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Abstract

Gene set enrichment analysis has been shown to be effective in identifying relevant biological

pathways underlying complex diseases. Existing approaches lack the ability to quantify the enrich-

ment levels accurately, hence preventing the enrichment information to be further utilized in both

upstream and downstream analyses. A modernized and rigorous approach for gene set enrichment

analysis that emphasizes both hypothesis testing and enrichment estimation is much needed. We pro-

pose a novel computational method, Bayesian Analysis of Gene Set Enrichment (BAGSE), for gene

set enrichment analysis. BAGSE is built on a natural Bayesian hierarchical model and fully accounts

for the uncertainty embedded in the association evidence of individual genes. We adopt an empirical

Bayes inference framework to fit the proposed hierarchical model by implementing an efficient EM

algorithm. Through simulation studies, we illustrate that BAGSE yields accurate enrichment quan-

tification while achieving similar power as the state-of-the-art methods. Further simulation studies

show that BAGSE can effectively utilize the enrichment information to improve the power in gene

discovery. Finally, we demonstrate the application of BAGSE in analyzing real data from differential

expression experiment and TWAS analysis. BAGSE is implemented using the C++ programming

language and is freely available from https://github.com/xqwen/bagse/. Simulated and real data

used in this paper are also available at the Github repository for the reproducibility purpose.

∗xwen@umich.edu
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1 Introduction

Gene set enrichment analysis has become a standard analytic tool in systems biology and bioinfor-

matics. Its primary aim is to identify specific groups of genes in which the association signals are

enriched (or depleted) given the association evidence from individual genes. The results from gene set

enrichment analysis have implications beyond the association evidence at the single gene level: as the

gene set is typically defined by the biological relevance of the member genes, the enrichment of signals

in specific gene sets sheds lights on the underlying biological pathways and gene networks, which sub-

sequently helps to uncover relevant molecular mechanisms in a biological system. In practice, gene

set enrichment analysis is often conducted downstream of differential expression (DE) analysis and

genome-wide genetic association analysis (GWAS). Recently emerged transcriptome-wide association

analysis (TWAS) has shown promise in linking causal genes to complex traits utilizing both the data

from mapping expression quantitative trait loci (eQTL) and GWAS (Gamazon et al., 2015; Gusev

et al., 2018; Zhu et al., 2016). Gene set enrichment analysis based on TWAS results will have the

potential to uncover the causal gene networks that lead to complex diseases.

The available gene set enrichment analysis approaches in literature can be roughly classified into

two groups. The first group is represented by the popular approach GSEA (Mootha et al., 2003;

Subramanian et al., 2005). For each pre-defined gene set, GSEA constructs a ranked list of all

member genes based on their association evidence with respect to the phenotype of interest. It then

performs a Kolmogorov-Smirnov (KS)-like test to compare the distributions between different gene

sets. This procedure has been widely used since its inception, as shown in Keshava Prasad et al.

(2008); Guttman et al. (2009); Shalem et al. (2014); Schaub et al. (2018). Built upon the algorithm of

GSEA, many software packages provide further improvements targeting specific applications (Segrè

et al., 2010; Willer et al., 2013; Speliotes et al., 2010). Notably, GSEA-based gene set enrichment

analysis has led to breakthroughs in the profiling of cancer cells (Maruschke et al., 2014), and the

studies of complex diseases like schizophrenia (Hass et al., 2015) and depression Elovainio et al.

(2015). A two-stage procedure characterizes the other class of enrichment analysis methods. Taking

an example of an enrichment analysis from a DE experiment: in the first stage, genes are classified

into either differentially expressed or not based on the association evidence without considering

their gene set annotations; in the second stage, a contingency table is constructed according to the

DE status and gene set membership of all investigated genes. The resulting contingency table is

subsequently used to quantify the enrichment level (by computing the log odds ratio) and testing

enrichment (by a chi-squared test or a Fisher’s exact test) for a particular gene set. This method has
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also been widely applied in the recent literature of genomics and complex disease studies (Richiardi

et al., 2015; Walter et al., 2015; Chang et al., 2016).

Despite the popularity of both types of methods in gene set enrichment analysis, they both lack

the ability of accurate quantification of enrichment levels for gene sets. The GSEA approach is

statistically rigorous in performing hypothesis testing; however, it is not designed to provide an

estimation of the enrichment level. The two-stage approach is seemingly intuitive; nevertheless, the

classification in the first stage ignores the uncertainty of the gene-level association evidence, which

leads to biased estimates of enrichment levels (the details will be explained in Section 2.3). We argue

that the accurate quantification of enrichment from a gene set enrichment analysis is critical in many

bioinformatics applications. Such information is necessary for comparing the relative importance

of multiple gene sets in the same disease or comparing the roles of the same gene set in various

conditions.

In this paper, we propose an empirical Bayes procedure, Bayesian Analysis of Gene Set Enrich-

ment (BAGSE), for gene set enrichment analysis. Our computational approach is derived from a

natural hierarchical model. BAGSE is suitable for not only rigorous hypothesis testing but also ac-

curate quantification of enrichment levels. Additionally, BAGSE can simultaneously handle multiple

and/or mutually non-exclusive gene set definitions, a feature currently missing from the existing

methods. Finally, we show that within the proposed hierarchical model framework of BAGSE, the

gene set enrichment information can be subsequently applied for improving the power in uncovering

association evidence at the gene-level. The software package implementing the proposed procedures

is made freely available at https://github.com/xqwen/bagse/.

