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Abstract

The ability to di↵erentiate complex sounds is essential for communication. Here, we pro-

pose using a machine-learning approach, called classification, to objectively evaluate auditory

perception. In this study, we recorded frequency following responses (FFRs) from 13 normal-

hearing adult participants to six short music and speech stimuli sharing similar fundamental

frequencies but varying in overall spectral and temporal characteristics. Each participant

completed a perceptual identification test using the same stimuli. We used linear discriminant

analysis to classify FFRs. Results showed statistically significant FFR classification accura-

cies using both the full response epoch in the time domain (72.3% accuracy, p < 0.001) as

well as real and imaginary Fourier coe�cients up to 1 kHz (74.6%, p < 0.001). We classified

decomposed versions of the responses in order to examine which response features contributed

to successful decoding. Classifier accuracies using Fourier magnitude and phase alone in the

same frequency range were lower but still significant (58.2% and 41.3% respectively, p < 0.001).

Classification of overlapping 20-msec subsets of the FFR in the time domain similarly produced

reduced but significant accuracies (42.3%–62.8%, p < 0.001). Participants’ mean perceptual

responses were most accurate (90.6%, p < 0.001). Confusion matrices from FFR classifications

and perceptual responses were converted to distance matrices and visualized as dendrograms.

FFR classifications and perceptual responses demonstrate similar patterns of confusion across

the stimuli. Our results demonstrate that classification can di↵erentiate auditory stimuli from

FFR responses with high accuracy. Moreover, the reduced accuracies obtained when the FFR

is decomposed in the time and frequency domains suggest that di↵erent response features con-

tribute complementary information, similar to how the human auditory system is thought to

rely on both timing and frequency information to accurately process sound. Taken together,

these results suggest that FFR classification is a promising approach for objective assessment

of auditory perception.

Keywords Frequency following response Brain decoding EEG Classification
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1 Introduction1

Sound identification is a central feature of human communication. To successfully identify and2

assign appropriate labels to di↵erent sounds, individuals must be able to distinguish between them3

based on their spectro-temporal acoustic characteristics. Discrimination of di↵erent speakers and4

instruments is based on the perception of more complex spectro-temporal features called timbral5

qualities. These include the shape of the spectral envelope over time, the center frequency of sound6

spectrum, and frequency range emphasis (e.g., high versus low overtones). Finally, pitch perception7

in both speech and music most often varies proportionally with the fundamental frequency (F0).8

Given the importance of these acoustic characteristics for sound identification, it is thought that9

speech understanding therefore requires distinct and precise neural representations for di↵erent10

acoustic signals. In many instances, the integrity of these neural representations is inferred by tests11

of speech understanding or sound identification, such that good performance on these measures12

is generally thought to reflect neural encoding of su�cient integrity. Such tests are widely used13

in clinical audiologic practice when assessing performance of individuals with normal hearing and14

hearing loss (Lawson & Peterson, 2011). However, some individuals (e.g., young children) may15

not be able to reliably respond to signals, or—in the case of significant hearing loss—may have16

di�culty reporting what is heard with their hearing aid or cochlear implant. For these populations,17

an objective measure of the neural representation is of considerable interest for both clinicians and18

researchers.19

In human listeners the neural representation of speech and non-speech sounds is often investi-20

gated using auditory evoked potentials (AEPs) (Atcherson & Stoody, 2012; Hall III, 2007c). In21

clinical audiologic practice, the auditory brainstem response (ABR) (Jewett et al., 1970; Hood et22

al., 1991; Hall III, 2007e; Brueggeman & Atcherson, 2012; Davis et al., 1985) and the auditory23

steady-state response (ASSR) (Galambos et al., 1981; Stapells et al., 1984; Hall III, 2007b; Strick-24

land & Needleman, 2012) are widely used within an audiologic battery to detect the presence and25

degree of hearing loss. While these measures are excellent at helping to identify the degree and26

configuration of hearing loss, they provide little information regarding sound identification. For27

these reasons, discriminability of speech and non-speech sounds has been investigated through two28
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specific components of cortical AEPs, called the mismatch negativity (MMN) and P300. Both of29

these potentials are elicited by an ‘oddball’ paradigm in which a sequence of standard sounds is30

interrupted by an infrequent change along any acoustic dimension (e.g., frequency, intensity, dura-31

tion, location; for review, see Atcherson & White (2012)). The neural response to the infrequent32

stimulus di↵ers from that observed to the frequent stimulus, and the size of this change has been33

shown to reflect the discriminability of these stimuli (Näätänen & Alho, 1995, 1997). MMN pro-34

vides a neurophysiological measure of acoustic change detection when sounds are not attended to35

(Näätänen et al., 1993) and the P300 is modulated by attention to such changes (Davis (1964); for36

review, see Hall III (2007d)). The MMN is limited in use and scope because not all people exhibit37

this potential despite normal discriminability performance. In addition, both the MMN and P30038

are modulated by state of arousal and diminished during sleep, making it di�cult to test in infant39

populations.40

One AEP candidate which may be better suited for determining whether the neural response41

of a signal is su�cient for identification on an individual level is the frequency following response42

(FFR, for review see N. A. Kraus et al. (2017)). The FFR is similar to the ABR in that both43

evoked potentials are recorded in the same manner, and generators that produce them overlap—44

namely the cochlea, VIIIth cranial nerve and inferior colliculi (Smith et al. (1975); Gardi et al.45

