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A Single Cell Transcriptomic Atlas Characterizes Aging Tissuesin the Mouse
The Tabula Muris Consortium

Abstract

Aging is characterized by a progressive loss of physiological integrity, leading to
impaired function and increased vulnerability to death'. Despite rapid advances over
recent years, many of the molecular and cellular processes which underlie progressive
loss of healthy physiology are poorly understood”. To gain a better insight into these
processes we have created a single cell transcriptomic atlas across the life span of Mus
musculus which includes data from 23 tissues and organs. We discovered cell-specific
changes occurring across multiple cell types and organs, as well as age related changes
in the cellular composition of different organs. Using single-cell transcriptomic data we
were able to assess cell type specific manifestations of different hallmarks of aging, such
as senescence®, genomic instability* and changesin the organism’s immune systen?. This
Tabula Muris Senis provides a wealth of new molecular information about how the most
significant hallmarks of aging are reflected in a broad range of tissues and cell types.

We performed single cell RNA sequencing on more than 350,000 cells from male and
female C57BL/6JN mice belonging to six age groups ranging from one month (human
early childhood equivalent) to thirty months (human centenarian equivalent) (Figure 1a).
We prepared single cell suspensions of the bladder, bone marrow, brain (cerebellum,
cortex, hippocampus and striatum), fat (brown, gonadal, mesenteric and subcutaneous),
heart and aorta, kidney, large intestine, limb muscle and diaphragm, liver, lung,
mammary gland, pancreas, skin, spleen, thymus, tongue and trachea for all mice. Data
were collected for all six age groups using microfluidic droplets (droplet), while the 3m,
18m and 24m time points were also analyzed using single cells sorted in microtiter well
plates (FACS) (Extended Data Figure 1; Supplementary Tables 1&2; Supplementary
Figures 1-3).

The droplet data allow
large numbers of cells to be analyzed using 3' end counting, while the FACS data allow
for higher sensitivity measurements over smaller numbers of cells as well as sequence
information across the entire transcript length. Analyzing multiple organs from the same
animal enables data controlled for age, environment, and epigenetic effects.

The previously published 3m time point, referred to as the Tabula Muris®, represents
~20% of the cellsin the entire dataset and was used as a basis to perform semi-automated
cell type annotation of the additional time points (Figure 1b, Extended Data Figure 2b).
Using this approach, we were able to automatically annotate over 70% of the cells. All
the automated cell annotations were reviewed and approved by human experts, and the
remaining cells were annotated by hand, creating one of the largest manually curated
single cell transcriptomic resources in existence. Many of these cell types have not
previously been obtained in pure populations, and these data provide a wealth of new
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information on their characteristic gene-expression profiles. Out of 529,823 total cells
sequenced, 110,824 cells for FACS and 245,389 cells for droplet passed our strict
filtering criteria (Extended Data Figure 2b) and were subsequently annotated (Extended
Data Figure 1c,f), separately for each tissue and method; the remaining cells are also
included in the on-line data set but were not used for further analysis here. To investigate
whether cell annotations were consistent across the entire organism, we used bbknn® to
correct for method-associated batch effects. Following batch correction, we clustered all
cells using an unbiased, graph-based clustering approach”® (Figure 1c,d) and assessed the
co-occurrence of similarly annotated cells in the same clusters. For example, cells
annotated as B cells or endothelial cells tend to occupy the same clusters irrespectively of
their tissue of origin or method with which they were processed (Figure 1ef; Extended
DataFigure 3).

Tabula Muris Senis provides a powerful resource with which to explore aging related
changes in specific cell types. The entire dataset can be explored interactively at tabula-
muris-senis.ds.czbiohub.org. Gene counts and metadata are available from figshare
(https://figshare.com/projects/Tabula Muris Senis/64982) and GEO (GSE132042), the
code used for the analysis is available from GitHub (https://github.com/czbiohub/tabul a-
muris-senis) and the raw data are avalable from a public AWS S3 bucket
(https.//s3.console.aws.amazon.com/s3/buckets/czb-tabula-muris-senis/). An important
use of the single cell data is to resolve whether gene expression changes observed in bulk
experiments are due to changes in gene expression in each cdl of the population, or
whether the gene expression in each cell stays constant but the number of cells of that
type changes, or both. In a global analysis of gene expression changes using the Tabula
Muris Senis and bulk RNAseq from tissues’, we observed that in many cases changes in
gene expression are due to both changes in the numbers of cells in a population and to
changes in the gene expression levels in each cell (Extended Data Figure 4). As a
specific example of this approach, we investigated how the expression of Cdkn2a
changes with age. As Cdkn2a/pl6 is one of the most commonly used markers of
senescence'® and an important hallmark of aging®', we computed the fraction of cells
expressing Cdkn2a at each age. The fraction of cells expressing the gene more than
doubled in older animals in both FACS (Figure 2a) and droplet (Figure 2b), accompanied
by a 2-fold increase in the actual expression level of pl6 by those cells that did express it
(Figure 2c¢,d). It is worth noting that the fraction of cells expressing p16 in the 30m mice
is smaller than at 24m, prompting us to speculate that perhaps the animals that live
longest somehow have a slower rate of senescence. We next compiled alist of previously
characterized senescence markers™™ and plotted the fraction of cells expressing each
marker across all age groups (Supplementary Table 3). Out of these markers, Cdkn2a has
the highest correlation between aging and fraction of cells expressing the gene. Other
genes for which the fraction of cells expressing significantly increased with age include
E2f2'®, Lmnb1'"*® and Tnf and ltgax™. For some genes the fraction of cells expressing
decreased with age, including members of the Sirt family (Sirt3, Sirt4 and Sirt5); thisis
consistent with previous literature finding that sirtuin is essential in delaying cellular
senescence™®?,
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We investigated how the cellular composition of each tissue changes with age by
evaluating how the relative cdl type proportions within a tissue change with age. The
overall cell composition for all tissuesisin

When interpreting compositional data, one must bear in mind
that dissociation does not affect all of the cell types in atissue equally, so changesin the
relative composition of a given cell type with age are more meaningful than trying to
compare proportions of different cell types at a single age®®2*. Nonetheless, the changes
in relative proportion of cell types provide important information on the effects of aging
in avariety of tissues.