2 Methods

2.1 Model and notations

We consider a general setting suitable for analyzing summary-level data generated from both DE

and TWAS studies. Specifically, we use βi to denote the effect size of the association for each gene

i. In DE analysis, β typically represents the log fold-change of expression levels under two different

experimental conditions; in TWAS, β quantifies the strength of association between the phenotype

of interest and the genotype-predicted gene expression levels. Suppose that the analysis of each gene

i yields a maximum likelihood estimate of effect size, β̂i, along with its standard error, ŝi. With
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sufficient sample size, it follows that

β̂i ∼ N(β, ŝ2i ), (1)

and we also consider that (β̂i, ŝ
2
i ) is a sufficient statistic for βi. Throughout this paper, we assume

the observed gene-level association data are summarized by D := {(β̂i, ŝi) : i = 1, . . . ,M} for all

M genes, and it is made available for enrichment analysis. In the case that only p-values are made

available, we map each p-value to a corresponding z-statistic through a standard normal distribution,

hence β̂i = zi and ŝi = 1 Efron (2012); Stephens (2016).

We define a latent binary indicator γi := 1{βi 6= 0} to represent the true association status

of gene i and assume its annotation data, di, provides potential prior knowledge on γi. For the

mathematical convenience of the presentation, unless otherwise specified, we assume a single gene

set is pre-defined, and di is a binary indicator representing if gene i is annotated. (In Section 2.4 and

the Supplementary Material, we relax this restriction and consider multiple overlapping gene sets.)

We assume a logistic prior function connecting di and γi, i.e.,

log

[
Pr(γi = 1)

Pr(γi = 0)

]
= α0 + α1di, (2)

where the coefficients α := (α0, α1) quantify the enrichment information. For example, if α1 > 0,

the genes belonging to the gene set of interest are more likely to be associated.

To complete the hierarchical model, we follow the recently proposed adaptive shrinkage (ASH)

method (Stephens, 2016) to model the prior effect size βi (conditional on γi = 1) using a mixture of

K normal distributions, i.e.,

βi | γi = 1, di ∼
K∑
k=1

πk,diN(0, φ2k). (3)

Accordingly, conditional on γi = 0, βi = 0 by definition.

In practice, we determine the number of the mixing components, K, and corresponding effect

size parameters {φ2k} using a data-driven approach as described in Stephens (2016). (The technical

details are also described in Section 1.4 of the Supplementary material). Importantly, we allow the

mixture proportions, i.e., πdi := {πk,di}, to vary across different types of annotations, which provides

the necessary flexibility to model potentially different effect size distributions for different kinds of

gene sets or pathways. We view this feature as an improvement and a generalization of the original

ASH model.

The proposed Bayesian hierarchical model can be summarized by the graphical model shown in

Fig. 1.
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Figure 1: A graphical model representation of the BAGSE model. The directed acyclic graph (DAG)
represents a probabilistic generative model. The shaded variables represent data that are observed.

With observed association data D and annotation data d := (d1, ..., dM ), we frame the problem

of enrichment analysis as an inference problem with respect to the enrichment parameter α.

2.2 Gene set enrichment estimation

To quantify the enrichment level of annotated genes within a pre-defined gene set, we perform maxi-

mum likelihood estimation with respect to α based on the proposed hierarchical model. Particularly,

we design an Expectation and Maximization (EM) algorithm to obtain the maximum likelihood

estimates (MLEs) for hyperparameters α, π by treating the latent binary vector γ as missing data.

Briefly, in the E-step of the t-th iteration we evaluate the probability Pr(γi = 1 | α(t),π
(t)
di
,D)

for all genes (where α(t) and π
(t)
di

denote the current estimates of α and πdi , respectively). In this

process, the unknown effect size parameters, βi’s, are analytically integrated out. In the M-step, we

simply fit a logistic regression model

log

[
Pr(γi = 1|α(t),π

(t)
di
,D)

Pr(γi = 0|α(t),π
(t)
di
,D)

]
= α0 + α1di, (4)

and use the resulting GLM estimates of α0 and α1 to obtain the updated α(t+1). Subsequently,
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π
(t+1)
di

is computed by maximizing a simple K-dimensional multinomial likelihood function.

We start the algorithm from a set of arbitrary values of α and {πl} and iterate between the E and

M steps until the pre-defined convergence criteria are met. The standard error of α̂ is computed using

a profile likelihood approach. The full details of the EM algorithm are provided in the Supplementary

Material. Finally, we summarize the result of the gene set enrichment analysis by constructing a 95%

confidence interval of α1 from the EM output. Furthermore, we can obtain a p-value by computing

a z statistic from α̂1 and its standard error to test the null hypothesis,

H0 : α1 = 0. (5)

2.3 A latent contingency table interpretation

Here we provide an intuitive and general view of our enrichment analysis model and algorithm.

Without loss of generality, we consider a single binary annotation for a particular gene set definition

(i.e., a gene is either in or out of the annotated pathway/gene set). Now consider an ideal (but

unrealistic) scenario where the true association status of each gene is indeed known. Under this

setting, the enrichment analysis can be formulated as a 2 × 2 contingency table with the 4 cells

indicating the 4 possible combinations of association and annotation status. Given the table, it is

straightforward to compute the odds ratio to quantify the level of enrichment. It should be known

that the enrichment computation from the contingency table is also statistically equivalent to fitting

a simple logistic regression model. However in practice, the exact classification of the association

status is unknown, and the above simple procedure is not directly applicable.

