, η2 = . 234) 319 

and rRSC (F(2,41) = 3.32, p = .0460, η2 = . 140).  320 

V2-scene-network connections showed increasing MWF with age in connections to the lOPA 321 

(F(2,36) = 5.54, p = .0080, η2 = . 235, Figure 6, top right). We observed further increases that did not 322 

survive Bonferroni-correction for connections to the lOPA (F(2,35) = 3.97, p = .0279, η2 = . 185) and 323 

lRSC (F(2,38) = 4.07, p = .0251, η2 = . 176).  324 

3.2 Extended analysis of DTI parameters 325 

Regarding within-scene-network tracts, the age group differences observed for MWF was not 326 

mirrored in DTI parameters. For FA, we found increasing MWF with age in the rPPA-rRSC tract, but 327 
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statistical significance did not meet our Bonferroni-correction criterion (F(2,35) = 4.35, p = .0205, η2 328 

= . 199, Figure 5, second row). No other tract showed age effects for FA. Concerning the other DTI 329 

parameters—MD, RD, and AD—we did not find any tracts with age group differences (Figure 5, 330 

third, fourth, and fifth row).  331 

Figure 6: Myelin water fraction (MWF) and DTI parameters for connections between scene-network areas and the 

hippocampus (HC, left), primary visual area (V1, middle), and secondary visual area (V2, right). Light gray = 7-8-

year-old children, medium gray = 11-12-year-old children, dark gray = adults. Error bars show 95% confidence 

intervals for the mean. Asterix and plus signs indicate significance with Bonferroni correction (α = .0083) and 

without correction for multiple comparisons (α = .05), respectively 
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HC-scene-network connections showed a similar pattern for FA as for MWF. Tracts from the 332 

HC to the lOPA and rOPA showed increasing FA with age (lOPA: F(2,36) = 6.73, p = .0033, η2 = . 333 

272; rOPA: F(2,35) = 11.49, p = .0001, η2 = . 396, Figure 6, left, second row). However, other DTI 334 

parameters did not mirror MWF findings: MD showed an increase in HC-lPPA connections with age 335 

(F(2,40) = 6.38, p = .0039, η2 = . 242, Figure 6, left, third row), but not in other tracts. RD did not 336 

reveal differences between age groups in HC-connecting tracts. Concerning AD, tracts connecting the 337 

HC and the PPA showed age group differences, albeit increasing values for the left and decreasing 338 

values for the right hemisphere and not surviving Bonferroni-correction in either hemisphere (lPPA: 339 

F(2,40) = 3.88, p = .0289, η2 = . 162, rPPA: F(2,40) = 3.42, p = .0426, η2 = . 146, Figure 6, left, last 340 

row). 341 

For V1-scene-network connections, the only age group differences in DTI parameters was 342 

found in the V1-rPPA tract as an RD decrease (F(2,40) = 6.21, p = .0045, η2 = . 237, Figure 6, middle, 343 

fourth row).  344 

In V2-scene-network connections, DTI parameters did not exhibit age group differences that 345 

survived Bonferroni correction. However, uncorrected effects were evident in V2-lPPA tract for 346 

increasing FA (F(2,40) = 3.32, p = .0465, η2 = . 142) and decreasing RD (F(2,40) = 3.53, p = .0389, η2 347 

= . 150) and in the V2-rRSC tracts for increasing RD (F(2,41) = 3.57, p = .0372, η2 = . 148). 348 

3.3 Control analyses 349 

To control for the possibility that any of the observed age effects were confounded by age-350 

related tract volume differences, we compared tract volume between age groups using ANOVAs and 351 

found differences in lHC-lPPA, rHC-rPPA, and rHC-rOPA tracts, but not in any other tracts (lHC-352 

lPPA: F(2,40) = 6.27, p = .0043, η2 = . 239; rHC-rPPA: F(2,40) = 7.56, p = .0016, η2 = . 274; rHC-353 

rOPA: F(2,40) = 6.10, p = .0054, η2 = . 258). Thus, while FA effects in rHC-rOPA might stem from 354 

tract size differences between age groups, for all other tracts, volume seems an unlikely bias. 355 

  356 
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4 Discussion 357 

Myelin emergence and further maturation is a crucial step in brain development (Flechsig, 358 

1920). While myelin development trajectories for white matter beyond late childhood are still unclear, 359 

it is established that the rate of change and the point at which an adult level is reached is region 360 

specific (Yakovlev and Lecours, 1967). Further, myelin maturation was shown to interact with 361 

functional organization and behavior (e.g. Bengtsson et al., 2005; Yeatman et al., 2012). Here, we 362 

compared MWF in white matter tracts underlying the visual scene-network between 7-8yo, 11-12yo 363 

and adults. We found increasing MWF in lRSC-lOPA, rPPA-rRSC, and lPPA-lRSC tracts. Moreover, 364 

myelin increased in connections from the OPA to the key input regions hippocampus, V1, and V2, as 365 

well as in rRSC-V1 and lRSC-V2 connections.  366 

4.1 Connections between scene network areas 367 

These findings provide evidence for a protracted development of white matter tracts that 368 

connect the scene-network regions PPA, RSC, and OPA. While age effects were only significant after 369 

Bonferroni correction in the lRSC-lOPA tract, effect sizes for lPPA-lRSC and rPPA-rRSC tracts were 370 

medium-to-large. Thus, we are confident that a higher power in terms of more participants would have 371 

rendered these effects significant with Bonferroni correction, too. The three tracts that did not even 372 

pass the α = .05 significance threshold show increasing mean MWF with age on a descriptive level. 373 

