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Abstract 
Aging is characterized by a progressive loss of physiological integrity, leading to 
impaired function and increased vulnerability to death 1. Despite rapid advances over 
recent years 2, many of the molecular and cellular processes which underlie progressive 
loss of healthy physiology are poorly understood. To gain a better insight into these 
processes we have created a single cell transcriptomic atlas across the life span of Mus 
musculus which includes data from 18 tissues and organs. We discovered cell-specific 
changes occurring across multiple cell types and organs, as well as age related changes 
in the cellular composition of different organs. Using single-cell transcriptomic data we 
were able to assess cell type specific manifestations of different hallmarks of aging, such 
as senescence 3, changes in the activity of metabolic pathways 4, depletion of stem-cell 
populations 5, genomic instability 6 and the role of inflammation as well as other changes 
in the organism’s immune system2. This Tabula Muris Senis provides a wealth of new 
molecular information about how the most significant hallmarks of aging are reflected in 
a broad range of tissues and cell types.  
 
Results 
We performed single cell RNA sequencing on 529,823 cells from male and female 
C57BL/6JN mice belonging to six age groups ranging from one month (human early 
childhood equivalent) to thirty months (human centenarian equivalent) (Figure 1a). We 
prepared single cell suspensions of the bladder, bone marrow, brain (cerebellum, cortex, 
hippocampus and striatum), fat (brown, gonadal, mesenteric and subcutaneous), heart and 
aorta, kidney, large intestine, limb muscle and diaphragm, liver, lung, mammary gland, 
pancreas, skin, spleen, thymus, tongue and trachea for all mice. Data were collected for 
all six age groups using microfluidic droplets (droplet), while the 3m and 24m time 
points were also analyzed using single cells sorted in microtiter well plates (FACS) 
(Extended Data Fig.1a; Supplementary Table 1; Supplementary Figs.1&2). The droplet 
data allow large numbers of cells to be analyzed using 3’ end counting, while the FACS 
data allow for higher sensitivity measurements over smaller numbers of cells as well as 
sequence information across the entire transcript length. Analyzing multiple organs from 
the same animal enabled us to create data controlled for age, environment, and epigenetic 
effects. 
 
The previously published 3m time point, referred to as the Tabula Muris 7, represents 
~20% of the cells in the entire dataset and was used as the basis to perform semi-
automated cell type annotation of the additional time points (Fig.1b, Extended Data 
Fig.1b). Using this approach, we were able to automatically annotate over 70% of the 
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remaining cells; cellular populations that were not automatically annotated were 
manually curated and assigned to known cell types, resulting in annotations for >95% of 
all cells. All annotations were ultimately reviewed and approved by human experts, 
creating one of the largest manually curated single cell transcriptomic resources in 
existence. Many of these cell types have not previously been obtained in pure 
populations, and these data provide a wealth of new information on their characteristic 
gene-expression profiles. To demonstrate that the annotations performed separately for 
each tissue were consistent across the entire organism, we clustered all cells using an 
unbiased, graph-based clustering approach8,9 (Fig.1c,e) and showed that cell types such as 
B and T cells which are shared across different organs and tissues occupy the same 
clusters irrespectively of the tissue of origin (Fig.1d,f). The dataset can be explored 
interactively at tabula-muris-senis.ds.czbiohub.org.  Gene counts, metadata and code used 
for the analysis are available from GitHub (https://github.com/czbiohub/tabula-muris-
senis) and the raw data are available from GEO (GSE132042). 
 
Tabula Muris Senis provides a powerful resource with which to explore aging related 
changes in specific cell types. For example, when we looked for cell types in which gene 
expression is most affected by age we found that bone marrow cell types are collectively 
among those with the highest number of differentially expressed genes (Extended Data 
Fig.2a,b). Another global trend that we observed across cell types and tissues was that the 
cumulative distribution of the number of distinct genes sequenced per cell shows that 
young mice have a higher number of genes per cell (Extended Data Fig2c; Extended Data 
Figs. 3,4), perhaps reflecting their greater use of developmental pathways.  We also 
studied how the cellular composition of each tissue changes with age. For example, in the 
bone marrow (Fig.2a) we observed a significant increase in the relative abundance of 
granulocytes with age (Fig.2b), together with a small reduction of granulocytopoietic 
cells (Extended Data Fig.2d).  Granulocytopoietic cells give rise to both granulocytes and 
monocytes. Granulocytes are short-lived cells10 and the fact that their numbers tend to 
increase with age might indicate that the process of granulocytopoiesis at later age is 
more biased towards granulocytes, at the expense of having fewer monocytes, also 
consistent with our data (Fig.2c). We independently validated this observation using 
freshly isolated cells from the bone marrow and examined changes in the ratio of putative 
granulocytes to putative monocytes across different ages (Extended Data Fig.5a). The 
trend that we observed was consistent with the observed changes in the single cell droplet 
dataset (Extended Data Fig.5b), supporting the idea that granulocytopoietic cells become 
biased towards the granulocyte progeny with time11. 
 