As mentioned in the introduction, the commonly applied two-stage procedure can be viewed as

an ad-hoc procedure to fill in the unobserved 2× 2 contingency table based on a simple classification

rule. That is, a gene is classified as “associated” if the null hypothesis from a statistical test is

rejected, and “unassociated” otherwise. This procedure is intuitive but has some notable caveats.

Importantly, it should be clear that the filled” contingency table is not necessarily accurate compared

to the underlying true table. This is because adopting hypothesis testing as a classification procedure

preferentially restricts type I errors (false positives) but not the overall classification errors, in which

type II (false negatives) errors make up a substantial proportion and are not controlled.

To demonstrate this point, we perform simulations and apply the two-stage procedure to estimate

the enrichment parameter. In each simulation, we first generate a 2× 2 contingency table given the

true association and annotation status. We subsequently adjust the cell counts to reflect both the
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type I and type II errors in the gene-level hypothesis testing. Finally, we compute the enrichment

parameter α1 using the adjusted contingency table. In summary, we find that the two-stage procedure

consistently yields the enrichment estimates that are biased toward 0. With the type I error under

control, the degree of bias is negatively correlated with the power of gene-level tests. An example from

the simulation study is shown in Supplementary Figure 2. Interestingly, the lower power of the gene-

level tests is also associated with a higher degree of variation in the enrichment estimates from the

adjusted contingency table. Therefore, we conclude that the two-stage procedure can be inaccurate

in estimating the enrichment parameter. Nevertheless, for enrichment testing, the direction of the

bias from the two-stage procedure seems only to impact power but does not inflate the type I error

that asserts enrichment when α1 = 0, as can be noted from results in Supplementary Table 2.

Our proposed EM algorithm, in this case, can be viewed as an iterative approach to fill in the

unobserved contingency table, accounting for the uncertainty of the true binary association status.

In the E-step of the proposed EM algorithm, we essentially fill in the table with the expected values

of each gene. Note that

E
[
1{γi=1}

]
= Pr(γi = 1 | di = 1,α(t),π(t)). (6)

Hence, gene i contributes to the cell count of associated and annotated by an amount of Pr(γi = 1 |

di = 1,α(t),π(t)), and to the cell count of unassociated and annotated by an amount of 1−Pr(γi = 1 |

di = 1,α(t),π(t)). An obvious advantage of this approach is that the uncertainty of the association

analysis result is naturally accounted for. The M-step is essentially the same statistical procedure

given the contingency table is filled with the expected cell counts.

2.4 Use of multi-category gene set annotations

A unique advantage of BAGSE for enrichment analysis is that it can naturally handle multiple gene set

annotations. Consider L potentially overlapping gene sets that we wish to evaluate simultaneously.

A gene can be independently annotated (i.e., in or out) by an individual annotation. The joint

annotation of a gene can be represented by a binary L-vector, which can take 2L possible values:

e.g., (0, 0, ...0) indicates a gene is not annotated in any gene set, and (1, 1, ...1) indicates a gene is

annotated in all gene sets. Note that our parametric prior model (2) can naturally accommodate

such multi-category annotation by regarding the corresponding di as a categorical variable coded by

dummy variables (Section 1.2 of the Supplementary Material). For inference, instead of reporting a

single enrichment coefficient (α1), use of multi-category annotation leads to up to 2L− 1 enrichment

coefficients for different annotation configurations in contrast to the baseline annotation (0, 0, ..., 0).
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The general scheme applies to an arbitrary number of gene sets (L) considered, although a large

number of L values may lead to expensive computational costs. It is possible to make simplifying

assumptions to reduce computational complexity. For example, let binary indicator ui,l denote if

gene i is annotated in the gene set l. We consider an additive prior model

log

[
Pr(γi = 1)

Pr(γi = 0)

]
= α0 +

L∑
l=1

αl ui,l, (7)

which is computationally feasible for moderate to large L values. This particular prior model is also

implemented in the BAGSE.

2.5 Local fdr control accounting for gene set enrichment

Another unique advantage of BAGSE is that the estimated enrichment information can be sub-

sequently utilized in identifying truly associated candidate genes. Intuitively, accounting for the

quantitative enrichment information boosts the power in identifying signals. This is accomplished

by expanding a parametric empirical Bayes framework of local false discovery rate control procedure

described in Stephens (2016). Specifically, we consider testing the null hypothesis H0 : γi = 0 for all

genes using the enrichment information. For each test, we evaluate the local fdr (lfdr) by plugging

in the enrichment estimate α̂, π̂,

lfdri := Pr(γi = 0 | β̂i, ŝi, α̂, π̂di), (8)

which is a byproduct of our EM algorithm and can be directly applied to control FDR.

Our proposed procedure also provides a principled solution to deal with non-exchangeable multiple

hypothesis testing. For example, one may suspect that genes in certain annotated pathways are more

likely to be true signals. Such prior expectation can be precisely expressed by equation (2) in our

model. In particular, if α1 > 0 and gene i is a member of the gene set of interest, then it has a

higher prior probability to be a genuine signal compared to its counterparts absent from the gene

set. Furthermore, the enrichment estimation procedure outlined in the EM algorithm allows us to

effectively learn the value of α1 from the observed data. The local fdr computed in (8) combines the

enrichment prior and the likelihood information observed from data: if a gene set is estimated to be

enriched, the lfdr’s of its member genes are down-weighted by the priors.