(1979); Sohmer et al. (1977); for review see Hall III (2007a)). The responses di↵er in that while the46

transient peaks of the ABR resolve after about 10 msec, the peaks of the FFR closely ‘follow’ the47

stimulating frequency in a steady-state response for as long as the stimulus continues (Hoormann et48

al. (1992); for review see Bhagat (2012)). The FFR has been used widely to investigate the neural49

encoding of complex tones (Greenberg et al., 1987), music (Bidelman & Krishnan, 2009; Musacchia50

et al., 2007), and speech sounds (Skoe & Kraus, 2010). Seminal studies into the FFR elicited by51

speech stimuli have shown that the strength of this response is greatest when auditory stimuli are52

correctly classified into speech categories (G. Galbraith et al., 1995) and is selectively enhanced to53

forward-running speech (G. C. Galbraith et al., 2004). Because the FFR is intimately related to54

the acoustics of the incoming signal, a number of potential applications have been suggested for55

its use. For example, the FFR is thought to be related to auditory experience, such that stronger56

FFRs are observed with greater degrees of musical skill (Musacchia et al., 2007; N. Kraus & Strait,57
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2015; Parbery-Clark et al., 2012; Wong et al., 2007) or language experience (Krishnan et al., 2005;58

S. Wang et al., 2016; Song et al., 2008). Similarly the FFR strength has been correlated with59

the ability to understand speech in the presence of background noise, and with development in60

infants (Anderson et al., 2015; Musacchia et al., 2018) and children (Russo-Ponsaran et al., 2004;61

Banai et al., 2007). Overall, these studies demonstrate the potential of the FFR to examine the62

integrity of neural coding of speech signals. However, most of these reports are correlational in63

nature (e.g., comparing FFR strength with some other variable) and do not address the question64

of sound identification.65

One approach to predicting sound identification from AEP data is the use of classification.66

This refers to an analysis technique which attempts to predict a stimulus label or cognitive state67

from the corresponding brain response (Donchin, 1969; Blankertz et al., 2001). One advantage of68

classification is that it can be applied to responses to multiple stimuli, which more closely emulates69

what is required of participants when performing tests of speech identification. The classification70

approach also enables complex, high-dimensional data to be analyzed in its entirety, or in spatial71

and/or temporal subsets using a ‘searchlight’ approach (Su et al., 2012; Kaneshiro et al., 2015).72

To date, classification has been widely applied to cortical magnetoencephalography (MEG) and73

electroencephalography (EEG) data to study perception of visual object categories (Simanova et74

al., 2011; Carlson et al., 2013; Kaneshiro et al., 2015), and to a lesser extent music (Schaefer et al.,75

2011; Sankaran et al., 2018).76

Classification-based approaches have also been applied to neurophysiological correlates of speech77

identification using FFR and AEP data. Results show that the spectral amplitude of the FFR in78

F0 and F1 bands can be used to correctly classify vowels with up to 70–80% accuracy (Sadeghian79

et al., 2015) and that spectral information related to the F2 band can be used to classify cortical80

evoked responses to vowels on the basis of single-trial data (Kim et al., 2014). Data acquired with81

an innovative combination of single-trial classification and machine-learning methods support the82

notion that the spectral amplitude of the FFR may be used to correctly predict vowel categorization83

into learned and novel vowel categories (Yi et al., 2017). Moreover, temporal information contained84

in the phase of theta oscillations (2–9 Hz) could correctly classify eight phonetic categories such that85

confusion matrices from phase and perceptual responses were not statistically distinguishable from86
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one another (R. Wang et al., 2012). Finally, a recent report demonstrated that vectors of timing87

from cortical responses could be combined with vectors of spectral information derived from the88

FFR to successfully classify brain responses into speech categories in patients with mild cognitive89

impairment (Bidelman et al., 2017).90

Taken together, these data support early phonetic classification research (Näätänen et al., 1978),91

and provide strong evidence that AEPs, and in particular the FFR, have potential to accurately92

predict speech identification when classification algorithms are applied. However, the components of93

the neural response underlying the classification results are poorly understood. For example, most94

investigations focused their classification analyses on spectral and temporal methods independently;95

only Lee & Bidelman (2017) appears to have combined both into their identification algorithm.96

Thus, it is unclear precisely which components of the FFR contribute to accurate classification of97

signals. Moreover, the range of stimuli which have been used to acquire FFR data for classification98

is rather narrow to date and has consisted largely of vowels. This is relevant because speech99

consists of both consonants and vowels and varies considerably in its spectral content over time100

(e.g., transitioning from consonants to vowels (CV) within a given phoneme). In such cases, it is101

unclear whether the accuracy of a classification approach changes over time, and if so, how the time102

course of those changes manifest. Finally, the extent to which classification can identify stimuli of103

completely di↵erent types is uncertain. For example, can responses to speech stimuli and musical104

notes be separated, and appropriate labels applied to each type? Here we addressed these questions105

by classifying FFR responses to CV phonemes and musical stimuli, and comparing the output of106

the classifier to the results of a perceptual-identification task. We then decomposed the FFR in107

order to identify which features of the neural response drive classification. Finally, we employed a108

temporal searchlight approach to classify these stimuli at di↵erent time points of the response with109

the intent of relating accuracy of these classification windows to acoustic features of the speech and110

music stimuli.111
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2 Methods112