The bladder is another example of a tissue with pronounced changes in cell type 
composition revealed using relative compositions (Fig.2d).  While the mesenchymal 
compartment of this tissue decreases by a factor of three over the lifetime of the mouse 
(Fig.2e), the urothelial compartment increases by a similar amount (Fig.2f). The fact that 
the amount of bladder urothelial cells is increasing is concordant with known age-related 
urothelial changes12. Moreover, the leukocyte population consistently increases with age, 
opposite to the endothelial population. The decline of the endothelial population suggests 
that bladder aging in mice may be associated with lower organ vascularization, consistent 
with recent findings13,14. The increase in the leukocyte population could be indicative of 
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the organ being in an inflammatory state, a common hallmark of aging which is 
consistent with current literature on overactive bladders15.  Similar plots of cell type 
composition changes across all tissues can be found as part of the interactive online 
browser. When interpreting compositional data, one must bear in mind that dissociation 
does not affect all of the cell types in a tissue equally, so changes in the relative 
composition of a given cell type with age are more meaningful than trying to compare 
proportions of different cell types at a single age. 
 
We then investigated aspects of cellular senescence, another aging hallmark. We 
compiled a list of senescence related genes and computed the fraction of cells expressing 
each gene as well as their median expression levels per cell for each age group 
(Supplementary Table 2). Out of 227 genes previously found to be associated with 
senescence (Supplementary Table 2), 32 were expressed in a larger fraction of cells in 
older mice compared to younger mice, and the median gene expression in cells which 
express the genes was significantly different between the two age groups. The most 
dramatic effect was observed for p16 (Cdkn2a): the fraction of cells expressing the gene 
more than doubled in older animals in both the FACS and the droplet data (Fig.2g,h), 
accompanied by a 2-fold increase in the actual expression level by those cells that did 
express it (Extended Data Figure 2e,f). 
 
Genomic instability is among the most widely studied aging hallmarks1 and the full-
length transcript data from the FACS data allows the analysis of somatic mutation 
accumulation with age. We used the Genome Analysis ToolKit (GATK)16 to perform 
SNP and INDEL discovery across all FACS samples simultaneously, using GATK Best 
Practices recommendations17,18. After removing 1366 genes found to be mutated in more 
than 50% of the cells, most likely as a result of a systematic difference in the germ line 
sequence from the reference, we focused on genes expressed in at least 75% of cells for 
each age group within a particular tissue. We observed an age-related increase in the 
number of mutations across all of the organs we analyzed (Fig.3a; Extended Data Fig.6a), 
with thymus and bladder being the most affected (Supplementary Table 3). This effect is 
larger than technical errors due to amplification and sequencing errors, which can be 
estimated using ERCC controls that were spiked into each well of the microtiter plates19 
(Fig.3c; Extended Data Fig.6b). Our analysis also accounts for sequencing coverage and 
gene expression levels, using a gene set that did not change its expression with age 
(Fig.3b,d). Despite the fact that it is difficult to infer genome-wide mutation rates from 
the transcriptome, which is known to inflate apparent mutational rates for a variety of 
reasons19, the observed trend is a useful indirect estimate of mutational frequency and 
genome stability. 
 
