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Abstract 

Patient derived organoids (PDOs) closely resemble individual tumor biology and allow 

testing of small molecules ex vivo. To systematically dissect compound effects on 3D 

organoids, we developed a high-throughput imaging and quantitative analysis 

approach. We generated PDOs from colorectal cancer patients, treated them with >500 

small molecules and captured >3 million images by confocal microscopy. We 

developed the software framework SCOPE to measure compound induced re-

organization of PDOs. We found diverse, but re-occurring phenotypes that clustered 

by compound mode-of-action. Complex phenotypes were not congruent with PDO 

viability and many were specific to subsets of PDO lines or were influenced by 

recurrent mutations. We further analyzed specific phenotypes induced by compound 

classes and found GSK3 inhibitors to disassemble PDOs via focal adhesion signaling 

or that MEK inhibition led to bloating of PDOs by enhancing of stemness. Finally, by 

viability classification, we show heterogeneous susceptibilities of PDOs to clinical 

anticancer drugs. 

 

Keywords: patient derived organoids, colorectal cancer, automated imaging, drug profiling, 

functional precision medicine, resistance mechanisms, machine learning, personalized 

disease modeling 

 

Introduction 

Patient derived organoids (PDOs) are physiological 3D tumor models that can be 

derived from cancerous and normal tissues1-3. In the colon, this is based on isolation of Lgr5+ 

stem cells that form organotypic structures and are expandable in vitro4. Organoid isolation 

from human primary tumors and metastases1,5 has enabled the establishment of living PDO 

biobanks2,3,6-8. Notably, PDOs have been shown to retain the molecular and morphological 

characteristics of the tissue/tumor of origin2,3,5,9, thereby allowing functional analyses of 
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individual tumors ex vivo. So far, medium-scale drug screenings with luminescence based 

viability assay systems have been successfully performed in PDOs3,6. 

High-throughput image-based profiling is used to measure a variety of morphological 

phenotypes in cells. Combined with chemical or genetic perturbations, this is a powerful 

method to gain systematic insights into biological processes10-12. For instance, image-based 

assays have been used to screen large libraries of small molecules to identify potential drug 

candidates, to analyze a drugs mode of action, or to classify drug-gene interactions by 

complex cell-morphology phenotypes12-14. Major challenges for high-throughput imaging 

assays include the standardization of experimental pipelines as well as the handling and 

automated analysis of large imaging data sets for a quantitative understanding of biological 

processes 15. Applying high-throughput imaging to three-dimensional organoid models for the 

analysis of more complex, multicellular phenotypes will open new windows to unravel the 

mode-of-action and resistance mechanisms of drugs and to improve personalized medicine. 

However, the complex 3D structure of organoid models pose experimental and data-analysis 

challenges for image-based high-throughput screening. Therefore, novel experimental and 

bioinformatics pipelines are needed that allow standardized experimentation and analysis of 

large imaging datasets.  

In this study, we established a biobank of colorectal cancer PDOs from endoscopic 

biopsies of 19 patients by following a standardized clinical and laboratory workflow. To profile 

drug-induced sensitivities and phenotypes, we established a high-throughput pipeline for 

image-based compound profiling and automated image analysis of PDOs. We treated PDOs 

with a large experimental and a clinical compound library and captured their phenotypic 

profiles. We established SCOPE as a software framework for automated processing and 

analysis of large-scale 3D imaging data and generated profiles of morphological PDO drug 

responses on a single organoid level. Our experiments revealed heterogeneous PDO 

morphologies and a rich spectrum of reoccurring compound-induced phenotypes. 

Multicellular phenotypes clustered by compound mode-of-action and showed specificity to 
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subsets of PDO lines. Additionally, we analyzed viability effects of compounds on PDOs and 

identified individual susceptibilities.   

 

Results 

Establishment of patient derived organoids for high-throughput image-based profiling 

PDOs can be established from different epithelial tissues or tumors and have been shown to 

represent their tissue and tumor of origin with respect to morphologic and molecular features 

1-3,5,7,16. To generate personalized cancer models for phenotypic compound screening, we 

built a standardized clinical and laboratory workflow to generate PDOs from patients with 

colorectal cancer using endoscopic biopsy samples (Figure 1a).  

