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Abstract 10 

 In primary auditory cortex, slowly repeated acoustic events are represented temporally by phase-locked 11 
activity of single neurons. Single-unit studies in awake marmosets (Callithrix jacchus) have shown that a sub-12 
population of these neurons also monotonically increase or decrease their average discharge rate during stimulus 13 
presentation for higher repetition rates. Building on a computational single-neuron model that generates phase-14 
locked responses with stimulus evoked excitation followed by strong inhibition, we find that stimulus-evoked 15 
short-term depression is sufficient to produce synchronized monotonic positive and negative responses to slowly 16 
repeated stimuli. By exploring model robustness and comparing it to other models for adaptation to such stimuli, 17 
we conclude that short-term depression best explains our observations in single-unit recordings in awake 18 
marmosets. Using this model, we emulated how single neurons could encode and decode multiple aspects of an 19 
acoustic stimuli with the monotonic positive and negative encoding of a given stimulus feature. Together, our 20 
results show that a simple biophysical mechanism in single neurons can allow a more complex encoding and 21 
decoding of acoustic stimuli. 22 

 23 

Introduction 24 

Our ability to discriminate complex sounds such as music [1,2], speech [3,4], and conspecific 25 
vocalizations [5], relies on the auditory system’s analysis of an acoustic signal’s spectral and temporal structures. 26 
For sequences of brief sounds, the timing of each acoustic event is explicitly encoded by the stimulus-locked 27 
activity of neurons throughout the ascending auditory pathway. In primary auditory cortex (A1), neurons can 28 
temporally lock to individual acoustic events up to around 40-50 Hz [6-10], matching the upper limit of acoustic 29 
flutter (the percept of a sequence of discretely occurring events). While repetition rates within the perceptual range 30 
of acoustic flutter are represented by A1 neurons with phase-locked activity, some of these neurons can also 31 
simultaneously vary their firing rate by monotonically increasing (Sync+) or decreasing (Sync-) firing rate over 32 
the range of repetition rates that span the range of flutter perception [11]. Temporal coding provides a faithful, 33 
unambiguous representation of the timing of acoustic events. However it must be analysed across time to 34 
determine the repetition rate of the stimulus.  Rate coding, on the other hand, provides a more “processed” and 35 
instantaneous readout of repetition rate. Although rate coding is more ubiquitous in brain regions downstream 36 
from auditory cortex, one potential issue is that rate coding is used to represent multiple acoustic features in 37 
auditory cortex. For example, in a typical auditory cortical neuron, an increase in firing rate could represent a 38 
change in frequency, sound level [12], and/or sound location [13] In order for rate coding to be useful to 39 
downstream brain regions, neural circuits must be able to demultiplex concurrently encoded acoustic features.  40 

In multiple brain regions, rate coding takes the form of positive and negative monotonic tuning. This form of 41 
opponent coding (positive/negative sloped rate relationship with a stimulus parameter) has been postulated to 42 
provide a number of advantages as an encoding strategy, including robustness to rate changes resulting from 43 
adaptation, allowing for the multiplexing of additional information within an overlapping rate code, and increasing 44 
the accuracy of extracting this information by reducing positively correlated noise between neurons [14]. How 45 
could the brain generate these types of neural representations? To explore this question, we used a leaky integrate-46 
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and-fire computational model of a neuron. Previously, we have used a similar modelling approach to generate 47 
stimulus synchronized responses to acoustic pulses in the range of flutter perception, by varying the delay and 48 
relative strength of excitatory and inhibitory inputs [15]. In this E-I (excitation-inhibition) based computational 49 
model, synchronized responses to slowly repeating sounds occur when inhibition is both stronger than and delayed 50 
relative to excitation. Building on this model, Gao et al (2016) [16] added a simplified adaptation mechanism to 51 
stimulus repetition rate, resulting in synchronized responses and non-synchronized monotonic positive and 52 
negative responses, but stimulus repetition rate ranged beyond acoustic flutter. The integration of rate coding in 53 
synchronizing neurons, to generate Sync+ and Sync- responses within the perceptual range of flutter, has not yet 54 
been directly examined using such computational models. Here we investigated the underlying neural mechanisms 55 
responsible for Sync+ and Sync- responses in auditory cortex and demonstrate that the addition of synaptic 56 
depression to the E-I model is sufficient to reproduce these two response modes - specifically stronger synaptic 57 
depression of excitatory inputs relative to inhibitory inputs leads to the Sync- response while weaker synaptic 58 
depression of excitatory inputs relative to inhibitory inputs leads to the Sync+ response. Using this model, we 59 
examined how a downstream neuron can combine Sync+ and Sync- inputs to effectively demultiplex a rate code 60 
such that discharge rate only monotonically varies with a single acoustic parameter. 61 

 62 

Results 63 

We first examined whether the E-I model described by Bendor (2015) [15] was capable of generating 64 
both Sync+ and Sync- responses to acoustic pulse trains, using the model’s three existing independent parameters: 65 
The E/I ratio (the strength of excitatory input divided by the strength of the inhibitory input), the I-E delay (the 66 
temporal lag between the excitatory and inhibitory input), and the overall strength of excitation (Fig.1a). In this 67 
model, the number of spikes produced by each acoustic event was determined by the net excitatory input. If the 68 
number of spikes produced by each acoustic event did not change with repetition rate, neurons linearly increased 69 
their discharge rate with increasing repetition rate (Sync+). However, because the strength of lagging inhibition 70 
can decrease the overall net excitation in a repetition rate dependent manner, Sync- responses could be created at 71 
very high I/E ratios. While we observed that Sync+ responses were generated over a wide range of biologically 72 
plausible excitation and inhibition strengths (Fig1.c-e), Sync- responses could only be generated using 73 
biologically unrealistic I/E ratios, using a 3-fold increase in the strength of inhibition relative to excitation reported 74 
in intracellular recordings [17]. Although discharge rate decreased with increasing repetition rate for these 75 
modelled Sync- neurons, their rate responses were non-significant (firing rate below 2 std above mean 76 
spontaneous rate, see methods for details.), in contrast to the driven responses observed real Sync- neurons 77 
(Bendor and Wang 2007 [11], Fig.1c). 78 

 79 

Fig 1. Computational model of an auditory cortical neuron. (A.) Simulated neural responses to an acoustic 80 
click train (top). each click was converted to an excitatory and inhibitory conductance input in our computational 81 
model, using an alpha function with a time constant of 5 ms (middle). Three parameters could be altered (I-E 82 
delay, E input and I/E ratio). Spikes were generated when membrane voltage reached a threshold (bottom). (B.) 83 
Cartoon of monotonic positive and negative responses. Monotonic positive neural responses increase the average 84 
discharge rate for stimuli with higher repetition rate. Monotonic negative responses decrease average discharge 85 
rate for stimuli with higher repetition rate.  (C-E.) Examples of simulated neurons. Average discharge rate for 86 
increasing stimuli repetition rate for two example neurons. Model parameters for both neurons are the following: 87 
Neuron example 1 (C.): Excitatory input = 2 nS, Inhibitory input = 10 nS. Neuron example 2 (D.): Excitatory 88 
input = 4.5 nS, Inhibitory input = 8.5 nS. Error bars indicate s.e.m. (E) classification of neuron type across two 89 
parameters (Excitatory input and Inhibitory input) with a fixed I-E delay of 5 ms.  The arrows indicate the 90 
parameters used for the example neurons (left arrow for example 1, right arrow for example 2). Shaded area 91 
indicates biologically plausible values where the I/E ratio is between 1.4 and 2.0. 92 