A final hallmark of aging which we investigated was how age-related changes may affect 
the immune system2. We computationally reconstructed the sequence of the B-cell 
receptor (BCR) and T-cell receptor (TCR) for B cells and T cells present in the FACS 
data using singlecell-ige and TraCeR, respectively20,21. We created an extended group of 
putative immune cells totaling 49,344 cells. Out of those, BCRs were assembled for 
3,450 cells (Fig.4a) and TCRs for 3,675 cells (Fig.4b). The number of cells with 
assembled BCRs was roughly equal between 3m and 24m old mice (1,382 and 2,068 
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cells, respectively). We parsed the singlecell-ige20 output to define B-cell clonotypes 
based on the sequence of the assembled BCR (Supplementary Tables 4&5; see Extended 
Methods) and found that while most of the cells at 3m were not part of a clone, the 
number of B-cells belonging to a clonotype increased by a factor of twenty at 24m 
(~5%). 
 
The number of cells with assembled TCRs were also roughly equal between 3m and 24m 
(1,895 and 1,780 cells, respectively). Clonotype assignment is part of the output obtained 
by TraCeR21 (Supplementary Table 6). Interestingly, only 33 out of 1,895 cells at 3m 
were part of a clone. For 24m, 333 out of 1,780 cells were part of a clone, indicating 
again an increase in clonality of the T-cell repertoire at later ages. These changes in 
clonality for both B and T cell repertoires are noteworthy because they suggest that the 
immune system of a 24m mouse will be less likely to respond to new pathogens, 
corroborating the literature suggesting that older individuals have higher vulnerability to 
new infections and lower benefits from vacination22,23.  
 
In addition to changes in the clonality of B cells and T cells, we observed additional 
changes affecting cells of the immune system across different organs. Using brain as an 
example (Fig.4c), the majority of microglia transition from Cluster 1, to Clusters 2 and 3 
as the animals age. Cluster 3 is mainly comprised of 24-month old microglia. These cells 
(Cluster 3) up-regulate MHC class I genes (H2-D1, H2-K1, B2m), along with a number 
of genes associated with degenerative disease (e.g. Fth1, Ftl1, Cd9, Cd63, Tyrobp, Ctsz, 
Cyba)24,25. Cluster 4 (predominantly from aged mice) is enriched with interferon 
responsive or regulatory genes (e.g. Oasl2, Oas1a, Ifit3, Rtp4, Bst2, Stat1, Irf7, Ifitm3, 
Usp18, Isg15, Ifi204, Dhx58, Ifit2), suggesting an expansion of this small pro-
inflammatory subset of microglia in the aging brain26.  
 
To characterize a potential cell-extrinsic aspect of aging in parallel with tissue analysis, 
we collected stool samples from the same mice prior to anaesthetization and performed 
16S rRNA amplicon sequencing to identify the bacterial community composition in the 
gastrointestinal tract in mice of different ages. The number of observed species was 
significantly lower at 1 month than at 21, 24 and 30 months (almost two-fold lower, 
p≤0.01 based on a repeated measures ANOVA test considering cage effects; Extended 
Data Fig.7a). Shannon diversity (Extended Data Fig.7b) declines gradually after  21 
months (p≤0.01 based on a repeated measures ANOVA test considering cage effects), 
with 30 month-old mice having the lowest microbiota diversity compared to all the other 
time points (p≤0.01, repeated measures ANOVA test considering cage effects). The 
decrease in Shannon diversity at 30 months, despite maintenance of observed species at 
this age, suggests increasing unevenness in the gut community in older mice; indeed, the 
microbiotas of 30 month-old mice all had a dominant taxon present at >33% (Extended 
Data Fig. 7c).  To further identify the basis of this unevenness in the gut community, we 
examined relative abundance at various taxonomic levels. At the phylum level, we found 
that Bacteroidetes increased at later ages (≥21 months), with a commensurate decrease in 
Firmicutes; Proteobacteria decreased to almost undetectable levels after the first month 
(Extended Data Fig. 8). The age-associated dominance of Bacteroidetes over Firmicutes 
has been previously described in human subjects27. The Bacteroidetes dynamics are 
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largely accounted for by the Parabacteroides genus (class Bacteroidia), and the decrease 
in Firmicutes is roughly evenly distributed between the Bacilli and Clostridia classes 
(Extended Data Fig. 8). 
 