2.1 Participants and Stimuli113

This research protocol was approved by Stanford University’s Institutional Review Board. All par-114

ticipants provided written informed consent before engaging in any research activities. Thirteen115

adult participants (7 female) participated in the study. Participants ranged in age from 20–35 years116

(mean 24 years), were fluent in English, and had no cognitive or decisional impairments. Normal117

hearing was confirmed with audiological hearing thresholds <20 dB HL across octave frequencies118

ranging from 500–4000 Hz. Each participant completed a general demographic and musical back-119

ground questionnaire.120

The stimulus set comprised three CV phonemes—ba, da, di—and three musical notes labeled pi-121

ano, bassoon, and tuba based on their timbral qualities. Time- and frequency-domain visualizations122

of the stimuli are shown in Panel A of Figure 1. These stimuli were chosen due to their availability123

in the system used for data collection—advancing our long-term goal of clinical feasibility—as well124

as on the basis of their shared and distinct auditory features. For example, ba and da are identical in125

sustained vowel content but di↵er in their initial consonant, and can thus be distinguished percep-126

tually on the basis of a formant transition. On the other hand, da and di share similar (though not127

acoustically identical) initial consonants and di↵er in the sustained vowel. The musical stimuli vary128

in their onset characteristics as well as the amplitude and phase structure of their harmonics. The129

F0 of each stimulus ranged from 97–107 Hz (ba 100.1 Hz, da 100.1 Hz, di 106.7 Hz, piano 98.3 Hz,130

bassoon 100.0 Hz, tuba 97.3 Hz), and remained consistent across the sustained portion of each wave-131

form. We made minor modifications to the stimuli using Audacity1 software, first trimming each132

waveform to 135 msec—a reasonable duration for collection of FFR responses (Russo-Ponsaran et133

al., 2004; Bidelman & Krishnan, 2009; Co↵ey et al., 2016; Skoe & Kraus, 2010)—and then applying134

a linear fade out over the last cycle of each waveform to eliminate o↵set transients.135

1
http://www.audacityteam.org
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Figure 1: Stimulus and response visualizations. (A) Stimuli are 135 msec in length and include three
consonant-vowel phonemes—ba, da, di—and three musical notes representative of di↵erent instruments—
piano, bassoon, and tuba. Stimulus F0s are all near 100 Hz, but stimuli vary in fine temporal structure and
harmonic content. (B) Global-average FFR responses (N=13; 2,500 responses per stimulus per participant).
Responses vary in temporal and spectral composition; the strongest spectral peaks occur at F0 for every
stimulus.

2.2 Data Collection136

Each participant completed an FFR recording session and perceptual test. As even short-term137

training has been shown to modulate FFR responses (Wong et al., 2007; Song et al., 2008; Carcagno138

& Plack, 2011; Skoe et al., 2013; Russo et al., 2005) the FFR session was always conducted first.139

The combined sessions, including hearing screen and application of sensors, took approximately two140

hours for each participant.141

The FFR session involved six recording blocks, with a single stimulus presented in each block.142

Ordering of blocks was randomized for each participant. Stimuli were presented with a 70-msec143

inter-stimulus interval (ISI, i.e., a silent interval of 70 msec between the conclusion of one stimulus144

and onset of the next) in alternating polarity. During recording, the participant was seated in a145

chair in a dimly lit room. A film without sound was presented to reduce participant movement146

during data acquisition; participants were also allowed to sleep during the recordings. Stimuli were147
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played binaurally at 75 dB(C) via electrically shielded Etymotic ER-3 Insert Earphones.2148

FFR responses were collected using the Advanced Research Module of the Intelligent Hearing149

Systems (IHS) SmartEP platform,3 which is approved for clinical use. Electrodes were placed at the150

frontal midline (Fz) with nasion reference and ground on bilateral earlobes. Electrode impedance151

was measured under 5 k⌦ at the start of each recording session. FFR responses were recorded at152

a sampling rate of 20 kHz, band-pass filtered at acquisition between 30–1,500 Hz and segmented153

from -20.9–183.85 msec relative to stimulus onset. All FFRs were collected with an ongoing artifact154

rejection criterion of ±35 µV. In each block, recording continued until 2,500 usable responses to155

stimulus repetitions—or sweeps—were obtained. A block was restarted if more than 250 rejections156

(10% of total sweeps) occurred.157

As the goal of this study is to establish the feasibility of FFR classification under intact percep-158

tion, we additionally included a perceptual test in order to verify that participants could behaviorally159

discriminate among the stimuli. The perceptual test began with a short familiarization phase de-160

signed to help participants associate a label with a given sound, and to familiarize them with the161

task. Here, the stimulus set was presented five times in order while the corresponding stimulus label162

(phoneme or instrument name) was shown onscreen. The participant then completed the test phase.163

In a test trial, a stimulus was played with no corresponding label shown, and the participant sub-164

sequently indicated the perceived label of that stimulus. Responses were given in a six-alternative165

forced-choice (6AFC) paradigm without feedback. Each stimulus was presented 20 times for a total166

of 120 test trials; trial ordering was randomized for each participant. The perceptual-identification167

task was written in Matlab4 using the Psychophysics Toolbox (Brainard, 1997) and was completed168

on a laptop; stimuli were played through Sennheiser HD 650 headphones.169

2.3 FFR Data Export and Preprocessing170

FFR data were exported from the IHS system on a per-participant, per-stimulus basis in 100-sweep171

averages—the minimum number of sweeps that our system could average for export. These FFRs172

were calculated by averaging an equal number of responses to a stimulus presented in alternating173