In addition to controlling FDR for testing presence or absence of signals (i.e., γi’s), our approach

can be extended to control the local false sign rates (lfsr) (Stephens, 2016), which focus on the signals
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whose effects can be identified robustly. In particular, we compute lfsr for gene i by

lfsri := min[Pr(βi ≥ 0 | α̂, π̂di , β̂, ŝ),Pr(βi ≤ 0 | α̂, π̂di , β̂, ŝ)], (9)

which is interpreted as the error probability in determining the sign of the effect for gene i.

3 Results

3.1 Simulation studies

We use numerical simulations to benchmark the performance of the proposed Bayesian gene-set

enrichment analysis procedure. Our particular focuses are put on examining the accuracy of the

enrichment estimates and its performance in enrichment testing.

In each simulated dataset, we consider the analysis of 10,000 genes, each of which is assigned a

binary true association status based on the enrichment parameters (α0, α1) and pre-defined annota-

tions. For each gene, we assume an association z-score is available for the enrichment analysis: for

un-associated genes, we draw the z-scores from the standard normal distribution; for the associated

genes, the z-scores are simulated from a t-distribution with the degree of freedom = 10 (which mimics

the long-tailed effect size distribution commonly observed in practice, see Supplementary Figure 1

for example). We set the enrichment parameter α0 = −1 throughout, while varying the values of α1

and the proportion of annotated genes (denoted by q) across all simulations. We vary α1 values from

0 to 1, due to all investigated methods having power similarly near 100% power as α1 increases to

above 1. We use values for q ranging from 1% to 20%, due to that being a realistic range for q based

on the hierarchical nature of popular databases such as KEGG or GO. Each parameter set is used

to generate 5000 different datasets.

3.1.1 Evaluation of enrichment parameter estimation

We first examine the point estimate of the enrichment parameter from the BAGSE analysis procedure.

For comparison, we also compute the enrichment estimate from the two-stage procedure. The analysis

results of the simulated datasets are summarized in Fig. 2 for annotation proportion q = 10%. It

is clear that the proposed approach consistently yields unbiased enrichment estimates across all α1

values. Also consistent with the previous results, the estimates from the two-stage approach are

biased towards 0. Across different q values, the estimates from the Bayesian procedure remain
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Figure 2: A comparison of the enrichment parameter estimates between the two-stage approach and the
proposed method, with standard errors represented as error bars. BAGSE appears to give an unbiased
estimate of α1, while the two-stage approach’s estimate grows more severely biased as the enrichment
parameter grows higher.

unbiased. But we observe a pattern that shows a lower level of variation in α̂1 when q increases

towards 0.5. The latent contingency table interpretation can intuitively explain this phenomenon:

as q tends to 0 (or 1), the underlying table becomes more imbalanced, causing increased uncertainty

for the enrichment parameter. Results from simulations using all parameter sets can be found in

Supplementary Table 1 and Supplementary Figures 3, 4 and 5.

We conduct additional simulations to illustrate the ability of the proposed method in estimating

enrichment parameters using annotations from multiple overlapping gene sets. In summary, we find

that BAGSE estimates in such scenario remain unbiased and accurate. The details of these additional

simulations are described in Section 2 of the Supplementary Material.
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3.1.2 Power comparison in enrichment testing

Next, we proceed to examine the performance of various methods, including BAGSE, the two-stage

approach, and the popular GSEA method, in testing the enrichment hypothesis: H0 : α1 = 0. We

apply both the unweighted and weighted forms of the GSEA procedure. The unweighted GSEA

procedure corresponds to a standard Kolmogorov-Smirnov test (by comparing the distribution of

the absolute value of z-scores, or p-values, between annotated and unannotated genes). We use the

default weight recommended in the original GSEA paper Subramanian et al. (2005) to perform the

weighted GSEA procedure.

The simulation results for when q = 10% are summarized in Fig. 3. We conclude that all methods

properly control type I errors at 5% level, based on the proportion of tests rejected when α1 = 0

being below 0.05 (denoted by the dotted line) for all methods. BAGSE and the weighted GSEA

method are top performers at every combination of simulation parameters, constantly outperform-

ing the unweighted GSEA and the two-stage approaches by a significant margin, especially at the

intermediate α1 values of 0.1 and 0.25. The power difference between BAGSE and the weighted

GSEA is generally negligible. In our simulation setting, when α1 → 1, all methods seemingly achieve

the perfect power to reject the null hypothesis. Additionally, we observe that the power to detect

enrichment improves as q increases towards 0.5. This phenomenon can be similarly explained by the

latent contingency table interpretation of our proposed model: the standard error of the enrichment

estimate decreases as the proportion of the annotation increase towards 0.5. Results from simulations

using all parameter sets for all methods can be found in Supplementary Table 2 and Supplementary

Figures 6, 7 and 8.

3.1.3 Gene discovery incorporating enrichment quantification

Finally, we examine the power in identifying truly associated genes when gene set enrichment infor-

mation is explicitly considered. Specifically, we compute the local fdr for each gene using (8) where

the estimated enrichment parameter is plugged in, and control the overall FDR at 5% level. For a

baseline comparison, we use both the q-value procedure Storey et al. (2003) and the local fdr proce-

dure (both are implemented in the R package “qvalue” ) to control FDR at the same level ignoring

the gene set information.