We prospectively developed PDOs from 19 patients with colorectal cancer in different clinical 

stages, which were regularly followed-up during their course of disease (Figure 1b, 

Supplemental Table S1). We performed molecular characterizations of PDO lines including 

expression profiling and amplicon sequencing of frequently altered genes in colorectal 

cancer (Figure 1c-d). This revealed mutational profiles that are characteristic for colorectal 

cancer with a high frequency of APC (47%), KRAS (47%) and TP53 (36%) mutations, in 

accordance with previous data17 (Figure 1d, Supplemental Table S2). On a transcriptional 

level, PDOs mainly represented the canonical consensus molecular subtype (CMS 2) of 

colorectal cancer18. In line with previous observations3,6, we found that PDOs showed a 

typical, yet heterogeneous morphology resembling colorectal cancer in H&E stained tissue 

sections (Figure 1e).  
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Figure	1:	Establishment	of	patient	derived	organoids	for	high-throughput	image-based	compound	
profiling.	a,	A	standardized	workflow	for	PDO	establishment	and	high-throughput	image-based	drug	
profiling.	 Biopsies	were	 taken	 via	 endoscopy	 from	 patients	with	 colorectal	 cancer	 and	 PDOs	were	
isolated	according	to	a	standardized	protocol.	For	high-throughput	compound	profiling,	PDOs	were	
dissociated	 and	evenly	 seeded	 in	 384-well	 plates	 before	perturbation	with	 large	 experimental	 and	
clinical	compound	libraries.	Morphological	PDO	response	and	overall	viability	were	studied	by	high-
throughput	 fluorescence	microscopy	and	automated	 image	analysis.	b-e,	Characteristics	of	19	PDO	
lines	 undergoing	 molecular	 characterization.	 b,	 Tumor	 location	 (right/left/rectum)	 and	 AJCC/UICC	
stage	of	colorectal	cancers	that	PDOs	were	derived	from.	c,	Consensus	molecular	subtypes	of	PDOs	
determined	by	RNA	expression	analysis.	Most	PDOs	represented	the	canonical	CMS2	subtype,	which	
is	 most	 frequently	 observed	 (Guinney	 et	 al.,	 2015).	 d,	 Mutation	 status	 in	 PDOs	 as	 analyzed	 by	
amplicon	sequencing.	APC	and	TP53	mutations	were	most	frequently	observed,	 in	accordance	with	
previous	 data	 from	 colorectal	 cancer	 (Cancer	 Genome	 Atlas	 Network,	 2012).	 e,	 Examples	 of	 H&E	
stained	 slides	 of	 selected	 representative	 PDO	 cultures;	 scale	 bar:	 25µm.	 Compare	 Figure	 S1	 for	
details	on	case	numbers	and	performed	screening	assays.	
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Automated morphological analysis of patient derived organoids 

To systematically measure morphological phenotypes of PDOs and their alterations upon 

treatment with a large number of compounds, we established a framework for image-based 

drug profiling experiments (Figure 2a). Organoids were digested with trypsin, mechanically 

dissociated and filtered through a cell strainer to seed small fragments evenly onto 384-well 

imaging plates with basement membrane extract. We standardized the amount and size of 

seeded organoid fragments in order to reliably measure organoid phenotypes after 

perturbation. Also, the z-level of PDO fragments within the BME layer was controlled in order 

to allow imaging of PDOs within confocal layers. PDO fragments were incubated for three 

days to allow organoid formation before drug treatment. Subsequently, PDOs were treated 

with two compound libraries with a total of 527 small molecule inhibitors. Among them were 

63 clinically used compounds that were added in 5 different concentrations (Clinical cancer 

library, N = 15 PDO lines) and a large experimental library (Ki-Stem library, N = 13 PDO 

lines) of 464 compounds (842 treatments in total; Figure S1 and Supplemental tables S3 and 

S4). Compounds were selected to target diverse developmental and signaling pathways, as 

well as clinically relevant targets for compound profiling. After four days of compound 

treatment, organoids were fixed and stained for actin (Phalloidin/TRITC), DNA (DAPI), and 

cell permeability (DeadGreen/FITC). Subsequently, plates were imaged at multiple z-

positions by automated confocal microscopy. The procedure was repeated to generate two 

independent biological replicates of every PDO line.  