2
https://www.etymotic.com/

3
https://www.ihsys.com/

4
https://www.mathworks.com
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polarity, which Aiken & Picton (2008) define as the envelope FFR. Across all participants and174

stimuli, this produced 1,950 100-sweep averages (325 per stimulus). All subsequent preprocessing175

and analysis was performed in Matlab. We epoched the response data to a time interval between 5–176

145 msec after stimulus onset to account for the latency of the FFR (Glaser et al., 1976; Hoormann177

et al., 1992)—resulting in a vector of 2,801 time samples—and then centered each epoched average178

via subtraction of the mean. We henceforth refer to these epoched, centered 100-sweep averages as179

trials.180

All experimental data are made available under a CC-BY 3.0 License from the Stanford Digital181

Repository (Losorelli et al., 2019).5 Analysis code and preprocessed data are available on GitHub182

(also under a CC-BY 3.0 license).6 Organization of data and code files is detailed in Supplementary183

Figure S1, and mapping of participant identifiers from raw to preprocessed data files is documented184

in Supplementary Table S1.185

2.4 FFR Classification186

Classification is a machine-learning task which aims to assign correct categorical labels to observa-187

tions of data. In the current context, a classifier is trained by building a statistical model from FFRs188

(observations) and their respective stimulus identifiers (labels). Then, in the test phase, FFR obser-189

vations are input to the classifier without labels, and the classifier returns the predicted labels. We190

compare the labels predicted by the classifier with the actual labels of the test observations in order191

to compute the classification accuracy, which for this study is the percentage of test observations192

with correctly predicted test labels.193

In order to determine how a classifier will perform in a predictive setting, it is good practice to194

exclude test observations from the training phase of building the model. One way to achieve this195

is by performing cross validation. In this procedure, the data are first divided into non-overlapping196

subsets—or folds—of roughly equal size. Classification is subsequently performed in an iterative197

fashion, withholding each fold once for testing and training on the remaining folds. K folds thus198

implies K train-test iterations, and this is referred to as K-fold cross validation.199

5
https://purl.stanford.edu/cp051gh0103

6
https://github.com/slosorelli/FFR-classification-2019
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A compact representation of classifier performance, in addition to classification accuracy, is the200

confusion matrix. For the present study, element (i, j) of a confusion matrix denotes the number201

of test observations actually belonging to category i that were predicted to belong to category j202

by the classifier. Values on the diagonal represent numbers of correct classifications. Our reported203

confusion matrices contain classifier predictions aggregated across all cross-validation folds.204

We performed FFR classifications and visualized the results using the publicly available Mat-205

ClassRSA Matlab toolbox (B. C. Wang et al., 2017). As the classifier chose among 6 possible206

stimulus labels in this multi-category classification task, and we collected the same amount of207

response data to each stimulus, chance level was 1/6 (16.67%). All classifications used Linear Dis-208

criminant Analysis (LDA) (Hastie et al., 2009). To speed processing time of each classification,209

the dimensionality of the input data matrix was first reduced along the feature dimension (time210

samples or frequency bins) using Principal Components Analysis (PCA), retaining as many PCs211

were needed in order to explain 99% of the variance. In each cross-validation fold, PCA and number212

of PCs to retain was computed on only the training observations and then applied to the test obser-213

vations. Statistical significance was assessed via permutation test (Golland & Fischl, 2003): Each214

classification was performed once on the intact data and 1,000 times with stimulus labels shu✏ed215

independently of the response data, and the corresponding p-value was computed by comparing the216

observed accuracy against the null distribution of permuted accuracies.217

2.4.1 Time-Domain Classification218

For classification of FFRs in the time domain, the trial data from all participants were combined,219

and classification was performed using 10-fold cross validation. The trial-by-time matrix input220

to the classifier was of size 1,950⇥2,801, and the features describing each observation were time221

samples of response data. Trial ordering was randomized prior to partitioning for cross-validation222

in order to better distribute the participants’ data among the folds. In a follow-up classification, we223

further averaged the trials within-participant into pseudo-trials (Guggenmos et al., 2018) comprising224

5 trials (500 sweeps) of response to a given stimulus, as used in Sadeghian et al. (2015). This225

produced an aggregated pseudo-trial-by-time matrix of size 390⇥2,801 across participants—leaving226

the feature dimension unchanged while decreasing the number of observations for classification227
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(but likely improving their SNR). As classification of 500-sweep pseudo-trials was found to produce228

higher accuracy than classification of 100-sweep trials, we performed all subsequent classifications229

on 500-sweep representations of the data.230

We next classified the data using a leave-one-participant-out (LOO) cross-validation scheme.231

Here, we performed 13-fold cross validation, where in each fold all observations from a single par-232

ticipant were withheld for testing, while the model was trained on the data from the remaining233

participants. We performed two such classifications. First, training and testing was performed234

using the within-participant pseudo-trials computed previously; then, pseudo-trials for training in235

each fold were computed across-participant on a per-stimulus basis, and the resulting model was236

tested on the within-participant pseudo-trials of the holdout test participant.237