Our results indicate that all methods properly control the FDR at the desired level. However,

the proposed procedure accounting for enrichment quantification consistently outperforms the q-

value and the local fdr procedure ignoring the enrichment information in realized power (Figure 4).
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increases as the true enrichment parameter increases. BAGSE and weighted GSEA outperform the
other methods in this regard.
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Figure 4: Power increment in gene discovery when accounting for gene set enrichment information. The
percentages of power increment by using enrichment information are compared to two standard FDR
control procedures: the q-value method (brown line) and the local fdr method (blue line). All methods
control FDR at 5% level.

As expected, the improvement of power is positively correlated with the level of enrichment. In

our simulation setting, we observe a modest increase in power ( ∼ 1.5%, or 20 more true positive

discoveries per simulated dataset) when the enrichment parameter is ∼ 1; as α1 reaches 5, the power

boost becomes much more substantial (∼ 20% improvement in power, or 400 more true discoveries

per simulated dataset).

3.2 Real data application I: differential expression experiment

Next, we apply BAGSE to the experimental data from Moyerbrailean et al. (2016), which considers

the differential expression of genes under the treatment of the glucocorticoid. The study profiles

20,896 genes using RNA-seq. A p-value is obtained for each gene using the software package DESeq2

(Love et al., 2014). We convert the p-values into the z-scores, using the estimated effect sizes from the

study to determine the corresponding signs. The experiments are also carried out in multiple tissues.

For demonstration purpose, we select the results gathered from the peripheral blood mononuclear

cells. Because of the known nature of these cells in their response to glucocorticoid, we expect genes

involved in pathways associated with immune response to be enriched.

There are 21 KEGG pathways involved in the immune responses. Of these, 15 contain genes that

are in our dataset. We first analyze these 15 pathways separately using BAGSE. The enrichment
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estimate for each of these pathways is provided in Supplementary Table 3. We observe that the

majority of the examined pathways (14 out of 15) are shown to be enriched with DE genes, and

their enrichment levels can be straightforwardly compared by utilizing the quantified enrichment

estimates. In particular, we find that the Intestinal immune Network for IgA Production pathway

seemingly shows an extremely high level of enrichment (α1 = 9.34 with 95% CI [5.38, 13.29]).

Because each pathway only annotates a small proportion of genes, the confidence intervals are

typically large (Supplementary Table 3). Following Carbonetto and Stephens (2013), we pool the

genes annotated in the 15 KEGG pathways to form a general category of the gene set and examine

the enrichment of DE genes in this gene set representing general immune responses. In total, 2.7%

of the 20,896 genes are annotated in the aggregated gene set.

We apply BAGSE, the two-stage approach, and GSEA with the two different weighting schemes

to conduct gene set enrichment analysis. These results are summarized in Table 1. BAGSE detected

strong enrichment for the pooled immune response gene sets, with an enrichment log odds ratio of

1.31 (95% CI [0.96,1.66]), which corresponds to a p-value of 2.2×10−13. The two-stage approach also

detects enrichment, with an enrichment log odds ratio of 0.87 (95% CI [0.63, 1.11]). The unweighted

GSEA method detects significant enrichment with a p-value of 1×10−7. The weighted GSEA method

also detects significant enrichment with an estimated p-value < 1× 10−3.

Method P-value Enrichment estimate (95% CI)

BAGSE 2.2× 10−13 1.31 (0.96, 1.66)

Two-Stage 1.2× 10−12 0.87 (0.63, 1.11)

Unweighted GSEA 1× 10−7 -

Weighted GSEA ¡10−3∗ -

Table 1: The comparison of significance in detecting enrichment between methods for data from the
Differential Expression of genes under treatment of glucocorticoid. As expected, all methods show
significance. Note that the inexact value for the weighted GSEA p-value is due to its calculation using
1,000 permutations (recommended by Subramanian et al. (2005)).

Additionally, we examine the power improvement in identifying DE genes by incorporating the

quantified enrichment information. Without using the enrichment information, we find that the q-

value procedure identifies 1496 genes at 5% FDR level (the local fdr procedure, implemented in the

q-value package, identifies 1527 genes). By incorporating the enrichment estimates, BAGSE identifies

1617 genes at the same FDR control level, which amounts to 8% increase in comparison to the q-value

procedure (or 6% increase to the local fdr procedure). Overall, these results appear consistent with

our simulation studies.
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3.3 Real data application II: transcriptome-wide association analysis

For the second illustration with real data, we perform gene set enrichment analysis using the as-

sociation results generated from TWAS. TWAS is a principled approach based on Mendelian ran-

domization (MR), and its units of analysis are genes whose expression profiles are systematically

investigated in expression quantitative trait loci (eQTL) studies. The results from TWAS analysis

yield insight into the mode of causality from gene expressions to complex traits (Gamazon et al., 2015;

Gusev et al., 2018; Zhu et al., 2016). For our illustration, we apply the software package MetaXcan

(Barbeira et al., 2016) to examine the association between predicted gene expression levels in the

whole blood and the lipid trait of high-density lipoproteins (HDLs). Our TWAS analysis utilizes the

whole blood data from the GTEx project (version 6p) (Consortium et al., 2017) and GWAS sum-

mary statistics from the Global Lipids Genetics Consortium (Willer et al., 2013). Specifically, we first

compute the predicted gene expression levels using the GTEx data using the elastic-net algorithm

following Gamazon et al. (2015) and obtain the association z-scores between each gene and the HDL

trait using MetaXcan.

We aim to examine two KEGG pathways (Neurotrophin signaling pathway and Adipocytokine

signaling pathway), which are previously implicated in the GWAS analysis by Willer et al. (2013).