 93 

 Modelling short-term depression 94 

We next examined how the E-I model could be modified to more accurately represent the repetition rate 95 
tuned responses of Sync+ and Sync- neurons. One possible mechanism that can vary discharge rate in a repetition 96 
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rate sensitive manner is synaptic short-term plasticity, in particular, short-term depression (STD). If such 97 
adaptation is present, real neurons should decrease their firing rate between the start and the end of stimulus 98 
presentation. This difference would be larger for higher repetition rates, and a strong but short-term adaptation 99 
would be able to suppress the activity for high repetition rates without affecting responses for low repetition rates. 100 
Indeed, we observed that the number of spikes in real neurons at each acoustic event showed a decrease between 101 
the start and the end of stimuli sets for both Sync- and Sync+ real neuron populations (Fig.2a-c). Higher repetition 102 
rates showed a larger decrease for Sync- neurons than for lower repetition rates, the largest decrease seen at 103 
48Hz ,the upper limit of acoustic flutter (Wilcoxon rank sum test, P <<0.001), whereas no decrease was observed 104 
at 8Hz, the lower limit of acoustic flutter (Wilcoxon rank sum test, P = 0.1) (Fig.2e). Similar to Sync- neurons, 105 
the decrease was present for Sync+ neurons at 48Hz (Wilcoxon rank sum test, P = 0.03) and absent at 8Hz 106 
(Wilcoxon rank sum test, P = 0.71) (Fig. 2f). When comparing this decrease between Sync- and Sync+ neurons 107 
for the same stimulus, we observed no significant difference for stimuli from 8 to 16Hz, and a significant 108 
difference from 20 to 48Hz (Supp Fig. 2a). Moreover, this depression in the neural response was stronger in the 109 
early portion of the acoustic stimulus (compared to the latter portion), and for Sync- neurons (compared to Sync+ 110 
neurons) (Fig.2a, S1 Fig). Sync+ neurons showed a weak global depression throughout stimulus presentation, and 111 
the profile of depression was not affected by repetition rate (Fig.2a, S1 Fig). Finally, the average number of spikes 112 
per acoustic event decreased monotonically (Spearman correlation coefficient: 0.99, P <0.001) for higher 113 
repetition rate in Sync- neurons, but not in Sync+ neurons (Spearman correlation coefficient = 0.36, P = 0.36.) 114 
(Fig.2d). Together, these observations suggest that adaptation to repeated stimuli was stronger for Sync- neurons 115 
than for Sync+ neurons (S2-S3 Figs) 116 

 117 

Fig 2. Event-related activity of monotonic Sync neurons.  (A-C.) Normalized number of spikes at each acoustic 118 
event for real Sync- (n = 27) and Sync+ (n = 26) neurons at 48Hz (a.) 24Hz (B.) and 8Hz (C.). Each data point 119 
was calculated by averaging the number of spikes at the time of each acoustic event (with response latency 120 
considered). Error bars indicate s.e.m. Black bar indicates stimulus presentation period. (D.) Average number of 121 
spikes of real Sync+ and Sync- neurons at each acoustic event across different repetition rates. Sync+ : Spearman 122 
correlation coefficient = 0.36, P = 0.36 ; Sync- : Spearman correlation coefficient: 0.99, P <0.001. (E -F.) 123 
adaptation between first and last acoustic event of stimulus for Sync- (E.) and Sync+ (F.) neurons. (E.) adaptation 124 
at 8Hz (Wilcoxon rank sum test, P = 0.1), 24Hz (Wilcoxon rank sum test, P << 0.001), 48Hz (Wilcoxon rank sum 125 
test, P << 0.001). (F.) adaptation at 8Hz (Wilcoxon rank sum test, P = 0.71), 24Hz (Wilcoxon rank sum test, P = 126 
0.01), 48Hz (Wilcoxon rank sum test, P = 0.03). 127 

 128 

Model parameters. To add short term depression to our previous model, we introduced two additional 129 
parameters; the amplitude of depression (𝑨𝑫) which determined the strength of adaptation after each acoustic 130 
pulse, and the time constant of recovery (𝛕𝐏) which controlled how stimulus repetition rate affected adaptation 131 
during stimulus presentation (Fig.3a)(see methods for details). To control the strength of depression in our 132 
modified E-I model, we independently varied these two parameters for both excitatory and inhibitory inputs. We 133 
observed that by varying these two parameters, we were able to produce Sync+ (Spearman correlation coefficient 134 
ρ > 0.8, P < 0.05) and negative (ρ < -0.8, P < 0.05) responses (Fig.3b-d, see Methods). To further study the effects 135 
of these parameters, we first calculated the probability of obtaining monotonic positive (Fig.3b) or negative 136 
(Fig.3c) neurons across all values of  𝑨𝑫 for a given set of time constants {𝝉𝒑𝑬 , 𝝉𝒑𝑰} within a naturalistic range 137 
(between 0.05s and 0.2s). This was determined so that with values in the middle of the range, neurons would show 138 
no or very little depression for repetition rates under 8Hz, which corresponded to a time interval greater than 139 
0.125s between two pulses. The average monotonicity index of model neuron responses across all values of 𝑨𝑫 140 
was highest for high 𝝉𝒑𝑰 and low 𝝉𝒑𝑬 values, and lowest for low 𝝉𝒑𝑰 and high 𝝉𝒑𝑬 values (Fig.3b-c). For a given 141 
set of time values { 𝝉𝒑𝑬 = 0.15, 𝝉𝒑𝑰= 0.10} we were able to obtain Sync+ neurons with strong depression and 142 
weak inhibition. The converse was true for Sync- neurons, where depression was stronger for excitation than 143 
inhibition (Fig.3d). In our parameter range, depression of excitation was more important than depression of 144 
inhibition in determining whether a neuron would be monotonic positive or negative. In this computational model, 145 
as in the previous model [15], the initial onset response was determined by the strength of excitation and inhibition, 146 
but not affected by synaptic depression. Values for excitatory and inhibitory input were chosen so that the onset 147 
response was on average between 40 and 60 spikes per second to match onset responses observed in real neurons 148 
[11], although different amplitudes of onset response did not affect our observations (S4 Fig).  149 
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 150 

Fig 3. Computational model of an auditory cortical neuron with short term depression. (A.) At each acoustic 151 
signal (top) we simulate the decrease in the probability of release of synaptic vesicles with an amplitude of 𝐴𝐷 152 
followed by an exponential recovery with time constant 𝜏𝑝 (middle top) (See methods for details). This probability 153 
of release then determined the amplitude of conductance input to our model neuron (middle bottom). a decrease 154 
in conductance amplitude during stimuli presentation (black bar) resulted in a decrease in discharge rate per 155 
acoustic signal (bottom). (B-D.) Adaptation parameter space. Average positive (B.) and negative (C.) 156 
monotonicity index for a given set of recovery time constants { 𝜏𝑝𝐸, 𝜏𝑝𝐼 }. Average monotonicity index at {𝜏𝑝𝐸  = 157 
0.15, 𝜏𝑝𝐼  = 0.10} for different values of 𝐴𝐷𝐸 and 𝐴𝐷𝐼 (D.).  158 