To rapidly analyze 3D imaging data of organoids, we developed a software 

framework called SCOPE (Selective 3D imaging for Contrast based Organoid Projection and 

feature Extraction). First, we projected the 3D image data onto a plane by applying a 

maximum contrast projection. This is an algorithm that uses the contrast surrounding a given 

pixel to determine the focal plane, allowing a precise structure detection and 2D 

representation of 3D objects. Next, individual organoids were segmented using a deep 

convolutional neural network. We developed a two-step procedure to establish segmentation: 

First, organoids were segmented based on fluorescence intensity of all channels. Then we 
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used the intensity segmentation data to train a deep convolutional neural network for object 

identification. This improved the segmentation results by far, as observed by visual 

inspection (Figure 2b). Subsequently, morphological profiles were calculated for each 

individual organoid, yielding 486 phenotypic features. These features include shape features, 

such as area and eccentricity, features describing the intensity distributions of each color 

channel, and texture features. Median and median absolute deviation of all features grouped 

on a well-wise level (973 features in total, including number of organoids per well as 

additional feature) showed a robust correlation between biological replicates (Figure 2d).  

 

Figure	 2:	 Automated	 morphological	 analysis	 of	 patient	 derived	 organoids.	 a,	 An	 automated	
workflow	for	high-throughput	confocal	image	processing	and	analysis	(SCOPE	framework).	Four	fields	
per	well	with	z-stacks	of	16	slices	 (z-steps	of	5µm	and	a	depth	of	 field	of	3.9µm)	were	acquired	 in	
three	channels	 (DNA/DAPI,	actin/TRITC,	permeability/FITC)	at	10x	magnification.	The	multi-channel	
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3D	 image	 stack	 was	 projected	 onto	 a	 plane	 by	 retaining	 the	 pixel	 information	with	 the	 strongest	
contrast	 to	 its	 neighboring	 pixels.	 A	 deep	 convolutional	 neural	 network	 subsequently	 recognized	
complete	 foreground	organoids	 in	 the	projected	2D	 image.	 Segmented	objects	 that	passed	quality	
controls	were	analyzed	and	descriptive	features	extracted	to	quantify	phenotypes.	b,	Segmentation	
of	organoids	 in	projected	 images.	 First,	organoids	were	 segmented	based	on	 fluorescence	 channel	
intensity	 (middle).	 The	 intensity	 segmentation	was	 then	used	 to	 train	 a	 deep	 convolutional	 neural	
network	 (DCNN)	 for	 object	 identification	 (right)	 improving	 the	 segmentation	 results	 by	 far;	
Representative	 segmentation	 results	 of	 2	 selected	 PDO	 lines	 are	 shown;	 scale-bar:	 400µm.	 	 c,	
Replicate	correlation	of	descriptive	organoid	features.	Organoid-level	features	were	aggregated	on	a	
well-wise	basis.	 Individual	features	from	two	profiling	replicates	were	correlated	for	every	PDO	line	
(973	 features,	 including	 number	 of	 organoids	 per	 well	 as	 additional	 feature).	 Pearson	 correlation	
coefficients	 of	 all	 features	 are	 plotted	 in	 descending	 order	 for	 every	 PDO	 line	 individually.	 d,	
Hierarchical	clustering	of	unperturbed	organoid	profiles	shows	distinct	organoid-phenotype	subsets.	
Principal	 components	 were	 calculated	 on	 well-based	 organoid	 phenotypes	 and	 subsequently	
aggregated	by	 line.	Proportion	of	variance	of	principal	 components	 is	 indicated	 (right).	Color	code:	
reds	=	disorganized,	green	=	intermediate,	blues	=	organized.		e,	Examples	of	unperturbed	organoid	
from	each	subset.	The	morphologic	classes	of	untreated	organoids	from	d	can	be	visually	grouped	by	
different	degrees	of	 intra-organoid	organization,	 ranging	 from	disorganized	 (compact)	 to	organized	
(cystic)	morphologies.	Shown	are	representative	images	and	descriptive	features,	arranged	and	color	
coded	 as	 classified	 in	 d.	 Descriptive	 feature	 plots	 show	 the	 median	 phenotype	 of	 unperturbed	
organoids	 derived	 from	 the	 same	 patient.	 Shown	 are	 six	 key	 features	 (area,	 actin	 intensity,	 DNA	
intensity,	 permeability,	 and	 two	permeability	 related	 texture	 features:	 FITC	Haralic	 angular	 second	
moment	 (ASM)	 and	 FITC	 intensity	 1-percentile).	 Features	 are	 presented	 as	 z-score	 relative	 to	 all	
profiled	organoid	lines;	scale-bar:	200µm.	f,	Volcano	plot	of	differentially	expressed	genes	between	
PDOs	 from	 the	 “organized”	 category	 (compare	 Figure	 2d-e,	 blue	 groups)	 and	 other	 PDO	 lines	
(“disorganized”	and	“intermediate”	groups).	Blue	dots	 indicate	LGR5+	signature	genes.	Yellow	dots	
indicate	 genes	 included	 in	 the	 proliferation	 signature	 (Merlos-Suárez	 et	 al.,	 2011).	 Statistical	
significance	was	assessed	using	a	moderated	t-test.	The	horizontal	 lines	 indicate	5%	false	discovery	
rate.	
 