Note that Willer et al. (2013) applied a proximity-based approach linking a GWAS hit to the nearest

protein-coding gene and used the MAGENTA procedure (Segrè et al., 2010), which is similar to the

two-stage procedure, for the pathway enrichment analysis.

We start our analysis by identifying a group of genes overlapping between the protein-coding genes

annotated by the KEGG database and the eGenes (i.e., the genes harboring at least one cis-eQTL)

implicated by analyzing the GTEx whole blood data. This is because non-trivial expression predic-

tions based on genetic variants are only available for eGenes. In the end, we identify 4,604 genes for

the pathway enrichment analysis. We examine these genes for enrichment in the two pathways of

interest, studying one pathway at a time. In our data, there are only 15 genes annotated in the Neu-

rotrophin Signaling pathway, and only 12 genes annotated in the Adipocytokine Signaling Pathway.

We apply BAGSE (single-category version), the two-stage approach, and the GSEA (weighted and

unweighted) method to analyze each pathway. The results for enrichment testing and estimation are

summarized in Table 2 and Table 3. In brief, none of the four methods detect significant enrichment

(at 5% level) in either pathway. However, the directions of the enrichment levels inferred by BAGSE

are consistent with the previous MAGENTA results reported in Willer et al. (2013). Due to the

unbiased nature of BAGSE’s enrichment estimate, as shown in the simulations, we believe this point
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estimate to have meaning in spite of the lack of statistical significance. We suspect that the lack of

significant finding from the TWAS results is likely due to the lack of power in eQTL studies: with

a limited number of sample size (343), the eQTL analysis does not have sufficient power to identify

eQTLs with small to modest effect sizes. Consequently, the expression levels for a large number of

protein-coding genes are poorly (or unable to be) predicted. Nevertheless, we are confident that this

issue can be resolved when the well-powered eQTL datasets become available in the near future.

Method P-value Enrichment estimate (95% CI)

BAGSE 0.34 1.43 (-1.46, 4.31)

Two-Stage 0.23 1.27 (-0.78, 3.31)

Unweighted GSEA 0.73 -

Weighted GSEA 0.08 -

Table 2: A look at the significance in the testing for enrichment of the neurotrophin signaling pathway,
for the four discussed methods. All four methods show no significance at the 5 % significance level,
likely due to the relatively small amounts of annotated genes identified from the eQTL analysis.

Method P-value Enrichment Estimate (95% CI)

BAGSE 0.35 1.45 (-1.62, 4.52)

Two-Stage 0.15 1.51 (-0.55, 3.56)

Unweighted GSEA 0.48 -

Weighted GSEA 0.14 -

Table 3: A summary of the significance for testing the enrichment of the adipocytokine signaling
pathway, for the four methods. Again, all four methods do not show significance at the 5 % significance
level. The low number of annotated genes that show evidence of association can severely increase the
standard error of the enrichment estimate. This is likely the reason behind the unexpected result of the
two-stage point estimate being higher than the BAGSE point estimate here.

4 Conclusion and discussion

In this paper, we have introduced an empirical Bayes procedure, denoted as BAGSE, for gene set

enrichment analysis. We have shown, through simulations and real data analysis, that the proposed

approach provides a principled inference procedure to estimate the level of enrichment for a gene

set, avoiding the caveats of the two-stage procedure. In addition, the proposed Bayesian method

maintains strong power in testing enrichment, as compared to other popular approaches to gene set

enrichment analysis. Finally, we show that the enrichment estimates from the proposed approach

can be subsequently utilized to improve power for gene-level testing.

It should be noted that our approach can be straightforwardly applied to simultaneously estimate

16

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 6, 2019. ; https://doi.org/10.1101/662171doi: bioRxiv preprint 

https://doi.org/10.1101/662171


the enrichment of multiple gene sets with overlapping genes. This unique feature can be critical be-

cause, as seen in many commonly used gene pathway definitions (e.g., the KEGG pathway database),

there are many genes involved in multiple pathways. This flexibility in gene annotation intrinsic to

the proposed Bayesian model gives it a distinct advantage as an enrichment analysis method.

During our simulations, we noted that both power to detect enrichment and enrichment esti-

mation were heavily dependent on the proportion of genes annotated. Our latent contingency table

interpretation can partially explain this phenomenon: even if all association status is indeed observed,

the standard error of the enrichment estimate is known to be negatively correlated with the smallest

cell count, and lower annotation proportion tends to decrease the smallest cell count (which typically

is the cell corresponds to the count of both annotated and associated genes). All enrichment testing

and estimation methods would be affected by a low proportion of annotated genes, reflected by losing

either power or precision. In general, the quality of the gene set definition has a direct impact on

results from enrichment analysis. Defining highly specific gene pathways is an ongoing challenge.

In our real data applications, we show the examples of pathway enrichment analysis based on the

TWAS result. We expect that this type of analysis will become increasingly popular in the field of

systems biology. The TWAS analysis provides a causal inference framework linking individual genes

to a complex trait of interest. The gene set enrichment analysis based on TWAS results helps uncover

potentially causal biological pathways. Although our TWAS enrichment analysis seems inconclusive,

we suspect that it is likely due to lack of power in the available eQTL datasets. With the fast growth

of available eQTL data, the power of the TWAS analysis is expected to be improved significantly in

the near future. Consequently, we expect that the proposed gene set enrichment analysis will help

unveil many causal pathways relevant to complex diseases.
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Supplementary Materials

A EM algorithm for parameter estimation

Recall that D := {(β̂i, ŝi) : i = 1, ...,M} and γ := (γ1, ..., γM ). We consider the complete data

likelihood Pr(D,γ | d,α,π) by treating γ as missing data:

Pr(D,γ | d,α,πd)

= Pr(D | γ,d,πd) Pr(γ | d,α)

=
M∏
i=1

P (β̂i, ŝi | γi, di,πdi)
M∏
i=1

Pr(γi | α, di).