 159 

For our simulated neurons, 𝐴஽  values were determined so that simulated Sync+ and Sync- neurons 160 
matched real neurons in both trial-by-trial spiking activity (Fig.4) and average population activity (Fig.5). 161 
Monotonicity was significant for both Sync+ (Spearman correlation coefficient ρ = 0.91, P < 0.001) and Sync- (ρ 162 
= 0.85, P = 0.012) simulated neurons (Fig.5e,f), and temporal fidelity over the range of repetition rates spanning 163 
flutter perception was maintained despite adaptation (Vector Strength (VS)>0.1, and Rayleigh statistic>13.8, P < 164 
0.001). 165 

 166 

Fig 4. Real and Simulated monotonic Sync example neurons. Raster plot comparison between simulated Sync+ 167 
(B; 𝐴𝐷𝐸 = 0.4, 𝐴𝐷𝐼 = 0.1, 𝜏𝑝𝐸 = 0.15 s 𝜏𝑝𝐼 = 0.10 s.) and Sync- (D; 𝐴𝐷𝐸 = 0.1, 𝐴𝐷𝐼 = 0.4, 𝜏𝑝𝐸 = 0.15 s 𝜏𝑝𝐼 = 0.10 s.) 168 
neurons with real Sync+ (C; unit m32q-337) and Sync- (E; unit m32q-29) neuron examples. the black bar indicates 169 
the time during when stimuli was given as input. 𝐴𝐷𝐸 = 0.4, 𝐴𝐷𝐼 = 0.1, 𝜏𝑝𝐸 = 0.15 s 𝜏𝑝𝐼 = 0.10 s. 170 

Fig 5. Monotonicity of real and simulated neurons. Comparison between simulated and real neuron population 171 
PSTH for Sync+ (A; n = 30, B; n = 26) and Sync- (C; n = 30, D; n = 27) neurons. (E, F.) Normalized discharge 172 
rate for Sync + and Sync- neurons across stimuli with different repetition rates. Discharge rate was normalized to 173 
the maximum value across stimuli. (E.) Population average of real Sync+ and Sync- neurons. (F.) Population 174 
average of simulated Sync+ and Sync- neurons.  175 

 176 

Model robustness. Next, we examined the robustness of our model to different types of noise. Our computational 177 
model operated, as did the previous model [15], with a fixed spontaneous rate (~4 spk/s) comparable to that of 178 
our real neuron data (median spontaneous rate = 3.8 spk/s). This was generated by adding Gaussian noise to the 179 
baseline excitatory and inhibitory conductances of the neuron (see methods). Increasing the amplitude of noise 180 
also increased the spontaneous rate (Fig.6a). We examined how robust our model was for varying noise amplitude 181 
and observed that it did not affect monotonicity for both Sync+ and Sync- simulated neurons (Fig.6b). Vector 182 
Strength was less robust to changes in noise amplitude, in particular for Sync- simulated neurons, where low noise 183 
amplitude resulted in a complete lack of stimulus synchrony for high repetition rates (Fig.6d, e), due to the evoked 184 
responses consisting of an onset followed by suppression. Our model also included temporal jitter (Fig.6c) to 185 
emulate more realistic responses, by adding Gaussian noise to the timings of each acoustic pulse. Similar to the 186 
conductance noise amplitude, changes to temporal jitter did not affect monotonicity. We also observed that the 187 
vector strength in Sync- simulated neurons was more affected by temporal jitter than for Sync+ simulated neurons 188 
(Fig 6f, g). However, with the exception of Sync- simulated neurons with strong temporal jitter (above 7 s.d.) 189 
these simulations in the presence of noise could still be classified as synchronised monotonic responses (see 190 
methods for criteria). We further explored model robustness by studying how input parameters such as excitation 191 
and inhibition amplitude affected monotonicity and vector strength. Monotonicity in Sync+ simulated neurons did 192 
not seem to be affected by changes in these parameters (Fig.7a). In Sync- neurons however, the monotonicity 193 
index was reduced to 0 for IE ratios under 1.0 (Fig.7b). In addition, for stronger excitatory input amplitudes the 194 
model required higher IE ratios to produce monotonic negative responses. As for vector strength, both Sync+ and 195 
Sync- simulated neurons showed a weak decrease in stimulus synchrony for excitatory input amplitudes under 196 
2nS (Fig.7c, d).  197 

 198 
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Fig 6. Model robustness. Spontaneous rate in relation to noise amplitude (A.) Monotonicity in Sync+ and Sync- 199 
neurons in relation to noise amplitude (B.) and temporal jitter (C.) Vector strength in relation to noise amplitude 200 
in Sync+ (D.) and Sync- (E.) neurons, and in relation to temporal jitter in Sync+ (F.) and Sync- (G.) neurons.  201 

Fig 7. Model robustness regarding Excitation and Inhibition amplitude. Average monotonicity index (A, B.)  202 
and average vector strength (C, D.) across different values for recovery time constants { 𝜏𝑝𝐸 , 𝜏𝑝𝐼  } ranging 203 
between 0.06 and 0.20s for a given value of { 𝐴𝐷𝐸, 𝐴𝐷𝐼 }. When within the parameters of producing Sync+ neurons, 204 
Monotonicity is unaffected by changes in E strength and IE ratio (A.). For parameters resulting in Sync- neurons, 205 
Monotonicity is negative only when inhibition is stronger than excitation (IE ratio larger than 1) (B.). Vector 206 
strength is maintained for E strength above 2nS and is minimally affected by IE ratio in both scenarios (C, D.). 207 

 208 

Different mechanisms for adaptation to repeated acoustic pulses. So far in this study we explored short-term 209 
depression as a possible underlying mechanism for Sync+ and Sync- neurons observed in A1. Next, we explored 210 
other possible mechanisms that may allow neurons to adapt to acoustic pulse trains and compared their effects to 211 
that of our short-term depression model. One such mechanism is short-term facilitation (STF); the adaptation 212 
of neural activity during stimulus presentation for higher repetition rates could arise from facilitation of inhibition, 213 
as opposed to depression of adaptation. We thus modelled short-term facilitation using the same parameters as 214 
short-term depression. However, instead of decreasing the probability of release (and therefore the conductance 215 
input amplitude), this probability was increased at each acoustic input until it was recovered back to its initial 216 
value (Fig.8) (see methods). When combining depression of excitation and facilitation of inhibition, the model 217 
was able to produce both Sync+ and Sync- responses. Similar to our original model (depression of excitation and 218 
inhibition) depression of excitation was the determining factor for the direction of monotonicity for simulated 219 
neurons (Fig.8a, b). However, increasing the strength of facilitation in the inhibitory input lead to a decrease in 220 
the monotonicity slope of Sync+ neurons and an increase in the monotonicity slope of Sync- neurons. When both 221 
excitation and inhibition were facilitated, all simulated neurons were Sync+ neurons (Fig.8c, d). In the case where 222 
there was strong facilitation of inhibition and weak depression of excitation, our model produced non-monotonic 223 
synchronized responses (highest discharge rates in the middle of the acoustic flutter range).  224 