2.4.2 Frequency-Domain Classification238

One way in which the FFR di↵ers from event-related cortical EEG responses is in its direct encoding239

of the auditory stimulus. Therefore, we speculated that FFR classification might be feasible in the240

frequency domain. To prepare the data for these analyses, we first computed the FFT of within-241

participant pseudo-trials. Next, taking into consideration the filter settings at data acquisition and242

the frequency range in which meaningful information is encoded by the FFR (Skoe & Kraus, 2010),243

we retained for further analysis only the 141 complex values corresponding to frequencies between244

0–1,000 Hz.245

A waveform can be fully characterized in the frequency domain via magnitude and phase values—246

or equivalently by its real and imaginary coe�cients—at each frequency bin. For our first frequency-247

domain analysis, we classified this complex representation to confirm that accuracy would be compa-248

rable to time-domain classification accuracy. Here we used 10-fold cross validation, and the feature249

vector comprised real and imaginary Fourier coe�cients (which occupy a shared data scale while250

phase and magnitude values do not) from 0–1,000 Hz, for a pseudo-trial-by-coe�cient input matrix251

of size 390⇥282.252

We next performed classifications on magnitude and phase alone. Fourier magnitude denotes the253

amount of energy at each frequency bin while phase describes precise timing information at each254

frequency. Therefore, if our previous classifications of complete responses were successful, these255
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analyses could potentially elucidate the relative contributions of magnitude and phase in successful256

decoding. Over the same range of frequencies used above, we classified Fourier magnitudes, com-257

puted as the absolute values of each complex coe�cient. We separately classified phase, computed258

as the angle at each frequency bin. Each of these classifications involved 10-fold cross validation and259

operated on an input pseudo-trial-by-feature (Fourier magnitude or phase) matrix of size 390⇥141.260

2.4.3 Temporal Searchlight Classification261

Our analyses so far have considered time- and frequency-domain representations of the FFR over the262

full response epoch. With Fourier magnitude and phase classifications, we decomposed the FFR in263

order to determine whether classification accuracy could be explained by specific response features.264

For our final classifications, we decomposed the response in a di↵erent fashion, now over temporal265

subsets of the response epoch. This technique is referred to as temporal ‘searchlight’ (Su et al.,266

2012) and has been found to reveal useful information about the dynamics of visual object category267

processing in cortical EEG classification (Kaneshiro et al., 2015). For our searchlight analysis, we268

performed separate classifications on overlapping temporal windows 20 msec in length with a 10-269

msec (50%) overlap between windows, for a total of 13 windows. In each temporal window, we270

classified four representations of the response: Time domain (390⇥400 input matrix); frequency271

domain, real and imaginary coe�cients (390⇥40 input matrix); frequency domain, magnitude only272

(390⇥20 input matrix); and frequency domain, phase only (390⇥20 input matrix). All classifications273

used 10-fold cross validation and the within-participant 500-sweep pseudo-trials used previously.274

We performed multiple comparison correction across the resulting 13 p-values using False Discovery275

Rate (Benjamini & Yekutieli, 2001).276

2.5 Analysis of Perceptual Responses277

While FFR confusion matrices were constructed by means of a computational classification proce-278

dure, in the perceptual case the classification is e↵ectively performed by each participant in their279

reporting of perceived stimulus categories. Therefore, the perceptual confusion matrices could be280

constructed by directly comparing each participant’s reported results with the actual stimulus labels281
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of the trials. Reported global perceptual accuracy was obtained by aggregating confusion matrices282

across participants. We assessed statistical significance of perceptual responses by comparing ob-283

served results with a null distribution of accuracies obtained by randomly permuting actual labels284

1,000 times for each participant.285

2.6 Visualization of Confusion Matrices286

As the confusion matrix provides a more comprehensive summary of a classifier’s performance than287

accuracy alone, we visualized the confusion matrix for every classification. In addition, classifier288

confusions can be treated as measures of similarity among the classes (Shepard, 1974), and conse-289

quently a confusion matrix can be treated as a proximity matrix, converted to a distance matrix, and290

visualized hierarchically as a dendrogram. We created dendrograms from confusion matrices using291

the procedure outlined in (Kaneshiro et al., 2015): The distance matrix was created by first scaling292

each row of the confusion matrix by its respective diagonal entry (achieving unity self-similarity),293

symmetrizing the matrix using the geometric mean, and finally computing distances linearly as294

1�similarity; following this, hierarchical clustering was performed using unweighted pair grouping295

method with averaging (UPGMA) linkage. In the resulting tree visualizations, the y-axes denotes296

distance, and the height a given tree must be traversed in order to travel between any two classes297

is the distance between those classes.298

3 Results299

3.1 Time-Domain Classification300

For our first analyses, we classified FFRs in the time domain. To start, we input what was our closest301

representation of ‘single-trial’ FFRs—the 100-sweep averaged trials output by the IHS system—and302

performed 10-fold cross validation. Here, the mean accuracy across cross-validation folds was 61.4%303

(p < 0.001) compared to chance level of 16.67%. The next classification of 500-sweep pseudo-trials304

was more successful, with a mean accuracy of 72.3% (p < 0.001). The confusion matrix and305

dendrogram of the pseudo-trial classification are shown in Panel A of Figure 2. Examination of306
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the confusion matrix indicates that not all stimuli were decoded with equal accuracy. Rather, the307

classifier tended to confuse responses to ba and da, as shown by large values in the o↵-diagonal.308