The Tabula Muris Senis is a comprehensive resource for the cell biology community 
which offers a detailed molecular and cell-type specific portrait of aging.  We view such 
a cell atlas as an essential companion to the genome: the genome provides a blueprint for 
the organism but does not explain how genes are used in a cell type specific manner or 
how the usage of genes changes over the lifetime of the organism. The cell atlas provides 
a deep characterization of phenotype and physiology which can serve as a reference for 
understanding many aspects of the cell biological changes that mammals undergo during 
their lifespan.   
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Figure Legends 
Fig 1. Overview of Tabula Muris Senis. 
a, 18 organs from 19 male and 11 female mice were analyzed at 6 different time points. 
The bar plot shows the number of sequenced cells per organ prepared by FACS (n=18 
organs) and microfluidic droplets (n=16 organs). b, Annotation workflow. Data were 
clustered together across all time points. We used the Tabula Muris (3m time point) as 
reference for the automated pipeline and the annotations were manually curated by the 
tissue experts. c, UMAP plot of all cells collected by FACS, colored by organ in the same 
manner as in panel a, overlaid with the Louvain cluster numbers; n = 81,478 individual 
cells. d, B cells (and T cells) independently annotated for each organ cluster together by 
unbiased whole-transcriptome Louvain clustering, irrespectively of the organ they were 
from (n=3,294 out of 3,729 B cells and n= 1,786 out of 1,818 T cells). e, UMAP plot of 
all cells collected by droplet, colored by organ in the same manner as in panel a, overlaid 
with the Louvain cluster numbers; n = 235,325 individual cells. f, B cells (and T cells) 
independently annotated for each organ cluster together by unbiased whole-transcriptome 
Louvain clustering, irrespectively of the organ they were from (n=23,897 out of 26,022 B 
cells and n= 10,585 out of 10,839 T cells).  
 
Fig 2. Cellular changes during aging. 
a, Bar plot showing the relative abundances of cell types in the marrow across the entire 
age range for the droplet dataset. b,c, Granulocyte (b) and monocyte (c) relative 
abundances change significantly with age (p-value<0.05 for a hypothesis test whose null 
hypothesis is that the slope is zero, using two-sided Wald Test with t-distribution of the 
test statistic). d, Bar plot showing the relative abundances of cell types in the bladder 
across the entire age range for the droplet dataset. e,f, Bladder urothelial cell (e) and 
bladder cell (f) relative abundances change significantly with age (p-value<0.05 for a 
hypothesis test whose null hypothesis is that the slope is zero, using two-sided Wald Test 
with t-distribution of the test statistic). g, Bar plot showing the fractions of cells 
expressing Cdkn2a at each age group for FACS (left) and droplet (right). 
 
Fig 3. Mutational burden across tissues in the aging mice. 
a,b, Mean number of somatic mutations (a) and raw expression (b) across all tissues per 
age group (3m and 24m). c,d, Mean number of mutations in ERCC spike in (c) and 
ERCC raw expression (d) across all tissues per age group (3m and 24m).  Mutations are 
presented as the mean number of mutations per gene per cell. 
 
Fig 4. The aging immune system. 
a, B-cell clonal families. The pie chart shows the proportion of singleton B cells and B 
cells that are part of clonal families at 3m and 24m. For each time point, the clonal 
families are represented in a tree structure for which the central node is age (blue). 
Connected to the age node there is an additional node (gray) that represents each animal 
and the clonal families are depicted for each animal.  For each clonal family, cells that are 
part of that family are color coded by the organ of origin. b, T-cell clonal families. The 
pie chart shows the proportion of singleton T cells and T cells that are part of clonal 
families at 3m and 24m. For each time point, clonal families are represented in a tree 
structure for which the central node is age (blue). Connected to the age node there is an 
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additional node (gray) that represents each animal and the clonal families are depicted for 
each animal. For each clonal family, cells that are part of that family are color coded by 
the organ of origin. c, t-SNE plot of the Brain Myeloid Louvain clusters (numbers) 
colored by age. 
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Extended Data Figure Legends 
 
Extended Data Fig 1. Overview of Tabula Muris Senis (cont.) 
a, Bar plot showing the number of sequenced cells per organ per time point prepared by 
FACS (n=18 organs, dark blue) and microfluidic droplets (n=16 organs, light blue). b, 
Detailed annotation workflow.  
 