 225 

Fig 8. Computational model including short term facilitation. Short term facilitation was added to the model 226 
by increasing the probability of release (see methods) at each acoustic input, which would decay back to the initial 227 
value with a time constant 𝜏𝑝. Initial probability of release was 0.5 compared to 1.0 in short term depression model 228 
to compensate for changes in conductance input amplitudes.  (A, B.) Depression of excitation and facilitation of 229 
inhibition. (C, D.) Facilitation of both excitation and inhibition. (A, C.) average monotonicity index for a given 230 
value of adaptation amplitude 𝐴𝐷, for time constants { 𝜏𝑝𝐸, 𝜏𝑝𝐼 } ranging between 0.06 and 0.20s. (B, D.) discharge 231 
rates for example neurons. (B.) Simulated neurons with depression of excitation and facilitation of inhibition. 232 
Example neuron 1 at { 𝐴𝐷𝐸 = 0.1, 𝐴𝐷𝐼 = −0.0}, Spearman correlation coefficient = 0.76, P = 0.01. Example 233 
neuron 2 at {𝐴𝐷𝐸 = 0.1, 𝐴𝐷𝐼 = −0.4}, Spearman correlation coefficient = 0.25, P = 0.45. Example neuron 3 at 234 
{𝐴𝐷𝐸 = 0.3, 𝐴𝐷𝐼 = −0.0}, Spearman correlation coefficient = -0.66, P = 0.03 Example neuron 4 at {𝐴𝐷𝐸 = 0.3, 235 
𝐴𝐷𝐼 = −0.4}, Spearman correlation coefficient = -0.74, P = 0.01 (D.) Simulated neurons with facilitation of both 236 
excitation and inhibition. Example neuron 1 at { 𝐴𝐷𝐸 = -0.2, 𝐴𝐷𝐼 = −0.2}, Spearman correlation coefficient = -1, 237 
P << 0.001. Example neuron 2 at {𝐴𝐷𝐸 = -0.0, 𝐴𝐷𝐼 = −0.4}, Spearman correlation coefficient = 0.07, P = 0.84. 238 
Time constants of all example neurons: {𝜏𝑝𝐸  = 0.15, 𝜏𝑝𝐼  = 0.10} 239 

    240 

Another possible mechanism for adaptation to stimulus statistics is spike-frequency adaptation (SFA). 241 
Although the time scale for SFA is generally much shorter than that of short-term depression [18. 19], the two 242 
effects could be complimentary. In order to separate SFA from our observations, we studied Inter-Spike Intervals 243 
(ISIs) at onset for both Sync+ and Sync- real neurons by comparing the difference between the first and second 244 
ISI and second and third ISI (S5 Fig). Within the same population, we observed a significant difference between 245 
the first, second and third ISI (KS test, P <0.05), and thus the presence of SFA. However, the time scale of SFA 246 
was in the order of 0.5ms, compared to the time scale of flutter (20 to 250ms). In addition, SFA at the onset 247 
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between Sync+ and Sync- neurons was significantly different (t-test, P<0.05) but the difference was in the order 248 
of 1ms.  249 

To further compare the aforementioned mechanisms between each other and with real neurons 250 
populations, we studied the strength of adaptation in relation to discharge rate at different time windows during 251 
the stimulus presentation (acoustic pulse train with a repetition rate of 40Hz). The strength of adaptation, 252 
equivalent to the amplitude of adaptation 𝐀𝐃 shown in the model above, was defined as the firing rate during the 253 
time window spanning the given acoustic pulse divided by the firing rate during the previous acoustic pulse. Real 254 
neurons with firing rates lower than the spontaneous rate during the first 2 pulses (5/27 neurons in Sync-, 7/26 255 
neurons in Sync+) were excluded from analysis. The strength of adaptation was also calculated for models with 256 
different mechanisms for adaptation; the base model with STD for excitation and inhibition, the base model with 257 
additional weak or strong SFA (see methods), and the facilitation model with STD for excitation and STF for 258 
inhibition (Fig.9a). As expected, adaptation during the first to second pulse for Sync- simulated neurons was 259 
strongest in the strong SFA model, and weakest in the facilitation model. Adaptation increased significantly 260 
between first to second pulse and first to third pulse for the base model and for the facilitation model (Wilcoxon 261 
sign rank test P <<0.001) but not for models with weak or strong SFA (Wilcoxon signed rank test P = 0.06 and P 262 
= 0.5 respectively). For Sync+ neurons, all models showed a weak or non-significant adaptation. In the case of 263 
real Sync- neurons, most neurons showed significant depression between the first and second pulse (18/22 neurons, 264 
median = 0.59, t-test, P << 0.001) and between first and third pulse (18/22 neurons, median = 0.90, P << 0.001) 265 
(S6 Fig), and the difference of adaptation strength between these two time windows was statistically significant 266 
(paired Wilcoxon rank sum test, P < 0.01) (Fig.9b) these results were most comparable to our base model using 267 
only short-term depression. As for Sync+ neurons, individual responses showed both depression and facilitation 268 
during onset. 9/19 neurons and 8/19 neurons showed depression between 1st and 2nd pulses and between 1st and 269 
3rd pulses respectively (median = 0 for both, Wilcoxon signed rank test, P > 0.05) (Fig. 9b). These results showed 270 
that short-term depression was sufficient to reproduce adaptation to acoustic pulse trains in real Sync+ and Sync- 271 
neurons.   272 

 273 

Fig 9. Adaptation between individual synaptic inputs for real neurons and different models. (A.) Adaptation 274 
between the 1st and 2nd input, and between 1st and 3rd input for Sync+ and Sync- neurons for models with different 275 
adaptation mechanisms. Strength of adaptation increased significantly between 1st to 2nd pulse and 1st to 3rd pulse 276 
for Sync- base and facilitation model (paired Wilcoxon signed rank test P << 0.001) (B.) Strength of adaptation 277 
in real Sync+ and Sync- neurons between the 1st and 2nd input, and between 1st and 3rd input. Strength of adaptation 278 
increased significantly between 1st to 2nd pulse and 1st to 3rd pulse for Sync- neurons (Wilcoxon signed rank test 279 
P <0.01).  Asterisks directly above bars indicate that the adaptation amplitude was significantly different from 0 280 
(Wilcoxon signed rank test P <0.05).  281 

 282 

Response to pure tones. If we consider pure tones to be similar to acoustic pulse trains with a very high repetition 283 
rate, the responses these stimuli evoke in Sync+ neurons and Sync- neurons would be different. We would more 284 
likely observe a brief onset response in Sync- neurons compared to a more sustained response observed in sync+ 285 
neurons. Using our computational model, we could also emulate responses of Sync+ and Sync- neurons to 286 
different sets of stimuli such as pure tones. In real neurons, similar responses were evoked by pure tones (at the 287 
neuron’s best frequency) and pulse trains with high repetition rates (Fig.10a): We observed an onset followed by 288 
a sustained response for Sync+ neurons and an onset followed by a suppressed response for Sync- neurons. Both 289 
our computational model for Sync+ and Sync- neurons behaved similarly to real neurons (Fig.10b), with Sync- 290 
simulated neurons showing a transient onset followed by suppressed response, whereas Sync+ showed a sustained 291 
response during stimulus. Our simulated responses to pure tones did however differ with real neuron response 292 
dynamics (S7 Fig). Sync + responses were greatly exaggerated in our simulated neurons compared to real neurons, 293 
with the peak response time being significantly later than onset response time. Decreasing the initial excitatory 294 
input amplitude or introducing SFA to the model seem to affect Sync- responses, however increasing the excitation 295 
strength led to a proportional increase in onset response (S8 Fig). These data suggest that the temporal profile of 296 
pure-tone responses could be used to predict whether a neuron is Sync+ or Sync-, even though actual firing rates 297 
of the base model did not accurately reflect real neuronal responses. We tested this prediction by measuring the 298 
median of all spike times during stimulus presentation of pure tone responses in real and simulated neurons: 299 
Neurons with sustained responses would have a higher median spike time during stimulus presentation than those 300 
showing onset responses. This was indeed the case for both real neuron populations (Fig.10c) (median spike time 301 
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of Sync+ neurons = 89ms, median spike time of Sync- neurons 44ms, Wilcoxon rank sum test, P < 0.05) and 302 
simulated neurons (S8 Fig). Results for Sync+ simulated neurons suggest that median spike times during the 303 
stimulus varies depending on the strength of adaptation whereas for Sync- neurons it stays constant. This could 304 
explain the variation of median spike times in real Sync+ neurons compared to Sync- neurons (Fig.10c). 305 