(10)

Our model assumes that

β̂i | βi ∼ N(0, ŝ2i ),

and the prior for βi follows a K-component mixture normal distribution depending on the corre-

sponding gene set annotation, i.e.,

βi | di, γi ∼
K∑
k=1

πdi,kN(βi, γi φ
2
k).

Equivalently, it follows that

β̂i | di, γi ∼
K∑
k=1

πdi,kN(0, γi φ
2
k + ŝ2i ).

A.1 Model reparameterization

We now consider a general case with L potentially overlapping gene sets. By the coding convention

introduced in section 2.4, the gene set annotation di is a categorical variable representing R multiple

mutually exclusive categories, where 2 ≤ R ≤ 2L. Specifically, we use di = 0 to denote the baseline

level that a gene is not annotated in any of the L gene sets. Under this formulation, the equation

(2) in the main text is generalized to

log

[
Pr(γi = 1 | di = r)

Pr(γi = 0 | di = r)

]
= α′r, for r = 0, 1, ..., R− 1, (11)
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in this coding system. In case that L = 1, this coding system is compatible to equation (2). In

particular, α′0 = α0 and α′1 = α0 + α1. Given K pre-defined mixture components for the effect size

distribution in the alternative models, π is represented by a R×K matrix with (r+ 1)-th row vector

representing the weights for annotation di = r (r = 0, ..., R− 1).

For each gene i, we introduce a [R(K + 1)]-dimension latent indicator, ηi, to re-parametrize the

complete data likelihood function (10). Note that all entries of a valid ηi vector take value 0 except

that a single entry takes value 1. In particular, we define

ηi, r(K+1)+1 = 1↔ {di = r; γi = 0},

for r = 0, ..., R− 1, and

β̂i | ηi, r(K+1)+1 = 1 ∼ N(0, ŝ2i ). (12)

That is, this subset of latent indicators and the corresponding parameters define the null (i.e., non-

association) models for each annotation category r. Similarly, we set

ηi, r(K+1)+k+1 = 1↔ {di = r; γi = 1 and βi ∼ N(0, φ2k) },

for k = 1, ...,K, and r = 0, ..., R− 1. Accordingly,

β̂i | ηi, r(K+1)+k+1 = 1 ∼ N(0, ŝ2i + φ2k). (13)

Furthermore, the prior weights for the indicator ηi are simple functions of the original parameters

(α,π), i.e.,

wi, r(K+1)+1 := Pr(ηi, r(K+1)+1 = 1)

= Pr(γi = 0 | di = r)

=
1

1 + exp(α′r)
.

(14)

Similarly,

wi,r(K+1)+k+1 := Pr(ηi, r(K+1)+k+1 = 1)

= πδ(r(K+1)+k+1) ·
exp(α′r)

1 + exp(α′r)
, for k = 1, ...,K.

(15)

Note that we use the function δ(j) = (di = r, k) to map the single index j = r(K + 1) + k+ 1 to the

double indcies di = r and k in the original (α,π) notation for suitable integer j ∈ S, where S denote

the index set excluding j = r(K + 1) + 1, for r = 0, ..., R − 1. Similarly, we use δ−1(di = r, k) =
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r(K + 1) + k + 1 to denote the inverse mapping.

Under this alternative parameterization, the complete data likelihood can be expressed by

M∏
i=1

P (β̂i, ŝi | ηi)
M∏
i=1

Pr(ηi | α,π, di)

=
M∏
i=1

R(K+1)∏
j=1

(
P (β̂i, ŝi | ηi,j = 1)

)1{ηi,j=1}

·
M∏
i=1

( 1

1 + exp(α′di)

)1{ηi,di(K+1)+1=1} (
exp(α′di)

1 + exp(α′di)

)1−1{ηi,di(K+1)+1=1} ∏
j∈S

π
1{ηi,j=1}

δ(j)

 ,
(16)

Thus, the complete data log-likelihood is given by

l(α,π) =
M∑
i=1

R(K+1)∑
j=1

1{ηi,j=1} logP (β̂i, ŝi | ηi,j = 1)

+
M∑
i=1

(1− 1{ηi,di(K+1)+1=1}) (α′di)

−
M∑
i=1

log
[
1 + exp(α′di)

]
+

M∑
i=1

∑
j∈S

1{ηi,j=1} log πδ(j)

(17)

A.2 E-step

In the E-step for the t-th iteration of the EM algorithm, we compute the expected value of the missing

data, ηi, conditional on the observed data summary statistics, gene set annotation, and the current

estimates of the parameters, α(t),π(t), i.e.,

E
(
1{ηi,j=1} | β̂i, ŝi,α(t),π(t)

)
= Pr

(
ηi,j = 1 | β̂i, ŝi,α(t),π(t)

)
,∀i, j.