Extended Data Fig 2. Cellular changes during aging (cont.) 
a,b, Bar plot showing the number of differentially expressed genes at each time point as 
compared to the rest of the time points combined for hematopoietic precursor cells (a) 
and granulocytopoietic cells (b). The error bars represent the variation between FACS 
and droplet. c, Cumulative distribution showing the number of observed unique genes at 
each time point for FACS across all tissues. To account for different number of cells per 
age and animal, we used the same number of cells for each cell type from two randomly 
selected mice per age group. d, Granulocytopoeitic cell relative abundances decrease 
with age. e,f, Bar plot of the median expression of Cdkn2a for the cells that do express 
the gene at each age group for FACS (e) and droplet (f).  
 
Extended Data Fig 3. Number of distinct genes per tissue in the FACS dataset.  
Violin plots showing the number of observed unique genes at each time point for FACS 
per tissue. To account for different number of cells per age and animal, we used the same 
number of cells for each cell type from two randomly selected mice per age group. The 
data was split in young (3m) and old (24m) and the cell types split in three functional 
groups, immune, parenchymal and stromal. 
 
Extended Data Fig 4. Number of distinct genes per tissue in the droplet dataset. 
Violin plots showing the number of observed unique genes at each time point for droplet 
per tissue. The data was split in young (ages 1m and 3m) and old (ages 18m, 21m, 24m 
and 30m) and the cell types split in three functional groups, immune, parenchymal and 
stromal. 
 
Extended Data Fig 5. Experimental validation of cellular changes in Marrow  
a, Gating strategy b, Ratio of granulocytes to monocytes at different time points. Left 
panel: slope = 0.505 and p-value = 0.046 (hypothesis test whose null hypothesis is that 
the slope is zero, using two-sided Wald Test with t-distribution of the test statistic). Right 
panel: slope = 0.449 and p-value = 0.011 (hypothesis test whose null hypothesis is that 
the slope is zero, using two-sided Wald Test with t-distribution of the test statistic). 
 
Extended Data Fig 6. Mutational burden across tissues in the aging mice (cont.)  
a, Mean number of mutations across all tissues per age group (3m and 24m) with the cell 
types split in three functional groups, immune, parenchymal and stromal. b, Distribution 
of the difference of the mean mutation in the gene set per cell between 24m and 3m for 
all tissues and cells and with the cell types split in three functional groups, immune, 
parenchymal and stromal. 
 
Extended Data Fig 7. Microbiome in aging mice. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 8, 2019. ; https://doi.org/10.1101/661728doi: bioRxiv preprint 

https://doi.org/10.1101/661728
http://creativecommons.org/licenses/by-nc-nd/4.0/


a, Richness of the observed species at 1m, 3m, 18m, 21m, 24m and 30m. b, Shannon 
diversity of the observed microbial species at 1m, 3m, 18m, 21m, 24m and 30m. c, 
Prevalent microbial taxa at each age group. n=2 mice for 1m, 8 mice for 3m and 18m, 4 
mice for 21m, 3 mice for 24m and 5 mice for 30m. 
 
Extended Data Fig 8. Microbiome in aging mice (cont.) 
Prevalent microbial taxa at each age group.  
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Supplementary Figure Legends 
 
Supplementary Fig 1. FACS sequencing statistics 
a, Box plot of the number genes detected per cell for each organ and age. b, Box plot of 
the number of reads per cell (log-scale) for each organ and age. 
 
Supplementary Fig 2. Droplet sequencing statistics 
a, Box plot of the number genes detected per cell for each organ and age. b, Box plot of 
the number of UMIs per cell (log-scale) for each organ and age. 
 
 
 
 
 
 
Supplementary Tables 
 
Supplementary Table 1. Number of cells for the FACS and the droplet datasets. The 
data is grouped per age, sex, mouse and organ. 
 
Supplementary Table 2. Fraction of cells expressing senescence markers. The values 
correspond to the median expression levels per cell for each age group. The senescence 
marker gene list was collected from Ingenuity Pathway Analysis (Fall 2018 release, 
Qiagen) by exporting all genes associated with the search term senescence. 
 
Supplementary Table 3. Summary statistics for the GATK analysis. 
 
Supplementary Table 4. singlecell-ige assembly workflow output. This file is a counts 
table where each row is an Ensembl gene and each column is a cell 
 
Supplementary Table 5. singlecell-ige alignment workflow output. This table contains 
parsed assembly data from all cells. 
 