The bladder has pronounced changes in cell type composition with age (Figure 2e).
While the mesenchymal compartment of this tissue decreases by a factor of three over the
lifetime of the mouse (Figure 2e left), the urothelial compartment increases by a smilar
amount (Figure 2e right). The observation that the bladder urothelial cells increase with
age is concordant with known agerelated urothelial changes™. Differential gene
expression analysis of overall tissue changes with age revealed that stromal-associated
genes (Collal, Colla2, Col3al, Dcn) are downregulated while epithelial-associated
genes (Krtl5, Krtl8, Sfn) are upregulated, supporting the compositional observations
(Figure 2f; ). The decline of the endothelial population suggests
that bladder aging in mice may be associated with lower organ vascularization, consistent
with recent findings™?’ and with the observed downregulation of vasculature associated
genes Htral and Fos (Figure 2f; ). The increase in the leukocyte
population could be indicative of an inflammatory tissue microenvironment, a common
hallmark of aging which is consistent with literature on overactive bladders® and
supported by a significant overexpression of Lgals3, Igfbp2 and Ly6d

Age-dependent changes in the kidney include a decrease in the relative abundance of
mesangial cells, capillary endothelial cells, loop of Henle ascending limb epithelial cells
and loop of Henle thick ascending limb epithelial cells ( ). Both mesangial cells
and capillary endothelial cells are core glomerular cells and their relative abundances
reduction ( ), together with downregulation of Egf and Atplal
( ) suggest impaired glomerular filtration rate”*. This
finding is reinforced by the differential gene expression results indicating that
uromodulin (Umod), the most abundant protein in urine®, is downregulated. Umod is
produced by the epithelial cells that line the thick ascending limb, and therefore given the
relative decrease in the proportion of epithélial cellsin the ascending and thick ascending
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limb, our results suggest that normal kidney functions are impaired™ (

).

The liver is yet another tissue for which we observed changed tissue compositions with
age, namely that the relative amount of hepatocytes decreases with age (
), which is supported by the reduction in the expression of albumin (Alb;
). Differential gene expression showed
an increased immune signature, as illustrated by overexpression of H2-Aa, H2-Abl, H2-
D1, H2-Ebl, Cd74, Lyz2 and others . Previous findings
suggested that pro-inflammatory macrophages drive cellular senescence and identified
l11b as a gene whose liver expression was remarkably different with age™
. We stained liver Kupffer cells (Extended Data Figure 6g) with Clecaf
(canonical Kupffer cell marker) and found the number of Clec4f+ cells do not change
with age, consistent with the results of the tissue composition analysis (Supplementary
Table 7; Extended Data Figure 6h). However, when co-staining with 111b, we found an
increase with age in the number of cells expressing Clec4f and 111b (Extended Data
Figure 6h-j). I11b has low expression in normal physiological conditions®. Specific
blocking of IL1-RI (II1b receptor) in hepatocytes has been shown to attenuate cell death
upon injury, supporting the idea that increased expression of 111b in Kupffer cels is
typically a poor prognostic®. Regarding immune defense within the liver, sinusoidal
endothelia cells (LSECs) play a unique role, being the main carriers of the mannose
receptor (Mrcl) in the liver ( ). Mrcl expression in LSECs
mediates endocytosis of pathogen and damage related molecules. Our findings identify
increased Mrcl age-related expression. Inflammatory signals have been found to up
regulate Mrcl expression and endocytosis *. Staining for Mrcl alongside classical LSEC
marker Pecaml (Supplementary Table 7; Extended Data Figure 61) found the number of
Mrcl expressing LSECs increase over age (Extended Data Figure 6m-0). LSECs have a
been found to have a reduced endocytic capacity in aged livers, while it has been
suggested that LSECs proliferate after injury or that bone-marrow derived LSECs
progenitors are recruited to the liver. This suggests that changes in LSEC gene signatures
with age are linked closely with their function in immune response.

In the case of spleen our results show that with age the proportion of T cells decreases
while the relative amount of plasma cells increases (Figure 2i). This is supported by
upregulation of B cell/plasma cell markers (Cd79a, Igj; Figure 2j; Supplementary Table
6) and downregulation of Cd3d (Figure 2j; Supplementary Table 6). Similarly, in
mammary gland we also observed a significant decline of the T cell population (Extended
Data Figure 7a). Age-related decline of T cell populations has been associated with an
increased risk of infectious disease and cancer®® and our results suggest that this may also
happen in the spleen and mammary gland. We found that members of the APL
transcription factors® (Junb, Jund and Fos) were upregulated with age (Extended Data
Figure 7b; Supplementary Table 6); this result is consistent with the observation that
normal involution of the mammary gland is accompanied by significantly increased
expression of many of these AP1-related transcription factors™,
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Genomic instability is among the most widely studied aging hallmarks' and the full-
length transcript data from the FACS data allows the analysis of somatic mutation
accumulation with age. We used the Genome Analysis ToolKit (GATK)* to perform
SNP discovery across all FACS samples simultaneously (Supplementary Table 8), using
GATK Best Practices recommendations™*". We focused on genes expressed in at least
75% of cells for each age group within a particular tissue. We observed an age-related
increase in the number of mutations across all of the organs we anayzed (Figure 3;
Extended Data Figure 8a, 9a, 10a), with tongue and bladder being the most affected. Our
analysis controls for sequencing coverage and gene expression levels (Extended Data
Figure 8b, 9b, 10b). The number of mutations observed at each age are larger than
technical errors due to amplification and sequencing errors, which can be estimated using
ERCC controls that were spiked into each well of the microtiter plates* (Figure 3;
Extended Data Figure 8c-d, 9c-d, 10c-d). Despite the fact that it is difficult to infer
genome-wide mutation rates from the transcriptome, which is known to inflate apparent
mutational rates for a variety of reasons™, the observed trend is a useful indirect estimate
of mutational frequency and genome stability.