The computation can be carried out by the Bayes rule, i.e.,

Pr
(
ηi,j = 1 | β̂i, ŝi,α(t),π(t)

)
=

Pr(ηi,j = 1 | α(t),π(t))P (β̂i | ηi,j)∑R(K+1)
j′=1 Pr(ηi,j′ = 1 | α(t),π(t))P (β̂i | ηi,j′)

, (18)

where the relevant likelihood and prior functions are given by (12), (13), (14), and (15), respectively.
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A.3 M-step

In the M-step for the t-th iteration, we update the estimate of the enrichment parameter by finding

α(t+1) = arg max
α

( M∑
i=1

(
1− Pr(ηi,di(K+1)+1 = 1 | β̂i, ŝi,α(t),π(t))

)
· (α′di)

−
M∑
i=1

log
[
1 + exp(α′di)

])
,

(19)

which is equivalent to fitting a logistic regression model with a single categorical covariate, d, and

the binary response variables, η’s, replaced by their corresponding posterior probabilities. Our im-

plementation uses the Newton-Raphson algorithm to perform numerical optimization. Similarly, we

update the estimate of π by finding

π(t+1) = arg max
π

 M∑
i=1

∑
j∈S

Pr(ηi,j = 1 | β̂i, ŝi,α(t),π(t)) log πδ(j)

 , (20)

under the constraint
K∑
k=1

πr,k = 1, ∀ r = 0, 1, ..., R− 1.

Note that maximization can be achieved analytically. Specifically,

π
(t+1)
r,k =

∑M
i=1 Pr(ηi,δ−1(l,k) = 1 | β̂i, ŝi,α(t),π(t))∑M

i=1

∑K
k′=1 Pr(ηi,δ−1(l,k′) = 1 | β̂i, ŝi,α(t),π(t))

. (21)

The software implementation of the EM algorithm can initialize the parameters of interest at

arbitrary starting points. By default (i.e., without explicit user specification), we set

α′0
(0)

= · · · = α′R−1
(0)

= 0,

and

π
(0)
r,k =

1

K
, ∀ l, k.

We iterate between the E-step and the M-step until pre-defined convergence criteria is satisfied.

A.4 Grid construction

We follow the procedure described in Stephens (2016) to construct a dense set of {φ2k} in a data-

driven fashion. Specifically, we construct a series of φk values within the range of (φmin, φmax), where
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φmin = min(ŝi)/10 and φmax = max(β̂2
i − ŝ2i ). We start with φ1 = φmin and set

φk+1

φk
=
√

2, for k = 1, 2, ..., (22)

until φK+1 > φmax.

B Simulation with annotations from multiple gene sets

We perform additional simulations to illustrate the utility of estimating enrichment parameters from

multiple overlapping gene sets.

As a proof of concept, we simulate two sets of independent gene set annotations for 10,000 genes

in each simulated data set where q ≈ 40% of genes are independently annotated in each gene set.

Let binary indicators ui,1 and ui,2 denote the annotation status of gene i in the two gene sets,

respectively. As a result, 36% genes are expected to be not annotated for any of the gene sets

(denoted by [ui,1 = 0, ui,2 = 0] or di = 0); 24% genes are expected to be annotated only for the first

gene set (denoted by [ui,1 = 1, ui,2 = 0] or di = 1); 24% genes are expected to be annotated only for

the second gene set (denoted by [ui,1 = 0, ui,2 = 1] or di = 2); and 16% genes are expected to be

annotated for both gene sets (denoted by [ui,1 = 1, ui,2 = 1] or di = 3 ).

For each gene i, we draw its association status γi from a Bernoulli(pi) distribution, where

logit(pi) = −1 + 0.80ui,1 + 1.00ui,2 + 0.55ui,1 · ui,2. (23)

Conditional on γi = 1, the corresponding z score is drawn from a t-distribution with 10 degree of

freedom for all di values. Otherwise, when γi = 0, the z score is drawn from the standard normal

distribution. We generate 1,000 simulated data sets using the above scheme.

When analyzing the simulated data, we do not assume any knowledge of (23) and simply apply the

general combinatorial annotation model and the EM algorithm described in section 2.4 of the main

text and section 1 of the supplementary material. Specifically, we examine the enrichment estimates

in contrast to the baseline annotation (annotation “00”), i.e., the estimates of α1 = α′1 − α′0 (truth

= 0.80) for genes annotated only in set 1 (annotation “10”), α2 = α′2 − α′0 (truth = 1.00) for genes

annotated only in set 2 (annotation ”01”), and α3 = α′3 − α′0 (truth = 0.80 + 1.00 + 0.55 = 2.35) for

genes annotated in both set 1 and set 2 (annotation “11”), respectively. Across 1,000 simulations,

we find that the proposed EM algorithm yields unbiased estimates of enrichment parameters (Figure

22

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 6, 2019. ; https://doi.org/10.1101/662171doi: bioRxiv preprint 

https://doi.org/10.1101/662171


5). We find that all three estimates are seemingly unbiased: the average point estimates for the three

mutually exclusive annotations are 0.806, 1.016 and 2.377, respectively.
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Figure 5: Simultaneous enrichment estimation of overlapping gene sets by BAGSE in simulation studies.
Two overlapping gene sets are used in the simulation. Annotation “00” denotes the genes not annotated
in any gene set, these genes are the baseline for the enrichment comparison. Annotation “10” denotes
the genes annotated only in the first gene set, annotation “01” denotes the genes annotated only in
the second gene set, and annotation “11” denotes the genes annotated in both gene sets. The average
point estimates and the corresponding standard errors from 1000 independent simulated data sets are
plotted. The dashed lines denote the underlying true enrichment levels for each group.
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