Morphological diversity of organoids in unperturbed state 

PDOs showed significant morphological diversity between lines derived from different 

donors. Therefore we first aimed to systematically assess the diversity of phenotypes 

between different PDO lines in their untreated state. We computed an automated 

morphological classification of PDO lines using the SCOPE pipeline. To this end, we 

aggregated features across all PDO-lines and reduced their dimensionality by principal 

component analysis (PCA, Figure 2d, Supplemental Figure S2). After hierarchical clustering 

of morphological profiles by organoid line, we identified six distinguishable phenotypic 

subsets of colorectal cancer organoids (Figure 2d). By visual inspection, we observed that 

these phenotypic subsets were characterized by a different degree of of intra-organoid 

organization ranging from disorganized (irregular shaped, compact or solid looking 

organoids) to more “organized” (round, regular shaped organoids with a smooth wall and a 
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defined large lumen / cystic morphology). “Intermediate” PDOs had features of both 

categories. (Figure 2e). Based on this categorization, we investigated molecular differences 

between the identified subgroups. Morphological organoid subtypes did not match an 

unsupervised clustering of expression profiles and, we did not observe associations with 

cancer mutations analyzed or clinical variables. Interestingly, however, gene set enrichment 

analysis (GSEA) and testing for stem cell signatures19 revealed upregulation of Lgr5+ stem 

cell signature-related genes within the group of organized PDOs (blue) when compared to 

intermediate and disorganized PDOs (FDR=8.8E-3, NES=1.67). In contrast, the disorganized 

and intermediate PDO groups were enriched in signatures related to cell proliferation 

(FDR=6.7E-4, NES=1.93, Supplemental Figure S1b). We conclude that heterogeneous PDO 

phenotypes can be grouped into a limited set of morphological classes that are associated 

with defined molecular differences.   