A final hallmark of aging which we investigated was the effect of age-induced changes
on the immune system?. Analyzing a complete set of tissues from the same individual
animal using the full-length transcripts obtained in the FACS data enabled us to analyze
clonal relationships between B-cells and T-cells throughout the organism. We
computationally reconstructed the sequence of the B-cell receptor (BCR) and T-cdll
receptor (TCR) for B cellsand T cells present in the FACS data using singlecell-ige and
TraCeR, respectively***. BCRs were assembled for 6,050 cells (Figure 4a) and TCRs for
6,000 cdlls (Figure 4b). The number of cells with assembled BCRs was 1,818 for 3m,
1,356 for 18m and 2,876 for 24m old mice. We parsed the singlecell-ige™ output to
define B-cdll clonotypes based on the sequence of the assembled BCR (Supplementary
Table 9) and found that while most of the cells at 3m were not part of a clone (9% were
part of a clonal family), the number of B-cells belonging to a clonotype doubled at 18m
(20%) when compared to 3m and doubled again from 18m to 24m (~38%).

The number of cells with assembled TCRs were roughly equal between 3m, 18m and
24m (2,076, 2,056 and 1,868 cells, respectively). Clonotype assignment is part of the
output obtained by TraCeR™ (Supplementary Table 9).

These changes in clonality for both B and T cell repertoires are noteworthy because they
suggest that the immune system of a 24m mouse will be less likely to respond to new
pathogens, corroborating literature suggesting that older individuals have higher
vulnerability to new infections and lower benefits from vacination®“.

As afinal example of how the Tabula Muris Senis can be used to discover how cell types
change with age, we computed an overall diversity score to identify which cell types
were more susceptible to changes with age (Extended Data Figure 11). The diversity
score is computed as the Shannon entropy of the cluster assignment and then regressed
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against age to provide a p-value (see Methods). We observed significant changes in
diversity affecting cells of the immune system originating from the brain and in the
kidney (Figure 4c, Extended Data Figure 12a,b). These results were not confounded by
the number of genes expressed per cell (Extended Data Figure 12c,d). We found that in
brain myeloid microglial cells, the majority of young (3m) microglia occupy clusters 1
and 6, while old (18m, 24m) microglia constitute the vast majority of cellsin clusters 10,
12 and 14 (Figure 4d). Trajectory analysis suggests that young microglia go through an
intermediate state, represented by the clusters mostly occupied by 18m microglial cells
before acquiring the signature of old microglia (Extended Data Figure 12€). Clusters 10,
12 and 14 are mainly comprised of 18- and 24-month old microglia. These cells up-
regulate MHC class | genes (H2-D1, H2-K1, B2m), along with genes associated with
degenerative disease (e.g. Fth1)*"*. When contrasting with clusters 1 and 6, which
contain mostly 3m microglia, clusters 10, 12 and 14 gene expression is enriched with
interferon responsive or regulatory genes (e.g. Oasl2, Oasla, Ifit3, Rtp4, Bst2, Statl, Irf7,
Ifitm3, Uspl8, Ifi204, Ifit2), suggesting an expansion of this small pro-inflammatory
subset of microglia in the aging brain®. Moreover, the list of differentially expressed
genes between “young” and “old” clusters resembled the Alzheimer’s disease specific
microglial signature previously reported”, with 55 out of the top 200 differential
expressed genes being shared between the two differential gene expression lists (Figure
4e; Supplementary Table 10). Regarding kidney macrophages, we found two clusters that
remarkably changed their composition with age. Cluster 10 is primarily composed of
cells of Im- and 3-month old mice while cluster 13 is mostly composed of cells of 18-,
21-, 24- and 30-month old mice (Figure 4f). Differential gene expression revealed that
cluster 10 is enriched for an M2-macrophage gene signature (e.g. 1110, H2-Ebl, H2-Ab1l,
H2-Aa, Cd74, Clga, Cxcl16, Hexb, Cd81, Clgb, Cd72) while cluster 13 resemblesa M1-
proinflammatory macrophage state® (e.g. Hp, Itgal, Spexl, Gngt2) (Extended Data
Figure 12f; Supplementary Table 10).

The Tabula Muris Senis is a comprehensive resource for the cell biology community
which offers a detailed molecular and cell-type specific portrait of aging. We view such
acell atlas as an essential companion to the genome: the genome provides a blueprint for
the organism but does not explain how genes are used in a cdl type specific manner or
how the usage of genes changes over the lifetime of the organism. The cdll atlas provides
a deep characterization of phenotype and physiology which can serve as a reference for
understanding many aspects of the cell biological changes that mammals undergo during
their lifespan.
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Figure Legends

Figure 1. Overview of Tabula Muris Senis.

a, 23 organs from 19 male and 11 female mice were analyzed at 6 different time points.
The bar plot shows the number of sequenced cells per organ prepared by FACS (n=23
organs) and microfluidic droplets (n=16 organs). For the droplet dataset the Fat
subtissues were processed together (Fat = BAT+GAT+MAT+SCAT). b, Annotation
workflow. Data were clustered together across all time points. We used the Tabula Muris
(3m time point) as a reference for the automated pipeline and the annotations were
manually curated by tissue experts.