Supplementary Table 6. TraCeR output table. 
 
 
 
 
  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 8, 2019. ; https://doi.org/10.1101/661728doi: bioRxiv preprint 

https://doi.org/10.1101/661728
http://creativecommons.org/licenses/by-nc-nd/4.0/


Methods 
All data, protocols, analysis scripts and an interactive data browser are publicly available. 
 
Mice and organ collection 
Male and virgin female C57BL/6JN mice were shipped from the National Institute on 
Aging colony at Charles River (housed at 67–73 °F) to the Veterinary Medical Unit 
(VMU; housed at 68–76 °F)) at the VA Palo Alto (VA). At both locations, mice were 
housed on a 12-h light/dark cycle and provided food and water ad libitum. The diet at 
Charles River was NIH-31, and Teklad 2918 at the VA VMU. Littermates were not 
recorded or tracked, and mice were housed at the VA VMU for no longer than 2 weeks 
before euthanasia, with the exception of mice older than 18 months, which were 
housed at the VA VMU beginning at 18 months of age. Before tissue collection, mice 
were placed in sterile collection chambers at 8 am for 15 min to collect fresh fecal 
pellets. After anaesthetization with 2.5% v/v Avertin, mice were weighed, shaved, and 
blood was drawn via cardiac puncture before transcardial perfusion with 20 ml PBS. 
Mesenteric adipose tissue was then immediately collected to avoid exposure to the 
liver and pancreas perfusate, which negatively affects cell sorting. Isolating viable 
single cells from both the pancreas and the liver of the same mouse was not possible; 
therefore, two males and two females were used for each. Whole organs were then 
dissected in the following order: large intestine, spleen, thymus, trachea, tongue, brain, 
heart, lung, kidney, gonadal adipose tissue, bladder, diaphragm, limb muscle (tibialis 
anterior), skin (dorsal), subcutaneous adipose tissue (inguinal pad), mammary glands 
(fat pads 2, 3 and 4), brown adipose tissue (interscapular pad), aorta and bone marrow 
(spine and limb bones). Organ collection concluded by 10 am. After single-cell 
dissociation as described below, cell suspensions were either used for FACS of 
individual cells into 384-well plates, or for preparation of the microfluidic droplet 
library. All animal care and procedures were carried out in accordance with 
institutional guidelines approved by the VA Palo Alto Committee on Animal Research. 

Tissue dissociation and sample preparation 
All tissues were processed as previously described7. 

Sample size, randomization and blinding 
No sample size choice was performed before the study. Randomization and blinding 
were not performed: the authors were aware of all data and metadata-related variables 
during the entire course of the study. 

Single-cell methods 
All protocols used in this study are described in detail elsewhere7. Those include: i) 
preparation of lysis plates, ii) FACS sorting, iii) cDNA synthesis using the Smart-seq2 
protocol28,29, iv) library preparation using an in-house version of Tn530,31,v) library 
pooling and Quality control and vi) sequencing. For further details please refer to 
http://dx.doi.org/10.17504/protocols.io.2uwgexe 
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Microfluidic droplet single-cell analysis 
Single cells were captured in droplet emulsions using the GemCode Single-Cell 
Instrument (10x Genomics), and scRNA-seq libraries were constructed as per the 10x 
Genomics protocol using GemCode Single-Cell 3′ Gel Bead and Library V2 Kit. In 
brief, single cell suspensions were examined using an inverted microscope, and if 
sample quality was deemed satisfactory, the sample was diluted in PBS with 2% FBS 
to a concentration of 1000 cells per μl. If cell suspensions contained cell aggregates or 
debris, two additional washes in PBS with 2% FBS at 300gfor 5 min at 4 °C were 
performed. Cell concentration was measured either with a Moxi GO II (Orflo 
Technologies) or a haemocytometer. Cells were loaded in each channel with a target 
output of 5,000 cells per sample. All reactions were performed in the Biorad C1000 
Touch Thermal cycler with 96-Deep Well Reaction Module. 12 cycles were used for 
cDNA amplification and sample index PCR. Amplified cDNA and final libraries were 
evaluated on a Fragment Analyzer using a High Sensitivity NGS Analysis Kit 
(Advanced Analytical). The average fragment length of 10x cDNA libraries was 
quantitated on a Fragment Analyzer (AATI), and by qPCR with the Kapa Library 
Quantification kit for Illumina. Each library was diluted to 2 nM, and equal volumes of 
16 libraries were pooled for each NovaSeq sequencing run. Pools were sequenced with 
100 cycle run kits with 26 bases for Read 1, 8 bases for Index 1, and 90 bases for Read 
2 (Illumina 20012862). A PhiX control library was spiked in at 0.2 to 1%. Libraries 
were sequenced on the NovaSeq 6000 Sequencing System (Illumina). 