Machine learning differentiates between lethal and non-lethal PDO phenotypes 

We demonstrated that high-throughput image-based profiling of PDOs can be used to 

identify morphological subclasses. To analyze compound induced morphological 

phenotypes, we first aimed to identify viability effects and the corresponding morphological 

profiles. We trained random forest live-dead classifiers (LDC) using organoid profiles from 

negative (DMSO) and positive controls (high-dose bortezomib and sn-38), based on single-

organoid features generated with the SCOPE framework for every PDO line (Figure 3a). We 

analyzed receiver-operating characteristics (ROC) for all classifiers, revealing exceptional 

classification performance when applied to independent validation sets of positive and 

negative controls from the same PDO lines they were initially trained on (area under receiver 

operating characteristic curve (AUROC): 0.97 – 0.99, Figure 3b). Applying the classifiers to 

different PDO lines (which they were not initially trained on) also led to high classification 

performance in most PDO-line-classifier pairs (Figure 3c).  
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Figure	3:	Machine	learning	differentiates	between	lethal	and	non-lethal	PDO	phenotypes.	a,	Live-
dead	 PDO	 classifiers	 (LDC)	were	 trained	on	 the	 feature	 sets	 of	 negative-	 (DMSO,	 bottom	 left)	 and	
positive	controls	(high-dose	bortezomib	and	SN-38,	bottom	right,	Cyan	=	DAPI,	magenta	=	Phalloidin,	
yellow	=	cell	permeability;	average	images	were	selected	and	embedded	in	black	background;	scale	
bar:	 50µm.)	 for	 every	 PDO	 line	 based	 on	 a	 random-forest	 classifier.	 b,	 Receiver	 operator	
characteristic	curves	(ROCs)	were	analyzed	on	validation	sets	of	negative-	and	positive	controls	of	the	
same	 lines	and	other	 lines.	A	representative	example	 is	shown	(LDC	trained	on	a	set	of	D022T	and	
used	on	a	validation	set	of	the	same	line	(black)	or	a	different	 line	(D046T,	grey).	The	AUROC	(area	
under	 the	 receiver	 operating	 characteristic	 curve)	 is	 depicted	 below.	 c,	 Systematic	 analysis	 of	 the	
transfer-performance	 of	 all	 LDCs	 when	 applied	 across	 data	 from	 all	 PDO	 lines.	 Classification	
performance	is	measured	as	the	AUROC	(area	under	the	receiver	operating	characteristic	curve).		
	
 

Further analyses revealed robust quality of our imaging assay and LDC with high 

reproducibility of LDC between biological replicates (Pearson correlation = 0.85 for the whole 

dataset and 0.67 - 0.93 for individual PDO lines, Supplemantary Figure S3a-b) and a high 

fraction (median = 0.98) of PDOs correctly classified as “viable” in DMSO controls 

(Supplemental Figure S3c). Notably, by testing if a classifier relying on less information (i.e. 

fewer channels and fewer dyes) would result in similar accuracy, we found that classifiers 

relying on a combination of actin/TRITC and DNA/DAPI staining alone (mean accuracy 

0.958) led to accuracies almost as high as the ones including cell permeability/FITC (mean 

accuracy 0.968, Supplemental Figure S3d). We also compared the viability prediction of our 

high-throughput imaging and LDC pipeline with a luminescence based metabolic (ATP-

based) viability assay. Similar assays have previously been published3,6. We used our clinical 

cancer library for these analyses and performed viability profiling with CellTiter-Glo (CTG) 

and high-throughput-imaging with LDC in parallel (Supplemental Figure S5a). With the CTG-

based read-out, we also observed high reproducibility among biological replicates and no 

relevant batch effects (Supplemental Figure S4a-d). The correlation between results 
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obtained with both viability read-outs was generally high (Pearson correlation = 0.87, 

Supplemental Figure S5b), proving validity of our workflow. However, we also identified 

several examples with divergent results, such as the anti-folate drug methotrexate 

(Supplemental Figure S5c-g).  

In conclusion, we established a robust classifier that can differentiate between viable 

and dead organoids in high-throughput imaging data.  