Figure 2. Cdlular changes during aging.

a,b, Bar plot showing the fractions of cells expressing Cdkn2a at each age group for
FACS (a) and droplet (b). c,d, Bar plot of the median expression of Cdkn2a for the cells
that do express the gene at each age group for FACS (c) and droplet (d). The p-value was
obtained using a Mann-Whitney-Wilcoxon rank-sum two-sided test. e, Bladder cell (left)
and bladder urothelial cell (right) relative abundances change significantly with age (p-
value<0.05 and r>>0.7 for a hypothesis test whose null hypothesisis that the Slopeis zero,
using two-sided Wald Test with t-distribution of the test statistic). f, Top 20 upregulated
and downregulated genes in bladder using age as a continuous covariate while controlling
for sex and technology. Genes were classified as significant under an FDR threshold of
0.01 and an age coefficient threshold of 0.005 (corresponding to ~10% fold change). g,
Kidney capillary endothelial cell (top-left), mesangia cell (top-right), loop of Henle
ascending limb epithelial cell (bottom-left) and loop of Henle thick ascending limb
epithelial cell (bottom-right) relative abundances change significantly with age (p-
value<0.05 and r?>0.7 for a hypothesis test whose null hypothesisis that the slope is zero,
using two-sided Wald Test with t-distribution of the test statistic). h, Top 20 upregulated
and downregulated genes in kidney using age as a continuous covariate while controlling
for sex and technology. Genes were classified as significant under an FDR threshold of
0.01 and an age coefficient threshold of 0.005 (corresponding to ~10% fold change). i,
Spleen plasma cell (left) and T cell (right) relative abundances change significantly with
age (p-value<0.05 and r*>0.7 for a hypothesis test whose null hypothesis is that the slope
IS zero, using two-sided Wald Test with t-distribution of the test statistic). j, Top 10
upregulated and downregulated genes in spleen using age as a continuous covariate while
controlling for sex and technology. Genes were classified as significant under an FDR
threshold of 0.01 and an age coefficient threshold of 0.005 (corresponding to ~10% fold
change).

Figure 3. Mutational burden acrosstissuesin the aging mice.
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Distribution of the difference of the mean mutation in the gene set (and ERCC spike-in
controls) per cell between 24m and 3m and 18m and 3m for all tissues and cdlls (a) and
with the cel types split in five functional groups, endotheia (b), immune (c),
parenchymal (d), stem/progenitor cell (e) and stromal (f).

Figure 4. The aging immune system.

a, B-cdll clonal families. The pie chart shows the proportion of singleton B cells and B
cells that are part of clonal families at 3m, 18m and 24m. For each time point, the clonal
families are represented in atree structure for which the central node is age. Connected to
the age node there is an additional node (dark gray) that represents each animal and the
clonal families are depicted for each animal. For each clonal family, cells that are part of
that family are colored by the organ of origin. b, T-cell clonal families. The pie chart
shows the proportion of singleton T cells and T cells that are part of clonal families at
3m, 18m and 24m. For each time point, clonal families are represented in a tree structure
for which the central node is age. Connected to the age node there is an additional node
(dark gray) that represents each animal and the clona families are depicted for each
animal. For each clonal family, cells that are part of that family are colored by the organ
of origin. c, Diversity score for the two cell types that significantly change with age. d,
UMAP plot of the brain myeloid microglial cell Leiden clusters (numbers) colored by
age. Faded clusters do not change their relative age cell composition; colored clusters
change their relative cell composition. e, UMAP plot of the brain myeloid microglial
cells when scored using the microglia Alzheimer’s disease signature (Supplementary
Table 10). f, UMAP plot of the kidney macrophage Leiden clusters (numbers) colored by

age group.

Extended Data Figure L egends

Extended Data Figure 1. Overview of Tabula Muris Senis (cont.)

a,b, UMAP plot of al cells collected for FACS colored by tissue (a) or age (b). c, Pie
chart with the summary statistics for FACS. d,e, UMAP plot of all cells collected for
droplet colored by tissue (d) or age (e). f, Pie chart with the summary statistics for
droplet.

Extended Data Figure 2. Overview of Tabula Muris Senis (cont.)

a, Balloon plot showing the number of sequenced cells per sequencing method per organ
per sex per age. b, Schematic analysis workflow. c,d, Tabula Muris Senis color
dictionary for organs and tissues (c) and ages (d).
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(top) and endothelial cells (bottom) independently annotated for each organ cluster
together by unbiased whole-transcriptome Louvain clustering, irrespectively of the organ
they originate from. ¢, UMAP plot of al cells collected by droplet, colored by organ
(Extended Data Figure 2c), overlaid with the Louvain cluster numbers; n = 245,389
individual cells. d, B cells (and endothelial cells) independently annotated for each organ
cluster together by unbiased whole-transcriptome Louvain clustering, irrespectively of
the organ where they were found. e,f, UMAP plot of al cells collected colored by method
(e) or tissue (f). g,h, B cels (g) and endothelial cells (h) cluster together by unbiased
whole-transcriptome Louvain clustering, irrespectively of the technology with which they
were found.