Altogether, this suggests an almost general increase in scene network tracts with some tracts 374 

displaying more pronounced age effects than others.  375 

This pattern would suggest that scene network tracts’ developmental trajectory resembles that 376 

of major long white matter tracts. Recent findings indicate that myelin in a majority of major white 377 

matter tracts increases from childhood into young adulthood (Meissner et al., 2019a). In this study, 378 

major tracts that may partly subserve scene network connecting tracts—the inferior longitudinal 379 

fasciculus, and the cingulum angular bundle—showed moderate myelin increases from middle 380 

childhood to adulthood. Moreover, this pattern suggests a resemblance to cortical gray matter myelin 381 

content development, which displays development across late adolescence and up to early adulthood, 382 

too (Carey et al., 2018; Grydeland et al., 2013; Miller et al., 2012; Shafee et al., 2015). 383 
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Integrating our results with recent findings of functional cortical development in scene 384 

selective areas during and beyond childhood (Chai et al., 2010; Golarai et al., 2007; Meissner et al., 385 

2019b) opens up the possibility of structure-function interactions, i.e. influences of structural 386 

development on functional development, or vice versa. However, while previous studies established 387 

that the RSC is adult-like in middle childhood already (Jiang et al., 2014; Meissner et al., 2019b), 388 

tracts connecting the RSC to the PPA and the OPA in the left hemisphere displayed development 389 

nonetheless. Either, this could mean that if structure-function interactions exist, they do not need the 390 

involvement, i.e. development, of both cortical ends of a tract. Or, this could mean that no interactions 391 

exist, i.e. structural and functional development is independent. As cortical structure, function, and 392 

associated cognitive abilities have been associated with white matter structural development (Fields, 393 

2008; Gomez et al., 2017), we speculate that a completely independent development of structure and 394 

function is unlikely. 395 

4.2 Connections between the scene network, hippocampus, V1, and V2 396 

Connections from HC, V1, and V1 to OPA, especially in the left hemisphere indicate 397 

increasing myelination from middle childhood to adulthood. Interestingly, functional cluster size as 398 

well as scene selectivity in bilateral OPA was shown to increase along the same trajectory (Meissner et 399 

al., 2019b). As for within-scene network connections, to speculate, functional OPA development could 400 

be driven by maturing connections to input/output areas. Or, vice, versa, the maturation of OPA-401 

associated fibers could be a case of activity dependent myelination (Fields, 2008). Connections from 402 

rV1 to rRSC and from lV2 to lRSC showed moderate effect sizes but significance did not survive 403 

Bonferroni correction. The inconsistency of hemisphere and visual area hierarchy makes this finding 404 

difficult to interpret. Possibly, the observed effects are residuals of an activity-dependent myelination 405 

that started following the completion of functional RSC maturation. 406 

4.3 Diffusion tensor imaging interpretation 407 

None of the investigated DTI parameters (FA, MD, RD, AD), mirrored any MWI findings 408 

except for FA age effects in connections between the scene network and the hippocampus, where FA 409 

increases with age in lHC-lOPA and rHC-rOPA tracts (the latter might be confounded by age group 410 

differences in tract volume).  411 
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This generally missing correspondence might be explained by the fact that fiber geometry has 412 

a particularly high influence on DTI parameters in small tracts—like connections between scene-413 

network areas. This is due to a higher probability that two tracts with diverging principal diffusion 414 

directions cross, branch, or merge within one voxel (Feldman et al., 2010). Thus, especially in small 415 

tracts, the use of DTI parameters as a proxy for myelin is problematic and might not reflect 416 

myelination but rather other microstructural changes (Moura et al., 2016). For example, a recent study 417 

that investigated major large tracts found a comparatively higher correspondence between DTI and 418 

MWF effects (Meissner et al., 2019a). 419 

4.4 Outlook 420 

Here, we investigated the development of myelin in white matter tracts subserving the cortical 421 

visual scene network for the first time. We established that myelin seems to increase in several within-422 

scene network tracts as well as in connections to crucial input regions. These results are exciting in so 423 

far as they demonstrate that the protracted scene network development between childhood is not 424 

limited to functional changes, but also includes maturation of underlying structures that are not 425 

directly part of the cortical network. We believe that our study opens up two further directions going 426 

forward. First, our cross-sectional study paves the way for large-scale longitudinal studies with short 427 

time intervals over an extended period of time and a high number of participants that combine 428 

behavioral testing, fMRI, DTI-tractography, and MWI, which could tap into the important question of 429 

structure-function-development in more detail. Second, next to the scene network, other cortical 430 

category-specific high-level vision areas form networks. For example, face processing is supported by 431 

a core network with modules in the fusiform gyrus, inferior occipital gyrus, and superior temporal 432 

sulcus, for which evidence also suggests a prolonged functional development (e.g. Golarai et al., 2007; 433 

Nordt et al., 2018, for a review, see Haist and Anzures, 2017). Only little evidence, based on DTI 434 

analysis of major white matter tracts, exists that hints at possible emerging structure-function relations 435 

in the developing face processing system (Scherf et al., 2014). Using MWI and tractography of 436 

individual, short-range, face-area-specific tracts, future research might corroborate these first findings 437 

and shed more light on structural white matter development as a contributing developmental factor on 438 

the long way to (face) perception expertise.   439 
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