 306 

Fig 10. Pure tone responses. Normalized responses to pure tones in real (A; Sync +, n =26. Sync-, n = 27) and 307 
simulated neurons (30 simulated neurons). Normalized spike rate was obtained by dividing the population average 308 
response to the average peak response during stimulus presentation. (C.) Distribution of median spike times during 309 
stimuli presentation of all Sync+ neurons (green asterisk: median of distribution= 89ms) and Sync- neurons 310 
(yellow asterisk: median of distribution= 44ms). The two distributions were significantly different (Wilcoxon rank 311 
sum test, P < 0.001). 312 

 313 

Encoding and decoding multiple acoustic features. Sync+ and Sync- neurons dually represent the repetition 314 
rate of acoustic flutter through monotonic discharge rate and through stimulus-synchronized activity [11]. 315 
However, how downstream neurons read out this information, especially in the context of additional concurrently 316 
encoded acoustic parameters is unknown. To further explore this issue, we added a monotonic modulation of 317 
firing rate in our model, to reflect a stimulus’ sound level [12,20,21] and emulate multiplexing of different acoustic 318 
features in firing rate. Our Sync+ and Sync- neurons therefore varied their firing rates to both stimulus repetition 319 
rate and sound amplitude (Fig.11b, c). We speculated that these two parameters could be “demultiplexed” by 320 
simply adding or subtracting Sync+ and Sync- responses from each other. Subtracting Sync- responses from 321 
Sync+ responses, generated a firing rate that was insensitive to changes in stimulus amplitude, providing a robust 322 
monotonic change in firing rate to repetition rate (Fig.11d, e). Using the opposite approach and summing Sync+ 323 
and Sync- responses created an invariant response to repetition rate while preserving the monotonic tuning to 324 
stimulus amplitude (Fig.11f, g).  325 

 326 

Fig 11. Opponent coding with Sync+ and Sync- neurons. (A.) Cartoon of the effect of stimulus amplitude to 327 
Sync+ and Sync- tuning curves in relation to stimulus repetition rate. Higher sound levels shift the tuning curves 328 
towards higher firing rates. (B, C.) Normalized firing rate for a given stimulus with two varying parameters, 329 
stimulus amplitude and stimulus repetition rate for Sync+ and Sync- simulated neurons respectively. Cartoon (D.) 330 
and model output (E.) illustrating tuning curves in relation to stimulus repetition rate and amplitude when 331 
subtracting Sync- responses from Sync+ responses. Changes in activity reflects changes in repetition rate but not 332 
in stimulus amplitude. Cartoon (F.) and model output (G.) illustrating tuning curves in relation to stimulus 333 
repetition rate and amplitude when adding Sync- responses to Sync+ responses. Changes in activity reflects 334 
changes in stimulus amplitude but not in repetition rate.  335 

 336 

We quantified this further by comparing the mutual information (MI) between firing rate and each 337 
stimulus feature with our simulations. We observed that subtracting Sync- responses from Sync+ responses 338 
resulted in the most MI regarding stimulus repetition rate (Fig.12a), while having the least MI for stimulus 339 
amplitude, compared to other combinations (Fig.12b). This demonstrates that the difference in firing rates between 340 
Sync+ and Sync- neurons preserves the rate code for stimulus repetition rate while ignoring stimulus amplitude. 341 
Furthermore, MI for stimulus repetition rate was significantly higher when subtracting Sync- responses from 342 
Sync+ responses than only using Sync+ neurons, suggesting that this “demultiplexing” procedure can even lead 343 
to an enhancement of the rate code. If instead we summed the Sync+ and Sync- responses, we observed the 344 
opposite result- MI increased for stimulus amplitude and decreased for stimulus repetition rate. Thus the 345 
summation of firing rates between Sync+ and Sync- neurons preserves the rate code for stimulus amplitude while 346 
ignoring stimulus repetition rate. Altogether, these results indicate that more than one acoustic feature can be 347 
multiplexed together, by concurrently encoding each feature using a monotonically tuned rate code. However, it 348 
is critical to have both positive and negative monotonic tuning to at least one acoustic feature for this to work.  349 
Demultiplexing this information downstream only requires summing or subtracting firing rates between different 350 
groups of neurons, which is both mechanistically simple and biologically plausible. 351 
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 352 

Fig 12. Mutual information and opponent coding. Mutual information (MI) between firing rate each stimulus 353 
feature: repetition rate (A.) and stimulus amplitude (B.) Mutual information was calculated (see methods) with 354 
different combinations of model neurons that had randomly distributed amplitude modulations added to their 355 
discharge rate. All categories were significantly different from each other (Kruskal-Wallis test with a post-hoc 356 
Wilcoxon rank sum test with Bonferroni correction) 357 

 358 

Discussion 359 

Here we describe a computational model able to reproduce the monotonically-tuned synchronized 360 
responses of auditory cortex neurons evoked by acoustic pulse trains in the range of flutter perception. By adding 361 
the parameters of pre-synaptic short-term depression to both the excitatory and inhibitory inputs of the initial 362 
conductance-based integrate-and-fire E-I model [15] we were able to model both positive and negative 363 
monotonically tuned, stimulus synchronized neurons (Sync+ and Sync-). Sync+ responses were generated when 364 
adaptation for excitation was weak or not present, whereas Sync- responses were generated when adaptation for 365 
excitation was strong. Adaptation of inhibition played a role in facilitating or supressing post-synaptic responses. 366 
This adaptation was modelled using a realistic set of time constants and rates of adaptation, consistent with 367 
previous studies across multiple laboratories [6,22,23-27]. When compared with other possible mechanisms for 368 
adaptation such as pre-synaptic short-term facilitation and post-synaptic spike-frequency adaptation, our model 369 
best emulated adaptation of real Sync+ and Sync- neurons to acoustic pulse trains in the perceptual range of flutter 370 
and was also able to make testable predictions such as temporal dynamics of responses to pure-tones, which was 371 
subsequently confirmed in our real neuronal population.  372 