Extended Data Figure 4. Comparison of bulk and single-cell datasets. Aging patterns
from bulk and single-cell data are consistent. Strong changes in bulk gene expression
with aging can be either explained by cell or read count-based changes in single-cell data
FACS (a) and droplet (b). Wilcoxon—Mann—Whitney indicates that single-cell data based
log, fold-changes of cell or read counts distinguish between up and down regulated genes
in bulk data.

Extended Data Figure 5. Tissue cell compositions. a-p, Alphabetically sorted tissue bar
plot showing the relative abundances of cell types in each tissue across the entire age
range for the droplet dataset. The tissue cell composition is also available at our online
browser tabula-muris-senis.ds.czbiohub.org

Extended Data Figure 6. Cellular changesduring aging in theliver.

a, Liver hepatocyte relative abundances change significantly with age (p-value<0.05 and
r>>0.7 for a hypothesis test whose null hypothesis is that the slope is zero, using two-
sided Wald Test with t-distribution of the test statistic). b-d, Brightfield imaging of
hepatocytes across age (b) and respective quantification (c-d). e, Top 10 upregulated and
downregulated genes in liver using age as a continuous covariate while controlling for
sex and technology. Genes were classified as significant under an FDR threshold of 0.01
and an age coefficient threshold of 0.005 (corresponding to ~10% fold change). f,k, Gene
expression of 111b and Clec4f (f) and Pecaml and Mrcl (k) in the liver droplet dataset for
the six ages. g-j, Staining of Kupffer cells across age (g) and respective quantification (h-
]). 1-0, Staining of liver endothelial cells across ages (I) and respective quantification (m-
0). The white scale bar corresponds to 100um.

Extended Data Figure 7. Cdlular changes during aging (cont.)

a, Mammary gland T cel relative abundances change significantly with age (p-
value<0.05 and r>>0.7 for a hypothesis test whose null hypothesisis that the slopeis zero,
using two-sided Wald Test with t-distribution of the test satistic). b,c, Top 10
upregulated and downregulated genes in mammary gland FACS (b) and droplet (c) using
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age as a continuous covariate while controlling for sex. Genes were classified as
significant under an FDR threshold of 0.01 and an age coefficient threshold of 0.005
(corresponding to ~10% fold change). d, Marrow precursor B cell relative abundances
change significantly with age (p-value<0.05 and r?>0.7 for a hypothesis test whose null
hypothesis is that the slope is zero, using two-sided Wald Test with t-distribution of the
test statistic). e,f, Top 10 upregulated and downregulated genes in marrow FACS (e) and
droplet (f) using age as a continuous covariate while controlling for sex. Genes were
classified as significant under an FDR threshold of 0.01 and an age coefficient threshold
of 0.005 (corresponding to ~10% fold change). g, Skin keratinocyte stem cell relative
abundances change significantly with age (p-value<0.05 and r*>0.7 for a hypothesis test
whose null hypothesis is that the dope is zero, using two-sided Wald Test with t-
distribution of the test statistic). h, Top 10 upregulated and downregulated genes in skin
FACS using age as a continuous covariate while controlling for sex. Genes were
classified as significant under an FDR threshold of 0.01 and an age coefficient threshold
of 0.005 (corresponding to ~10% fold change).

Extended Data Figure 8. Mutational burden across tissues in the aging mice (cont.
24m vs 3m).

a,b, Mean number of somatic mutations (a) and raw expression (b) across all tissues per
age group (3m and 24m). c,d, Mean number of mutations in ERCC spike-in (c) and
ERCC raw expression (d) across all tissues per age group (3m and 24m). Mutations are
presented as the mean number of mutations per gene per cell.

Extended Data Figure 9. Mutational burden across tissues in the aging mice (cont.
18m vs 3m).

a,b, Mean number of somatic mutations (a) and raw expression (b) across all tissues per
age group (3m and 18m). c,d, Mean number of mutations in ERCC spike-in (c) and
ERCC raw expression (d) across all tissues per age group (3m and 18m). Mutations are
presented as the mean number of mutations per gene per cell.

Extended Data Figure 10. Mutational burden across tissues in the aging mice (cont.
24m vs 18m).

a,b, Mean number of somatic mutations (a) and raw expression (b) across all tissues per
age group (18m and 24m). c,d, Mean number of mutations in ERCC spike-in (c) and
ERCC raw expression (d) across all tissues per age group (18m and 24m). Mutations are
presented as the mean number of mutations per gene per cell.

Extended Data Figure 11. Diversity score summary.
a,b, Heatmap summary of the overall tissue diversity score for FACS (a) and droplet (b).
c¢,d, Heatmap summary of the tissue cell-type diversity score for FACS (c) and droplet

(d).
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Extended Data Figure 12. The aging immune system (cont.)

a,b, Diversity score at different cluster resolutions for FACS brain myeloid microglia cell
(a) and droplet kidney macrophage (b). c,d, Diversity score correlation with the number
of genes expressed per tissue (c) or tissue cell-type (d). e, PAGA® tragjectory for brain
myeloid microglia cdll. f, Differential gene expression analysis of cluster 10 (mostly
young macrophages) versus clusters 13 (mostly old macrophages). For the complete gene
list please refer to Supplementary Table 10.

Supplementary Figure Legends

Supplementary Figure 1. FACS sequencing statistics.

a, Box plot of the number of genes detected per cell for each organ and age. b, Box plot
of the number of reads per cell (log-scale) for each organ and age.

Supplementary Figure 2. Droplet sequencing statistics.
Box plot of the number of genes detected per cell for each organ and age.

Supplementary Figure 3. Droplet sequencing statistics (cont.)
Box plot of the number of UMIs per cell (log-scale) for each organ and age.