Responses to di and piano also tended to be confused, though to a lesser extent, while responses309

to bassoon and tuba classified best (classwise accuracies of 87.7% and 90.8%, respectively). The310

accompanying dendrogram makes the structure of the confusion-based similarities more clear, with311

ba/da forming the tightest category cluster (smallest distance), followed by di/piano.312
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Figure 2: Time-domain classification results. Classification results for 500-sweep pseudo-trials, vi-
sualized as confusion matrices and dendrograms. (A) Pseudo-trials were computed within-participant,
and across-participant classification was performed using 10-fold cross validation. Mean accuracy was
72.3% (p <0.001). Greatest confusion occurred between responses to ba and da. Tuba responses classified
with highest accuracy. (B) Single participants were withheld for testing during (13-fold) cross valida-
tion. Pseudo-trials of the training data were computed within-participant. Mean accuracy was 62.6%
(p <0.001). (C) Single participants were withheld for testing during (13-fold) cross validation. Pseudo-
trials of the training data were computed across-participant. Mean accuracy was 63.1% (p <0.001). (D)
Scatter plot of within-participant versus across-participant accuracies for single test participant accuracies
from (B) and (C).

In a clinical setting, the predictive power of classification becomes especially relevant for assessing313

responses from previously unseen patients. To explore the feasibility of this scenario, we next314

iteratively trained the classifier on data from all but one participant and then tested on the data315

from that holdout participant. As participant-specific attributes of the test data cannot be taken316

into account during training, this is a more challenging task. However, it also more closely resembles317

the application of FFR classification in a real-world setting. We performed these classifications in318

two ways, first training the model on pseudo-trials averaged within-stimulus and within-participant,319

and next on pseudo-trials averaged within-stimulus but across-participant. When pseudo-trials320
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of the training partitions were averaged within-participant (Figure 2B), mean classifier accuracy321

was 62.6% (p <0.001); results were similar when training pseudo-trials were computed across-322

participant, with an overall classification accuracy of 63.1% (p <0.001) (Figure 2C). In both cases,323

the structure of the confusions as shown in the confusion matrices and dendrograms corresponded to324

that obtained when data from all participants were distributed among the training and testing folds325

(Figure 2A). Finally, a comparison of holdout participant accuracies between the two pseudo-trial326

averaging procedures (Figure 2D) indicated that accuracies from across-participant averaging were327

highly correlated with those from within-participant averaging (rho =0.91, p <0.001). Individual328

participant accuracies were statistically significant (p <0.05, FDR corrected) for all participants329

except P10.330

3.2 Frequency-Domain Classification331

While cortical EEG classification studies typically operate in the time domain of the response,332

for the present study we also explored whether FFRs could be classified in the frequency domain.333

For our first frequency-domain analysis, we input real and imaginary Fourier coe�cients between334

0–1,000 Hz to the classifier. As expected, the resulting classification accuracy was similar to that335

obtained with the time-domain response (74.6%, p <0.001). As can be seen in the confusion matrix336

and dendrogram in Panel A of Figure 3, the structure of similarities was also similar to that of the337

time-domain classification, with strongest similarity between ba/da, followed by di/piano.338

We next decomposed the frequency-domain representation of the responses into Fourier mag-339

nitudes and phases for frequencies up to 1,000 Hz, and classified each of these representations340

separately. Classification of magnitudes produced an overall accuracy of 58.2% (p <0.001), while341

classification of phase values was less successful, with an overall accuracy of 41.3% (p <0.001). As is342

shown in the confusion matrix and dendrogram in Panels B and C of Figure 3, confusions between343

ba and da were exacerbated, with these two categories now displaying a negative distance (result-344

ing from a greater number of misclassifications than correct classifications between the categories),345

while di/piano formed the second-closest category cluster and tuba classified most successfully in346

both cases. We note that the structure of the phase-classification dendrogram matches those of347
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A B C

Figure 3: Frequency-domain classification results. Classification of 500-sweep pseudo-trials, com-
puted within-participant, was performed using 10-fold cross validation and visualized as confusion matrices
and dendrograms. (A) Classification of real and imaginary FFT coe�cients up to 1,000 Hz. Mean accuracy
was 74.6% (p <0.001). (B) Classification of FFT magnitudes up to 1,000 Hz. Mean accuracy was 58.2%
(p <0.001). (C) Classification of FFT phase angles up to 1,000 Hz. Mean accuracy was 41.3% (p <0.001).
For all feature representations, ba and da responses were confused most by the classifier.

the time-domain and complex frequency-domain dendrograms, while classification of magnitudes348

produced a slightly di↵erent similarity structure.349

3.3 Temporal Searchlight350

Our final classifications were conducted on 20-msec temporal subsets of the response, with 10-msec351

overlap between time windows. This approach would highlight whether a particular range of time352

in the response—corresponding to the formant transition or to the sustained portion, for example—353

was especially essential to the success of classifications conducted across all time. Each temporal354

classification was performed in the time domain, on real and imaginary Fourier coe�cients, and on355

Fourier magnitude and phase separately. Temporally resolved per-class and overall accuracies for356

time-domain classifications are shown in Figure 4A. Here, we observed a gradual decline in overall357

classification accuracy over the time course of the response. We also found that the stimuli varied358

in their decodability over time. For instance, ba and da were best decoded in the early portion of359

the response and decline thereafter, while tuba responses classified worst in the early response, but360
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from the fourth time window (35–55 msec after stimulus onset) were the best-classifying responses361

among the stimulus categories.362
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Figure 4: Temporal searchlight classification. Classifications were performed on temporal subsets of
the time-domain response (500-sweep pseudo-trials, calculated within-participant), using 20-msec windows
advancing in 10 msec increments. (A) Classifier accuracies of single categories over time with mean accu-
racies overlaid. (B) Mean accuracies, confusion matrices, and dendrograms for each temporal searchlight
classification.