With this model, we were able to further explore the role of monotonic positive and negative encoding 373 
neurons in the auditory cortex. Multiple stimulus features other than repetition rate such as sound level [12] and 374 
sound source location [28] have shown monotonic rate coding. We demonstrated that the “segregation problem” 375 
of multiple stimulus features could be solved if one or more features were encoded by monotonic positive and 376 
negative rate code tuning. This “opponent coding” would isolate information originating from one feature from 377 
others. Although here we simulated Sync+ and Sync- neurons in auditory cortex, opponent coding of temporally 378 
modulated information has also previously been reported in the Secondary somatosensory cortex (S2) [29] for 379 
vibro-tactile stimuli. 380 

Although primary somatosensory [8] and auditory cortices encode stimulus timing using both a rate and 381 
temporal representation, downstream neurons may only be processing one of these inputs. Mountcastle and 382 
colleagues [30] previously postulated that a neural mechanism could read out the periodic inter-spike intervals of 383 
the spike trains evoked in S1. In anesthetized animals, ISI does contain by far the highest amount of information, 384 
assisted by information from firing rate [31]. However multiple studies in awake animals [29,32-34] in both 385 
sensory areas have shown that firing rate, not precise spike timing, more accurately represents the psychophysical 386 
discrimination thresholds of stimulus repetition rate.   387 

In the auditory pathway, we observe a loss of temporal fidelity to repetitive stimuli as we move along 388 
from the auditory periphery to cortex (e.g., cochlear nucleus: [35-38], inferior colliculus: [39-41] medial 389 
geniculate body: [23,42], auditory cortex: [8,9,43-45]) due to biophysical properties of neurons and temporal 390 
integration of converging inputs from one level to the next [37]. This loss of temporal fidelity in the auditory 391 
cortex, while problematic for a temporal representation, is mitigated by the substitution of a rate code for encoding 392 
the same information. Thalamic and prethalamic areas in the auditory pathway contain predominately 393 
synchronized neurons, while non-synchronized (nSync) neurons using firing rate to encode temporal information 394 
for repetition rates above the upper limit of flutter are most prevalent in auditory cortex (and to a limited extent 395 
the medial geniculate nucleus (MGB)) [42]. Both Sync and nSync neurons responding to flutter were found in A1 396 
and in the Rostral fields (R and RT), although a higher proportion of Sync+/- neurons were found in A1, compared 397 
to R and RT where there were more nSync+/- neurons (monotonically encoding repetition rates within the range 398 
of flutter perception). Similar transformations were found in the Somatosensory pathway from Thalamus to S1, 399 
S2 [29] where, in the same manner as the auditory cortex, S2 neurons showed a much weaker stimulus-locking 400 
than S1 for vibrotactile stimuli and encoded temporal information using either positive or negative monotonic rate 401 
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codes. Previous studies have suggested single-compartment computational models to explain this transformation 402 
of temporal encoding across the auditory system [15,22,46,47], but all of these studies have grouped synchronized 403 
neurons in a single rate-coding category, not distinguishing between positive/negative monotonic neurons. We 404 
postulate that monotonic synchronized neurons are an intermediary stage in the transformation of stimulus 405 
information encoding from a temporal representation to a rate code lacking stimulus locked responses.  406 

There are, however, several caveats to our computational model. First, we compare single unit data from 407 
marmosets with simulated neurons using cellular parameters based on intra-cellular recordings of ketamine-408 
anesthetized rats [22], due to the fact that no data exists for marmosets. Because ketamine is an NMDA antagonist, 409 
our model only simulated AMPA and GABA-A receptors, making no distinction between the two. NMDA 410 
receptors produce synaptic inputs with a longer time-constant (10-25ms) than AMPA and GABA-A receptors 411 
(5ms) and may thus explain the difference in response between awake and anesthetized animals. Previous studies 412 
have introduced NMDA receptors to single compartment models [15,46,47], but none have studied how it affects 413 
the monotonicity of synchronized responses.  414 

Alongside acoustic pulse trains, Bendor and Wang [11,48,49] also recorded responses of the same 415 
neurons to sinusoidal amplitude modulated (SAM) tones and to pure tones. In the current model, an acoustic pulse 416 
is modelled as a single excitatory gaussian kernel followed by an inhibitory kernel. SAM tones have different 417 
spectral bandwidth and pulse duration depending on the modulation frequency [34] and cannot be represented 418 
accurately by our model. As for pure tone responses, our model represents the input as a net onset excitation 419 
followed by inhibition during stimulus presentation. Our model also considers that A1 neurons receive the same 420 
excitatory and inhibitory conductance input for each acoustic pulse regardless of the repetition rate. However, 421 
both in vitro [50] and in silico [46] studies show evidence for short-term plasticity to repetitive acoustic stimuli 422 
for projections from Inferior Colliculus (IC) to MGB neurons. Inputs to A1 neurons originating from acoustic 423 
pulses would have therefore passed such filters. While the addition of parameters that account for these different 424 
types of stimuli and transformations could provide further improvements to the model, our aim was to demonstrate 425 
that the addition of adaptation to a simple computational model is sufficient to produce positive and negative 426 
monotonic rate coding in stimulus-synchronizing neurons. 427 

 428 

Methods 429 

Ethics Statement. The electrophysiology data used in this study comprised of a previous published dataset [11] 430 
collected in the laboratory of Professor Xiaoqin Wang at Johns Hopkins University. All experimental procedures 431 
were approved by the Johns Hopkins University Animal Use and Care Committee and followed US National 432 
Institutes of Health guidelines. 433 

 434 

Electrophysiological recordings and acoustic stimuli. Our electrophysiology data in this report comprised of 435 
previous published datasets [11]. For these datasets, the authors performed single-unit recordings with high-436 
impedance tungsten micro-electrodes (2–5𝑀Ω) in the auditory cortex of four awake, semi-restrained common 437 
marmosets (Callithrix jacchus). 438 

Action potentials were sorted on-line using a template-matching method (MSD, Alpha Omega 439 
Engineering). Experiments were conducted in a double-walled, soundproof chamber (Industrial Acoustic Co., 440 
Inc.) with 3-inch acoustic absorption foams covering each inner wall (Sonex, Illbruck, Inc.). 441 

Acoustic stimuli were generated digitally (MATLAB- custom software, Tucker Davis Technologies) and 442 
delivered by a free-field speaker located 1 meter in front of the animal. Recordings were made primarily for the 443 
three core fields of auditory cortex (177/210 neurons)- primary auditory cortex (AI), the rostral field (R), and the 444 
rostrotemporal field (RT), with the remaining neurons recorded from surrounding belt fields. For each single unit 445 
isolated, the best frequency (BF) and sound level threshold was first measured, using pure tone stimuli that were 446 
200 ms in duration. We next generated a set of acoustic pulse trains, where each pulse was generated by 447 
windowing a brief tone at the BF by a Gaussian envelope. Repetition rates ranged from 4Hz to 48Hz (in 4Hz 448 
steps) Acoustic pulse train stimuli were 500 ms in duration, and all intertrial intervals were at least 1 s long. Each 449 
stimulus was presented in a randomly shuffled order with other stimuli, and repeated at least five times for all 450 
neurons, and at least ten times for about 55% of neurons (115/210). Stimulus intensity levels for acoustic pulse 451 
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trains were generally 10 – 30 dB above BF-tone thresholds for neurons with monotonic rate-level functions and 452 
at the preferred sound level for neurons with non-monotonic rate-level functions. 453 