Data processing 
Sequences from the NovaSeq were de-multiplexed using bcl2fastq version 2.19.0.316. 
Reads were aligned using to the mm10plus genome using STAR version 2.5.2b with 
parameters TK. Gene counts were produced using HTSEQ version 0.6.1p1 with 
default parameters, except ‘stranded’ was set to ‘false’, and ‘mode’ was set to 
‘intersection-nonempty’. Sequences from the microfluidic droplet platform were de-
multiplexed and aligned using CellRanger version 2.0.1, available from 10x Genomics 
with default parameters. 

Clustering 
Standard procedures for filtering, variable gene selection, dimensionality reduction 
and clustering were performed using the Scanpy32 Python package version 1.4 
(https://scanpy.readthedocs.io).  
 
Cell type annotation 
To define cell types we analyzed each organ independently, but combining all ages. In a 
nutshell, we performed principal component analysis on the most variable genes between 
cells, followed by nearest-neighbor graph-based clustering. Next we subset the data for 
3m (Tabula Muris7) and compute how many cell types map to each individual cluster. 
For the clusters that we had a single 1:1 mapping (cluster:cell type) we propagate the 
annotations for all ages; in case there is a 1:many mapping we flagged that cluster for 
manual validation. For the clusters that we need to manual validate we used cluster-
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specific gene expression of known markers and genes that are differentially expressed 
between clusters to assign cell-types annotations to each cluster. Using this method, we 
were able to annotated automatically (~1min per tissue) over 70% of the dataset and 
together with manual curation we confidently annotated >95% of all the cells. While 
comparing gene expression levels across datasets is not straightforward, we had in our 
favor the fact that the data in Tabula Muris and the new data have been consistently 
generated. Step-by-step instructions to reproduce this method are are available from 
GitHub. For each cluster, we provide annotations in the controlled vocabulary of the cell 
ontology to facilitate inter-experiment comparisons. 

T-Cell processing 
We used TraCeR21 version 0.5 to identify T-Cell clonal populations. We ran tracer 
assemble with --species Mmus set. We then ran tracer summarise with –species Mmus 
to create the final results. We used the following versions for TraCeR dependencies: 
igblast version 1.7.0, kallisto version v0.43.1, Salmon version 0.8.2, Trinity version 
v2.4.0, GRCm38 reference genome. 

B-Cell processing 

We used singlecell-ige20 version eafb6d126cc2d6511faae3efbd442abd7c6dc8ef 
(https://github.com/dcroote/singlecell-ige) to identify B-Cell clonal populations. We 
used the default configuration settings except we set the species to mouse. 

Mutation analysis 

We used samtools33 version 1.9 and GATK16 version v4.1.1.0 for mutation analysis. 
We used samtools faidx to create our index file. Then we used GATK 
CreateSequenceDictionary and GRCm38, as the reference, to create our sequence 
dictionary. Next we used GATK AddOrReplaceReadGroups to create a single read 
group using parameters -RGID 4 -RGLB lib1 -RGPL illumina -RGPU unit1 -RGSM 
20. 
Finally we used GATK HaplotypeCaller to call the mutations. We disabled the 
following read filters: MappingQualityReadFilter, GoodCigarReadFilter, 
NotSecondaryAlignmentReadFilter, MappedReadFilter, 
MappingQualityAvailableReadFilter, NonZeroReferenceLengthAlignmentReadFilter, 
NotDuplicateReadFilter, PassesVendorQualityCheckReadFilter, and 
WellformedReadFilter, but kept all other default settings. 
 
Code availability 
All code used for analysis is available on GitHub (https://github.com/czbiohub/tabula-
muris-senis). 
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