The accompanying confusion matrices and dendrograms provide insight into the stimulus struc-363
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ture over the time course of the neural response. Responses to ba and da, which have formed the364

closest category cluster in all analyses thus far, similarly clustered together here, with the notable365

exception of the first time window (5–25 msec after stimulus onset). Our secondary cluster of366

di/piano was generally present, although these two categories separated during a later section of367

the response.368

As with classification of the full 5–145-msec window, temporal searchlight results for the real369

and imaginary coe�cients up to 1,000 Hz performed similarly to the time-domain searchlight clas-370

sifications. Temporal searchlight of Fourier magnitude and Fourier phase classifications performed371

worse than the fully characterized time-domain and frequency-domain responses. The results for372

the three frequency-domain searchlight classifications are included in Supplementary Figure S2–S4.373

3.4 Perceptual Results374

Each FFR recording was accompanied by a separate perceptual identification test. Given that intact375

stimuli were used in the experiment and all participants had normal hearing, we expected perceptual376

accuracy to be near 100%. Indeed, perceptual performance was high, with mean accuracy of 90.6%377

(p <0.001). As overall perceptual accuracies were high for each stimulus (84.9%–98.1%, Figure 5),378

we observed greater distance among all categories.379

Perceptual accuracy of all but one participant exceeded 75% (Supplementary Figure S5). We did380

not observe a significant correlation between perceptual performance and leave-one-participant-out381

FFR classification performance when pseudo-trials were computed within-participant (rho =0.04,382

p =0.66).383

4 Discussion384

In this study we have demonstrated that FFRs elicited by both speech and music stimuli can be385

successfully classified, and that the pattern of classification approximates that observed with a386

perceptual-identification task. Here, overall accuracy on the perceptual-identification task was387

90.6%, while the overall classifier accuracy was 72.3%. Our classifier accuracy for these CV388

phonemes and musical instruments is similar to that observed with vowels alone (⇠70–80%; (Sadeghian389
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Figure 5: Perceptual identification results. Participants completed a 6AFC perceptual identification
task separately from the FFR session. Mean confusion matrix and dendrogram across participants (N=13).
Overall accuracy was 90.6% (p <0.001).

et al., 2015), and contributes to a small but growing body of research on FFR decoding and novel390

analysis approaches.391

Most FFR research to date has focused on descriptive approaches, which include obtaining the392

neural response by averaging thousands of stimulus presentations, and then comparing the FFR393

strength to performance on another task (see N. A. Kraus et al. (2017) for a review). In contrast,394

classification allows one to determine the extent to which an individual’s FFR responses can be395

correctly assigned stimulus category labels. This analysis approach thus more closely emulates the396

process of sound identification that humans perform repeatedly across the lifespan.397

Our results suggest that overall classifier performance is heavily driven by accurate labeling of398

responses to musical instrument and di stimuli. For these stimuli, time-domain classwise accuracy399

ranged from 74% for di to 91% for tuba (Figure 2A). In contrast, responses to ba and da phonemes400

classified at 55.4% and 50.8%, respectively. While these accuracies exceed the six-class chance401

level of 16.7%, they are notably lower, and the majority of misclassifications occur between the402

two categories. One plausible explanation is that the di↵erence in classifier accuracy for these403

FFRs reflects how robustly the acoustic characteristics of the signal are represented in the neural404
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response. For example, da and di di↵er in the vowel portion of the CV phoneme, while ba and405

da di↵er largely in the formant transition from the consonant to the vowel but are identical in the406

sustained vowel region. Notably, the vowel-evoked FFR amplitude is greater and sustained over a407

longer time range than that of consonants (Skoe et al., 2015), which may contribute to a classifier408

that is more heavily weighted towards the vowel-evoked response. Future research could therefore409

study in greater detail the contribution of FFR encoding of steady-state and transient acoustic410

features to successful classification when these attributes are varied in a parametric fashion, in411

order to better understand the contributions of each.412

We used di↵erent decompositions of our response in order to determine the contributions of the413

transient and steady state acoustics. First, we applied the classifier to 20-msec moving windows414

to assess temporal dynamics of FFR decoding across time. Results from these analyses suggest415

that accuracy is highest when the entire response is analyzed, regardless of which time frame was416

analyzed. However, relative accuracies of the temporal windows provide insight into the time-417

varying features of the stimulus that may be driving the classifier. Responses to tuba, for example,418

classify much better during the sustained portion of the response relative to the onset. In contrast,419

responses to ba and da are most successfully decoded in the region of the formant transition. These420

findings support the idea that similarities among stimuli are reflected in similarities of the neural421