 454 

Computational model 455 

Single neuron model.  456 

The single unit model used in this study was based on the model published by Bendor 2015 [15]. A 457 
conductance-based leaky integrate-and-fire model was simulated using MATLAB using the following equation, 458 
using parameters obtained from Wehr and Zador 2003 [17]:  459 

𝑉௧ାଵ =  −
𝑑𝑡

𝐶
[𝑔௘(𝑡)(𝑉௧ − 𝐸௘) + 𝑔௜(𝑡)(𝑉௧ − 𝐸௜) + 𝑔௥௘௦௧(𝑡)(𝑉௧ − 𝐸௥௘௦௧) + 𝑉௧ + 𝜎௦𝜔௡√Δ𝑡  460 

Each acoustic pulse was simulated as the summation of 10 excitatory and 10 inhibitory synaptic inputs 461 
[20], each temporally jittered (Gaussian distribution, 𝜎 = 1 ms). Each synaptic input was modelled as a time-462 
varying conductance fit to an alpha function: 463 

𝛼(𝑡) = 𝐴(𝑡)𝑡𝑒
ି

ఛ
ఛೞ 464 

When simulating neurons without short-term plasticity, A was determined by the excitatory or inhibitory 465 
input parameter and stayed constant throughout the simulation. This amplitude ranged between 0 to 6nS for 466 
excitatory inputs and 0 to 12nS for inhibitory inputs, as in Bendor 2015 [11]. A synaptic input delay was added 467 
to simulate the delay between peripheral auditory system and auditory cortex, and whereas in the previous study 468 
the temporal delay between excitatory and inhibitory inputs (I-E delay) was a variable, in this study it was fixed 469 
at 5 ms. In our model, an action potential occurred whenever the membrane potential of the model neuron reached 470 
a threshold value 𝑉௧௛ . After the action potential, the potential was reset to a value 𝐸௥௘௦௧  below the threshold 471 
potential, 𝐸௥௘௦௧ < 𝑉௧௛. 472 

 473 

Table 1. Fixed model parameters. 474 

Membrane capacitance 𝑪 0.25nF 
Leak membrane conductance 𝒈𝒓𝒆𝒔𝒕 25nS 
Excitatory reversal potential 𝑬𝒆 0mV 
Inhibitory reversal potential 𝑬𝒊 -85mV 
Alpha function time constant 𝝉𝒔 5ms 
Synaptic input delay  10ms 
I-E delay  0.1ms 
Simulation timestep 𝚫𝒕 10mV𝑠ିଵ 
Scale of noise 𝝈𝒔 [-1 :1] 
Gaussian noise 𝝎𝒏  

  475 

Short-term plasticity: Depression. In order to introduce short-term plasticity in the model we regarded the 476 
probability of presynaptic release 𝑃௥௘௟  as a dynamic variable depending on the input stimuli (acoustic pulse trains) 477 
[51,52]. In the absence of presynaptic activity, the release probability decays exponentially back to its initial value 478 
𝑃଴ with the following equation: 479 

𝜏௉

𝑑𝑃௥௘௟

𝑑𝑡
= 𝑃଴ − 𝑃௥௘௟(𝑡) 480 

Immediately after each stimulus input the release probability is reduced. 481 

𝑃௥௘௟(𝑡) → (1 − 𝐴஽) ∗ 𝑃௥௘௟(𝑡) 482 

𝐴(𝑡) = 𝐴(0) ∗ 𝑃௥௘௟(𝑡) 483 
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Where 𝐴஽  controls the amount of depression and 𝐴(𝑡) is the amplitude of conductance input at time 𝑡. 484 
Modelling synaptic depression consisted thus of 4 parameters: the recovery time constants for both excitatory and 485 
inhibitory synapses (𝜏௣ா , 𝜏௣ூ) ranging from 50 to 200ms, and the depression factor 𝐴஽ா  and 𝐴஽ூ ranging from 0 486 
to 0.5. 𝑃଴ in this model was equal to 1. These values were consistent with intra-cellular recordings in previous 487 
studies [26,52]. 488 

 489 

Short-term plasticity: Facilitation. Short-term facilitation was added to the model using a similar model to that 490 
of short-term depression. In the case of facilitation, 𝐴஽  varies between -0.5 and 0. Therefore, the probability of 491 
release 𝑃௥௘௟(𝑡)  Increases after each stimulus input, then decays back to the initial value. When modelling 492 
facilitation 𝑃଴ was equal to 0.5 so that the resulting amplitude of conductance remained comparable to that of 493 
short-term depression.  494 

 495 

Spike-Frequency Adaptation. We modelled spike-frequency adaptation by including an addition current in the 496 
model.  497 

𝑉௧ାଵ =  −
𝑑𝑡

𝐶
[𝑔௘(𝑡)(𝑉௧ − 𝐸௘) + 𝑔௜(𝑡)(𝑉௧ − 𝐸௜) + 𝑔௥௘௦௧(𝑡)(𝑉௧ − 𝐸௥௘௦௧) + 𝑔௦௥௔(𝑡)(𝑉௧ − 𝐸௄) + 𝑉௧ + 𝜎௦𝜔௡√Δ𝑡 498 

Where 𝑔௦௥௔  is the spike-frequency adaptation conductance modelled as a 𝐾ା conductance [53] . When 499 
activated, this will hyperpolarize the neuron, slowing any spiking that may be occurring. The conductance relaxes 500 
to zero exponentially with the time constant 𝜏௦௥௔  through the following equation: 501 

𝜏௦௥௔

𝑑𝑔௦௥௔

𝑑𝑡
= −𝑔௦௥௔ 502 

Whenever the neuron fires a spike, 𝑔௦௥௔  is increased by an amount Δ𝑔௦௥௔, causing the firing rate to adapt 503 
in a sequence of steps in relation to the neurons spiking activity.  504 

 505 

Data analysis 506 

Classification of neurons, Synchrony. Two tests were used to determine whether a neuron was Sync or nSync: 507 
Vector strength (VS) and rate response. Vector strength (VS) was calculated for each repetition rate from 8 to 508 
48Hz with the following equation: 509 

𝑉𝑆 =
1

𝑁
ඨsin(

2𝜋𝑡(௡)

𝐼𝑃𝐼
)ଶ + cos(

2𝜋𝑡(௡)

𝐼𝑃𝐼
)ଶ      510 

𝑅𝑆 = 2 ∗ 𝑁 ∗ 𝑉𝑆ଶ 511 

Where N is the number of spikes, 𝑡(௡) is the time of 𝑛௧௛ pulse and IPI the interpulse interval. If vector 512 
strength was significant (Rayleigh statistic RS > 13.8) and above 0.1 for three consecutive repetition rates, and if 513 
the rate response was also considered significant (average discharge rate 2 s.d. above the mean spontaneous rate 514 
and an average of more than 1 spike per stimulus), then the neuron was considered Sync. If the rate response was 515 
significant but the neuron did not pass the synchrony criteria, it was considered nSync. In our dataset 125/210 516 
neurons were classified as Sync. 517 

Classification of neurons, Monotonicity. The monotonicity of the discharge rate for a given repetition rate was 518 
determined by calculating the Spearman correlation coefficient (𝜌) for stimuli spanning from 8 to 48Hz. If 519 
coefficient was larger than 0.8 and statistically significant (p-value < 0.05) the neuron was considered positive 520 
monotonic. If the coefficient was smaller than -0.8 and statistically significant, the neuron was considered negative 521 
monotonic. Neurons satisfying neither of these criteria were considered non-monotonic. These three classification 522 
methods applied to both real and simulated neurons. In our dataset of real neurons, we found 126/210 monotonic 523 
neurons and 84 non-monotonic neurons.  524 
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 525 