Individual drug susceptibilities of PDOs and associations with molecular 

characteristics 

We next used our live-dead classifier on the dataset of PDO lines profiled with the 

large experimental compound library (Ki-Stem library). We found that several compounds 

induced heterogeneous viability responses, killing subsets of PDO lines (e.g. EGFR-

inhibitors, MEK-inhibitors, PLK-inhibitors), while others affected all organoid lines (e.g. CDK-

inhibitors, Figure 4a). To test associations of PDO viability with molecular characteristics, we 

looked at some treatments in more detail. For instance, PDO lines that showed decreased 

viability upon EGFR inhibition had wild-type RAS alleles, while resistant organoid lines 

carried RAS mutations (including KRAS or NRAS, Figure 4b). Interestingly, only a subset of 

RAS mutant PDO lines were strong responders to MEK inhibition. We used our drug profiling 

dataset with 63 clinical anticancer drugs in five concentrations to calculate differential drug 

effects in PDOs by comparing areas under the dose response curves (AUCs) of each 

compound (Figure 4c, Supplemental Figure S6a-b). More than half of the clinical compounds 

led to strong and/or heterogeneous responses among PDO lines. While some lines were 

generally resistant to the majority of compounds (e.g. D007T), others were susceptible to 

several cytotoxic drugs like docetaxel or vinblastin and targeted therapies like erlotinib, 

afatinib and others (e.g. D021T, D020T, D027T) The majority of PDO lines responded at 

least to one of the tested drugs (Figure 4c, Supplemental Figure S6a, b). Next, we analyzed 

associations of drug response or resistance towards targeted therapies with molecular 

characteristics of PDOs (Figure 4d-f, Supplemental Figure S6d-f). For example, response to 

nutlin3a treatment, an MDM2 inhibitor, (Figure 4d, Supplemental Figure S6d) was 
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significantly associated with TP53 mutational status (Figure 4d, Supplemental Figure S6e) 

and relative enrichment of gene expression associated with p53 signaling (Reactome R-

HSA-5633008; q = 0.004; Figure 7e, Supplemental Figure S6f)20.  

 

	
	
Figure	4:	Individual	drug	susceptibilities	of	PDOs	and	associations	with	molecular	characteristics.	a,	
An	experimental	 library	compromising	464	compounds	was	profiled	with	high-throughput	 imaging,	
viability	 of	 PDOs	 (N=13)	was	 clustered	 after	 live-dead	 classification	 (LDC).	b,	 Clusters	 enriched	 for	
MEK	 inhibitors	 and	 EGFR	 inhibitors	 are	 shown	 in	 detail.	 RAS	mutations	 include	 hot	 spots	 in	 both,	
KRAS	and	NRAS.	Data	for	D013T	treated	with	Pimasertib	is	missing	due	to	complication	during	image	
acquisition.	(c)	Clustering	of	differential	compound	responses.	Areas	under	the	dose-response	curve	
(AUCs)	 for	 14	 PDO	 lines	 and	 a	 library	 of	 63	 anticancer	 drugs	 screened	 in	 5	 concentrations	 were	
measured	by	image	based	profiling	and	LDC.	Estimated	AUCs	for	a	particular	treatment	and	line	were	
centered	to	the	median	AUC	across	all	 lines.	Treatments	with	differential	viability	are	plotted.	 (d-f)	
Nutlin3a	response	is	associated	with	TP53	mutation	status.	Viability	was	analyzed	by	high-throughput	
imaging	with	LDC.	Additional	PDO	lines	were	profiled	in	parallel	with	the	CTG	viability	assay	shown	in	
Supplemental	 Figure	 S6d-f.	 d,	 Comparison	 of	 AUC	 values	 from	 high-throughput	 imaging	 and	 LDC	
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between	 14	 PDO	 lines	 with	 mutant	 (n	 =	 6)	 and	 wild-type	 (n	 =	 8)	 TP53.	 Each	 dot	 represents	 one	
organoid	line.	Horizontal	red	bars	indicate	the	group	means.	Statistical	significance	was	tested	using	
a	permutation	test	with	10,000	Monte	Carlo	resamples	and	the	false	discovery	was	controlled	using	
the	 Benjamini-Hochberg	 method.	 e,	 Volcano	 plot	 of	 differentially	 expressed	 genes	 between	 14	
organoid	 lines	 that	 are	 more	 or	 less	 sensitive	 to	 nutlin3a	 treatment	 according	 to	 image	 based	
profiling	 and	 LDC.	 Blue	 dots	 indicate	 genes	 that	 were	 more	 highly	 expressed	 in	 organoid	 lines	
sensitive	to	the	drug	treatment.	Yellow	dots	 indicate	genes	that	were	 found	to	be	expressed	more	
highly	 in	organoid	lines	with	increased	resistance	to	the	drug	treatment.	Statistical	significance	was	
assessed	 using	 a	 moderated	 t-test.	 The	 horizontal	 lines	 indicate	 5%	 false	 discovery	 rate	 (FDR).	 f,	
Dose-response	 curve	 of	 nutlin3a	 determined	 by	 determined	 by	 high-throughput	 imaging	 and	 LDC.	
TP53	mutated	 cases	 are	highlighted	 in	black.	g-i,	 Examples	of	 dose	 response	 curves	 from	 targeted	
and	conventional	anticancer	agents	not	currently	used	in	colorectal	cancer	care	showing	differential	
responses	between	PDO	lines	(responder	=	black,	non-responder	=	grey).	Viability	was	determined	by	
high-throughput	imaging	and	LDC.		
	