response. Our conclusion is that for classification to optimally identify stimuli with more transient422

acoustic characteristics such as consonants, the feature vector passed into the classifier may need423

to be modified to emphasize specific components of the neural response more heavily (e.g., give424

higher frequencies heavier weighting in an e↵ort to better capture transient changes associated with425

formant transitions).426

To further understand the classification process used here, we not only decomposed the response427

in time, but also assessed classification accuracy according to frequency-domain features. We in-428

dependently analyzed complex frequency values as well as phase and magnitude components of429

response spectra. Independent classification accuracy of Fourier magnitude and phase was 58.2%430

and 41.3%, respectively, compared to 72.3% accuracy of the global response (e.g., combined phase431

and magnitude). Our data suggest that the integration of magnitude and phase information, as432

well as the corresponding temporal characteristics, contributes to optimal classification accuracy433
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with our method.434

We have shown that classification can produce significant and interpretable results using at least435

one-fourth fewer stimulus repetitions than are required for averaging-based analyses (4,000–6,000436

averages per trial; Skoe & Kraus (2010)). As multivariate approaches such as decoding can make use437

of multiple response features at once during analysis, they exhibit increased sensitivity compared438

to univariate averaging-based approaches (Haynes & Rees, 2006). The high accuracies obtained in439

the present study suggest that the classifier is discovering patterns in the observations that may440

not be readily distinguishable to human observers. This reduction in number of trials aligns with441

the approach taken in cortical M/EEG classification studies, many of which operate on single trials442

of response (Kaneshiro et al., 2015; Sankaran et al., 2018) as opposed to up to hundreds of trials443

needed for averaged ERP analyses (Woodman, 2010). In addition to classifying FFRs with 10-fold444

cross validation—in which each participant’s response data was distributed among training and445

test folds—we also carried out cross validation with single-participant test partitions in order to446

determine whether data from a participant who was not used to train the model could be success-447

fully classified. Compared to the 10-fold case, results in this scenario showed an approximately448

10% reduction in overall accuracy, for both within- and across-participant averaging of training449

observations; these results suggest that individual di↵erences play a role in FFR classification.450

The final observation is that, while the classification accuracy was clearly above chance, it still451

remained below that observed on the perceptual identification task. Both Sadeghian et al. (2015)452

and our results show classification for vowels occurring on approximately 70-80% of trials, as opposed453

to the high perceptual accuracy observed here for our CV stimuli (91-98%). This suggests that454

further refinement of the feature input to the classifier or classifier algorithm choice (i.e., how the455

classifer weighs particular features of the input) is necessary in order to identify speech signals at a456

rate of accuracy exhibited by that of individuals with normal hearing. Resolving this issue is a crucial457

step toward future clinical applications. In contrast to the speech signals, classifier and behavioral458

accuracy were more similar for the musical instruments (84.6% versus 86.9%, respectively). We459

speculate that the increased classifier accuracy in the music condition reflects the ability of the460

FFR to encapsulate spectro-temporal features needed to distinguish between instruments. The461

relationship between perceptual and FFR classifiers may also be impacted by the relative ability462
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of listeners to correctly identify di↵erent musical instruments. Here, participants 10, 12, and 13463

had perceptual-identification scores for the musical instruments which were much lower than those464

of the other participants (individual participant confusion matrices are shown in Supplementary465

Figure S5). Given that all participants had normal hearing, a plausible interpretation of these data466

is that the individuals could discriminate among the stimuli, but had inconsistent label mappings467

for the instruments. We conjecture that these results may not reflect the true perceptual abilities468

of the participant, but rather di�culties with assigning the correct instrument label.469

We identify several opportunities for improvement in future research. First, and perhaps most470

important would be improvements to the classification algorithm itself. For example, improvements471

in feature selection or other aspects of the classifier could reduce the necessary data size for optimal472

classification, the optimal number of sweeps to be averaged in trials or pseudo-trials, or the total473

analysis time. Such improvements to the classifier could better account for individual di↵erences474

when training the model. In the present study we did not have enough data to both train and test475

on individual participants. Reducing the necessary amount of data to build a reliable model could476

enable this step and is likely to prove crucial for modeling data from listeners with hearing loss who477

use hearing aids or cochlear implants. A second opportunity for improvement would be explore the478

extent to which small di↵erences in stimuli influence the classification accuracy. Here, the stimuli479

di↵ered slightly in F0 (97–107 Hz), raising the possibility that these small di↵erences may have480

influenced the accuracy of our classifier. While we cannot rule out this possibility, we speculate481

that any e↵ect was minimal because our classifier accuracy was largely similar to that observed482

with data obtained with F0-aligned stimuli (Sadeghian et al., 2015). Nonetheless, future research483

could examine FFR classifications for stimuli whose F0 frequencies are exactly matched, as in that484

case classification would be driven entirely by di↵erences in spectral and temporal structure.485

In closing, this study provides evidence that FFR classification can be employed to discriminate486

among responses to CV phonemes and musical instruments. In the present study, we verified487

that FFR classification is successful under intact perception, and explored the potential stimulus488

features that drive FFR decoding accuracy. These data add further evidence to a growing body489

of literature that EEG decoding approaches hold considerable promise for clinical applications490

in patients with hearing loss, or investigations of the developing auditory system when objective491
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measures of behavioral abilities are desired.492
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