Supplementary Tables

Supplementary Table 1. Summary of the FACS dataset.

a, Number of cells grouped by age, sex, mouse id and tissue. b, Number of cells grouped
by tissue, cell ontology class and age. ¢, Number of cells grouped by Louvain cluster
number, cell ontology class, tissue and age. d, Number of cells grouped by cell ontology
class, Louvain cluster number, tissue and age. e, Fraction of cellsin each Louvain cluster
per cell ontology class and tissue. f, Fraction of cellsin each Louvain cluster per tissue. g,
Fraction of cellsin each Louvain cluster per cell ontology class.

Supplementary Table 2. Summary of the droplet dataset.

a, Number of cells grouped by age, sex, mouse id and tissue. b, Number of cells grouped
by tissue, cell ontology class and age. ¢, Number of cells grouped by Louvain cluster
number, cell ontology class, tissue and age. d, Number of cells grouped by cell ontology
class, Louvain cluster number, tissue and age. e, Fraction of cellsin each Louvain cluster
per cell ontology class and tissue. f, Fraction of cellsin each Louvain cluster per tissue. g,
Fraction of cellsin each Louvain cluster per cell ontology class.
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Supplementary Table 5. Cellular fraction changes. This supplementary table supports
Figure 2e,g,i; Extended Data Figure 5; Extended Data Figure 6a and Extended Data
Figure 7a,c.e.

Supplementary Table 6. Differential gene expresson analysis. This supplementary
table supports Figure 2f,h,j; Extended Data Figure 6e and Extended Data Figure 7b,d,f.

Supplementary Table 7. Quantification of Liver in-situ staining. This supplementary
table supports Figure 6b-d,g-j and I-o. fov stands for field of view.

Supplementary Table 8. Summary statistics for the GATK analysis. Cell is the
unique cell identifier; ercc is the average number of mutations per cell found in the
ERCC spike-in, adata is the average number of mutations per cell in the gene set of the
tissue; ercc_raw_counts are the average number of ERCC spike-in counts per cell and
ercc_counts are the log(ercc_raw_countst+l); adata raw_counts are the average
number of gene counts per cell and adata_counts are the log(adata raw_counts+1);
tissue, age and cell_ontology_class are the metadata of the respective cell id and
agenum is the age as a numerical variable; functional_annotations is a categorical
variable binning each cel type as endothdial, immune, parenchymal, stem
cell/progenitor or stromal.

Supplementary Table 9. B-cell and T-cell repertoire analysis raw data. This table
supports Figure 4a,b.

Supplementary Table 10. Differential gene expression for the tissue cell type whose
diversity dgnificantly changes with age. a, FACS brain myeloid microglia
differentially upregulated genes between clusters 10, 12 and 14 versus clusters 1 and 6. b,
FACS brain myeloid microglia differentially upregulated genes between clusters 1 and 6
versus clusters 10, 12 and 14. c, Droplet kidney macrophage differentially upregulated
genes between cluster 13 and cluster 10. d, Droplet kidney macrophage differentially
upregulated genes between cluster 10 and cluster 13. e, Alzheimer’s disease microglia
signature from*’. This table supports Figure 4d,e and Extended Data Figure 12f.
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M ethods
All data, protocols, analysis scripts and an interactive data browser are publicly available.

Experimental Procedures

Mice and organ collection

Male and virgin female C57BL/6JN mice were shipped from the National Institute on
Aging colony at Charles River (housed at 67—73 °F) to the Veterinary Medical Unit
(VMU; housed at 68—76 °F)) at the VA Palo Alto (VA). At both locations, mice were
housed on a 12-h light/dark cycle and provided food and water ad libitum. The diet at
Charles River was NIH-31, and Teklad 2918 at the VA VMU. Littermates were not
recorded or tracked, and mice were housed at the VA VMU for no longer than 2 weeks
before euthanasia, with the exception of mice older than 18 months, which were
housed at the VA VMU beginning at 18 months of age. Before tissue collection, mice
were placed in sterile collection chambers at 8 am for 15 min to collect fresh fecal
pellets. After anaesthetization with 2.5% v/v Avertin, mice were weighed, shaved, and
blood was drawn via cardiac puncture before transcardial perfusion with 20 ml PBS.
Mesenteric adipose tissue was then immediately collected to avoid exposure to the
liver and pancreas perfusate, which negatively affects cell sorting. Isolating viable
single cells from both the pancreas and the liver of the same mouse was not possible;
therefore, two males and two females were used for each. Whole organs were then
dissected in the following order: large intestine, spleen, thymus, trachea, tongue, brain,
heart, lung, kidney, gonadal adipose tissue, bladder, diaphragm, limb muscle (tibialis
anterior), skin (dorsal), subcutaneous adipose tissue (inguinal pad), mammary glands
(fat pads 2, 3 and 4), brown adipose tissue (interscapular pad), aorta and bone marrow
(spine and limb bones). Organ collection concluded by 10 am. After single-cell
dissociation as described below, cell suspensions were either used for FACS of
individual cells into 384-well plates, or for preparation of the microfluidic droplet
library. All animal care and procedures were carried out in accordance with
institutional guidelines approved by the VA Palo Alto Committee on Animal Research.

Tissue dissociation and sample preparation
Al tissues were processed as previously described”.

Sample size, randomization and blinding

No sample size choice was performed before the study. Randomization and blinding
were not performed: the authors were aware of all data and metadata-related variables
during the entire course of the study.