Classification of neurons, Sync+ and Sync- neurons. Based on the two classification criteria, we classified 25 526 
Sync+ and 27 Sync- neurons with significant stimuli-driven responses.  527 

 528 

PSTH. Individual peri-stimulus time histograms (PSTHs) were calculated by convolving a Gaussian kernel (𝜎 = 529 
10ms) with a neuron spike train. The population PSTH was calculated as a mean of individual PSTHs. 530 

 531 

Mutual information analysis. The MI of stimulus frequency carried in the firing rate was computed for all Sync 532 
neurons across all stimuli. MI between frequency f and firing rate 𝑓𝑟 is given by the equation 533 

𝐼(𝑓, 𝑓𝑟) =
1

𝑁௙

෍ 𝑝(𝑓𝑟|𝑓) logଶ

𝑃(𝑓𝑟|𝑓)

𝑃(𝑓𝑟)
௥

 534 

Where 𝑁௙ = 12 s the number of stimulus frequencies. To account for the fact that MI is positively biased 535 
[54-55]. the values were linearly extrapolated to a resolution of 1 spike/second. MI between repetition rate and 536 
VS was evaluated in the same manner. VS values were calculated for each stimulus presentation to form 537 
distribution of VS values for each neuron for each trial. trials with non-significant VS values were assigned a MI 538 
value of zero bits/stimulus. In the case of ISI, the distribution of ISIs was calculated for each repetition rate, and 539 
linearly extrapolated to form a distribution with a resolution of 1ms.   540 

 541 
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Supporting information 663 

S1 Fig. Adaptation to stimulus pulse trains in Sync+ and Sync- neurons. For all neurons, we calculated the 664 
difference in normalized firing rate between the first and last acoustic pulse for a given stimulus. (a.) For Sync- 665 
neurons, this difference was significative for all repetition rates (Wilcoxon signed rank test, P << 0.001) with the 666 
exception of 8Hz (Wilcoxon signed rank test, P = 0.10). For Sync + neurons, this difference was significative for 667 
repetition rates equal or larger than 16Hz, with the exception of 40Hz (8Hz; P = 0.71. 12Hz; P = 0.06. 16Hz; P = 668 
0.007. 20Hz; P = 0.04. 24Hz; P = 0.009. 28Hz; P = 0.006. 32Hz; P = 0.002. 36Hz; P = 0.01. 40Hz; P = 0.07. 669 
44Hz; P = 0.03. 48Hz; P = 0.04). (b.) We then compared this difference between Sync+ and Sync- neuron 670 
populations (n = 26 and n = 27 respectively). This difference was significant for repetition rates above 20 Hz.   671 
(Wilcoxon rank-sum test. 8Hz; P = 0.37. 12Hz; P = 0.61. 16Hz; P = 0.12. For higher repetition rates P << 0.01)  672 

S2 Fig. Sync+ (a.) and Sync- (b.) neuron responses to stimulus pulse trains. For all neurons, the average 673 
number of spikes were extracted at each acoustic pulse for all repetition rates. The responses were then normalized 674 
by average discharge rate of the neuron during stimulus presentation. Real data (grey), linear fit (red) first degree 675 
exponential fit (blue). 676 
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S3 Fig. Fitted model coefficients to adaptation during stimulus presentation. (a, b) linear model coefficients 677 
with 95% confidence intervals. Stronger negative values of p1 indicate stronger depression during stimulus 678 
presentation. (c.) R-squared fit of data to linear model. (c, d) exponential model coefficients with 95% confidence 679 
intervals. Stronger negative values of b indicate a steeper curve to the exponential model, indicating a fast 680 
adaptation followed by a flat response. Positive values of b indicate no adaptation or facilitation.  681 

S4 Fig. Onset response amplitude relative to strength of adaptation. Average onset response at time constants 682 
{𝜏௣ா   = 0.15, 𝜏௣ூ  = 0.10} for different values of 𝐴஽ா  and 𝐴஽ூ. Onset response amplitude did not vary with strength 683 
of adaptation.  684 

S5 Fig. Comparison of ISI after stimulus onset. ISIs between the first four spikes were compared to determine 685 
the presence of SRA for Sync+ (a,b) and Sync- (c,d) real neuron populations for all  individual trials across all 686 
neurons (n =260 and n = 270 respectively). All four distributions had a non-zero median (KS test, P < 0.05). For 687 
Sync+ neurons, the median difference between first and second ISI was 0.59s (a.) and was 1.21ms for the median 688 
difference between first and third ISI (b.). For Sync- neurons, the median difference between first and second ISI 689 
was 0.33s (c.) and was 0.24ms for the median difference between first and third ISI (d.). 690 

S6 Fig. Monotonicity and adaptation in individual neurons.  (a). correlation between adaptation and firing rate. 691 
Distribution of strength of adaptation near onset (b.) and at the middle of stimuli duration (c.) Sync- neurons 692 
showed significant depression between the first and second (median = 0.73, t-test, P<< 0.001) and between first 693 
and third pulse (median = 0.90, P << 0.001) (b.), but not between 2nd and 5th pulse nor between 5th and 8th pulse  694 
(median = -0.12, P = 0.33 and median = 0.07, P = 0.51 respectively.) (c.). Sync + neurons showed no significant 695 
depression between 1st and 2nd pulses and between 1st and 3rd pulses respectively (median = 0 for both, t-test, P 696 
=  0.12 and P = 0.25 respectively) nor at the later stages of stimuli presentation between 2nd and 5th pulse (median 697 
= -0.33, p value = 0.31), and between 5th and 8th pulse, (median = 0.07 p value = 0.54). 698 

S7 Fig. Puretone responses. (a.) Average firing rate for simulated Sync+ and Sync- responses to puretones. (b.) 699 
Average firing rate for real Sync + (n = 26) and Sync- (n = 27) neurons to puretones.   700 

S8 Fig. Puretone responses and SFA.  Puretone responses in simulated Sync+ (a.) and Sync- (b.) neurons. SFA 701 
was introduced to our model with values ranging between 10 and 50nS (see methods). Stronger SFA reduced both 702 
onset and sustained responses on Sync+ model neurons but did not affect Sync- neurons. (c.) Average of median 703 
spike times during stimuli presentation for simulated neurons with different values of adaptation amplitude 𝐴஽.  704 

 705 

 706 

 707 

 708 
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Figure1. Computational model of an auditory cortical neuron 
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Figure 2. Event-related activity of monotonic Sync neurons
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Figure3. Computational model of an auditory cortical neuron with 
short term depression 
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Figure 4. Real and Simulated monotonic Sync example neurons
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Figure 5. Monotonicity of real and simulated neurons
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Figure 6. Model robustness
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Figure 7. Model robustness regarding Excitation and Inhibition amplitude
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Figure 8. Computational model including short term facilitation
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Figure 9. Adaptation between individual synaptic inputs for real neurons and different models
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Figure 10. Pure tone responses
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Figure 11. Opponent coding with Sync+ and Sync- neurons. 
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Figure12. Mutual information and opponent coding
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