Single-cell methods

All protocols used in this study are described in detail elsewhere’. Those include: i)
preparation of lysis plates, ii) FACS sorting, iii) cDNA synthesis using the Smart-seg2
protocol®®*, iv) library preparation using an in-house version of Tn5>**v) library
pooling and Quality control and vi) sequencing. For further details please refer to
http://dx.doi.org/10.17504/protocol s.io.2uwgexe
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Microfluidic droplet single-cell analysis

Single cells were captured in droplet emulsions using the GemCode Single-Cell
Instrument (10x Genomics) and scRNA-seq libraries were constructed as per the 10x
Genomics protocol using GemCode Single-Cell 3' Gel Bead and Library V2 Kit. In
brief, single cell suspensions were examined using an inverted microscope, and if
sample quality was deemed satisfactory, the sample was diluted in PBS with 2% FBS
to a concentration of 1000 cells per ul. If cell suspensions contained cell aggregates or
debris, two additional washes in PBS with 2% FBS at 300gfor 5 min at 4 °C were
performed. Cell concentration was measured either with a Moxi GO 1l (Orflo
Technologies) or a haemocytometer. Cells were loaded in each channel with a target
output of 5,000 cells per sample. All reactions were performed in the Biorad C1000
Touch Thermal cycler with 96-Deep Well Reaction Module. 12 cycles were used for
cDNA amplification and sample index PCR. Amplified cDNA and final libraries were
evaluated on a Fragment Analyzer using a High Sensitivity NGS Analysis Kit
(Advanced Analytical). The average fragment length of 10x cDNA libraries was
guantitated on a Fragment Analyzer (AATI), and by gPCR with the Kapa Library
Quantification kit for Illumina. Each library was diluted to 2 nM, and equal volumes of
16 libraries were pooled for each NovaSeq sequencing run. Pools were sequenced with
100 cycle run kits with 26 bases for Read 1, 8 bases for Index 1, and 90 bases for Read
2 (Illumina 20012862). A PhiX control library was spiked in at 0.2 to 1%. Libraries
were sequenced on the NovaSeq 6000 Sequencing System (Illumina).

Computational methods

Data extraction

Sequences from the NovaSeq were de-multiplexed using bcl2fastq version 2.19.0.316.
Reads were aligned using to the mm210plus genome using STAR version 2.5.2b with
parameters TK. Gene counts were produced using HTSEQ version 0.6.1pl with
default parameters, except ‘stranded’ was set to ‘false’, and ‘mode’ was set to
‘intersection-nonempty’. Sequences from the microfluidic droplet platform were de-
multiplexed and aligned using CellRanger version 2.0.1, available from 10x Genomics
with default parameters.

Data pre-processing

Gene count tables were combined with the metadata variables using the Scanpy®
Python package version 1.4. We removed genes not expressed in at least 3 cells and
then cells that did not have at least 250 detected genes. For FACS we removed cells
with less than 5000 counts and for droplet cells with less than 2500 UMIs. The data
was then normalized using size factor normalization such that every cell has 10,000
counts and log transformed. We computed highly variable genes using default
parameters and then scaled the data to a maximum value of 10. After we computed
PCA, neighborhood graph and clustered the data using Louvain’ and Leiden® methods.
The data was visualized using UM AP projection.
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Cell type annotation

To define cell types we analyzed each organ independently but combining all ages. In a
nutshell, we performed principal component analysis on the most variable genes between
cells, followed by Louvain and Leiden graph-based clustering. Next we subset the data
for 3m (TabulaMuris®) and compute how many cell types map to each individual cluster.
For the clusters that we had a single 1:1 mapping (cluster:cell type) we propagate the
annotations for all ages; in case there is a 1:many mapping we flagged that cluster for
manual validation. Step-by-step instructions to reproduce this method are available from
GitHub. For each cluster, we provide annotations in the controlled vocabulary of the cell
ontology”’ to facilitate inter-experiment comparisons. Using this method, we were able to
annotate automatically (~1min per tissue) over 70% of the dataset. The automatic
annotations were then reviewed by each of the tissue experts leading to a fully curated
dataset for al the cell typesin TabulaMuris Senis.

Tissue cell composition analysis

For each tissue and age, we computed the relative proportion of each cell type. Next we
used scipy.stats linregress to regress the relative tissue-cell type changes against age
and considered significant the changes with p-value<0.05 for a hypothesis test whose null
hypothesis is that the slope is zero, using two-sided Wald Test with t-distribution of the
test statistic and ar*>0.5.

Differential gene expression
We performed differential gene expression analysis on each tissue with a well-powered
sample size (>100 cells in both young (1m and 3m) and old age group (18m, 21m, 24m
and 30m)).

We apply a false-discovery rate (FDR) threshold of 0.01 and an
age coefficient threshold of 0.005 (corresponding to ~10% fold change).

In Situ RNA Hybridization and quantification.

In situ RNA hybridization was performed using the Advanced Cell Diagnostics
RNAscope® Multiplex Fluorescent Detection kit v2 (323110, Bio-techne) according to
the manufacturer’ s instructions. Staining of mouse liver specimens was performed using
5um paraffin-embedded thick sessions. Mouse livers were fixed in 10% formalin buffer
saline (HT501128, Sigma Aldrich) for 24h a room temperature before paraffin
embedding. For multiplex staining the following probes were used; Clec4f (Mm-Clec4f
480421, 111b (Mm-111b 316891-C2), Pecaml (Mm-Pecam-1 316721), Mrcl (Mm-Mrcl
437511-C3). Slides were counter stained with Prolong gold antifade reagent with DAPI
(P36931, Life technologies). Mounted slides were imaged on a Leica DM6 B fluorescent
microscope (Leica Biosystems). Image quantification was performed using the starfish
open source image-based transcriptomics pipeline (please refer to Starfish: Open Source
Image Based Transcriptomics and Proteomics Tools available from
http://github.com/spacetx/starfish and ).
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Comparison between bulk and single-cell datasets

The differential gene analysis was defined on a per tissue basis. First, we investigated
genes based on the single-cell data. We only considered cells from male animals and
perform our analysis on the log (1 + CPM) transformed single-cell count matrices. Note
that normalization of the single-cell data was done on a per cell basis. We defined two
group of cells based on age: young cells with age <= 3 months (Y) and old cells with age
> 3 months (O). For each gene we compute the log, fold-change of cell and read counts
between O and Y. We defined cell count as the fraction of cells that express the gene.
Similarly, we defined read count as the mean read count of the gene in the cells that
express it. The calculated log, fold-changes of a gene reflect its expression changes with
aging within the single-cell data. Next we analyze each gene based on the bulk data. We
computed the Spearman (Sp) correlation of bulk DESeq2 normalized gene expression
with aging. We defined two groups of genes based on the bulk data, increasing with age
Sp > 0.7 (U) and decreasing with age Sp < -0.7 (D). Finally, we compared the single-cell
data based log, fold-changes between the bulk data defined groups U and D. Specifically,
we run Wilcoxon—-Mann—Whitney test in order to understand if log, fold-changes of cell
or read counts could distinguish between the two groups. We used the U statistic for
effect size.

T-Céll processing

We used TraCeR™ version 0.5 to identify T-Cell clonal populations. We ran tracer
assemble with --species Mmus set. We then ran tracer summarise with —species Mmus
to create the final results. We used the following versions for TraCeR dependencies:
igblast version 1.7.0, kallisto version v0.43.1, Salmon version 0.8.2, Trinity version
v2.4.0, GRCm38 reference genome. Step-by-step instructions to reproduce the
processing of the data are available from GitHub.

B-Cell processing

We used singlecell-ige® version eafb6d126cc2d6511faae3efbd442abd7c6dc8ef
(https://github.com/dcroote/singlecell-ige) to identify B-Cell clonal populations. We
used the default configuration settings except we set the species to mouse. Step-by-step
instructions to reproduce the processing of the data are available from GitHub.

Mutation analysis

We used samtools® version 1.9 and GATK™ version v4.1.1.0 for mutation analysis.
We used samtools faidx to create our index filee Then we used GATK
CreateSequenceDictionary and GRCm38, as the reference, to create our sequence
dictionary. Next we used GATK AddOrReplaceReadGroups to create a single read
group using parameters -RGID 4 -RGLB libl -RGPL illumina -RGPU unitl -RGSM
20. Finally we used GATK HaplotypeCaller to call the mutations. We disabled the
following read filters: MappingQualityReadFilter, = GoodCigarReadFilter,

NotSecondaryAlignmentReadFilter, MappedReadFilter,
MappingQualityAvailableReadFilter, NonZeroReferencelLengthAlignmentReadFilter,
NotDuplicateReadFilter, PassesV endorQualityCheckReadFilter, and

WellformedReadFilter, but kept all other default settings. The results were
summarized per gene in the form of a mutation count per cell table. We started by
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removing genes mutated in over 60% of cells, to eliminate the possible bias of
germline mutations. Then for each tissue we selected genes expressed in at least 75%
of the cells for all the time points to avoid confounding the mutation results with
differential gene expression associated with age. Next we computed the average
number of mutations in the gene set (or ERCC spike-in controls) per cell and also the
average number of raw counts (Supplementary Table 8) and plotted the different
distributions. Step-by-step instructions to reproduce the processing of the data are
available from GitHub.

Diversity score

The raw FACS or droplet dataset were used as the input. We filtered genes expressed
in fewer than 5 cells, filtered cells if expressing fewer than 500 genes and discarded
cells with total number of counts less than 5000. Next we performed size factor
normalization such that every cell had l1le4 counts and performed a loglp
transformation. This was followed by clustering, where we clustered every tissue and
every tissue-cell type for every mouse separately using 6 different configurations:
resolution parameters (0.3, 0.5, 0.7) * clustering method (Louvain, Leiden). Thisisto
provide a robust clustering result. For each combination (each tissue-mouse and each
tissue-cell_type-mouse), we computed the clustering diversity score as the Shannon
entropy of the cluster assignment. We then regressed the diversity score against age to
detect the systematic increase/decrease of clustering diversity with respect to age. FDR
was used to correct for multiple comparisons. A tissue or a tissue-cell type was
selected if the slope was consistent (having the same sign) in all 6 clustering
configurations and at least 2 out of 6 clustering configurations had FDR<0.3. For each
selected tissue or tissue-cell type, a separate UMAP was computed using cells from all
mice for visualization using Leiden clustering with resolution parameter 0.7.

Code availability
All code used for analysis is available on GitHub (https.//github.com/czbiohub/tabul a-
Mmuris-senis)

I nter active Data Browsers
tabul a-muris-senis.ds.czbiohub.org
https://tabul a-maris-senis.cealls.ucsc.edu
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Tabula Muris Senis Supplementary Fig. 2
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Tabula Muris Senis Extended Data Fig. 1
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Tabula Muris Senis Extended Data Fig. 3
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Tabula Muris Senis Extended Data Fig. 4
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Tabula Muris Senis Extended Data Fig. 5
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Tabula Muris Senis Extended Data Fig. 6
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Tabula Muris Senis Extended Data Fig. 7
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Tabula Muris Senis Fig.3
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Tabula Muris Senis Fig.4
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Tabula Muris Senis Extended Data Figure 11
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Tabula Muris Senis Extended Data Figure 12
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