Several other targeted therapies and conventional chemotherapeutics not currently 

used for colorectal cancer therapy showed differential response profiles among PDO lines 

that could not be explained by the assessed genomic alterations or expression subtypes 

(Figure 4f-h, Supplemental Figure S6g-i). These findings suggest that functional drug testing 

with PDOs might help to develop novel therapeutic strategies and identify predictive markers 

ex vivo. 

High-throughput imaging identifies compounds by mode-of-action 

Beyond viability classification, we aimed to characterize compound response of PDOs in in 

more comprehensive and unbiased way. Diverse morphological responses to compound 

treatments have previously been reported for 2D monolayer cell culture models10,12,13. 

Therefore, we next aimed to investigate if complex phenotypic responses to small molecule 

treatments can be measured in three-dimensional, multicellular PDOs by automated image 

analysis.  

We applied a support vector machine (SVM) approach on single organoid level data 

to describe compound induced morphological changes. Organoid profiles were measured 

after treatment with the Ki-Stem library of 464 compounds targeting developmental and 

signaling pathways (Figure 5a). We trained SVM classifiers to separate perturbed from 

unperturbed organoid profiles for every PDO-line and compound using the PCA-transformed 

single organoid features. Next, we selected active compound treatments in which robust 
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morphological changes were observed in at least one line. We defined a compound 

treatment to be “active”, when treated and untreated organoids could be correctly identified 

by their corresponding SVM leading to an area under the receiver operating characteristic 

curve (AUROC) of 0.85 or greater (Figure 5b). Using approach, we identified between 92-

192 active compounds across tested PDO lines (Supplemental Figure S7a). 

After filtering for active treatments across all PDO lines, we grouped induced 

phenotypes by determining the angle between unit vectors of their respective SVM-

hyperplanes, so that treatments leading to similar drug induced phenotypes (i.e. with a small 

angle between SVM vectors) were grouped together. We found that PDO phenotypes 

induced by compound treatments with shared mechanisms of action had a high degree of 

similarity. Specifically, aggregating compound induced phenotypic profiles across all PDO 

lines and applying contingency testing21 showed a strong enrichment of specific mechanisms 

of action of many different compound classes (Figure 5c, Supplemental Figure S7b-i). For 

instance, one cluster contained a strong enrichment of MEK-inhibitors. Alongside MEK 

inhibitors, the cluster included a RAF inhibitor (RAF265) and an ERK inhibitor (ulixertinib), 

both targeting downstream components of MAPK signaling. Accordingly, the cluster enriched 

for mTOR inhibitors included one non-mTOR inhibitor (VS5584) targeting PI3K, which also 

belongs to the AKT/PI3K/mTOR signaling pathway. Notably, the greater meta-cluster 

containing the AKTi cluster (Supplemental Figure S7) included almost exclusively targets 

related to AKT/mTOR/PI3K signaling. The glycogen synthase kinase 3 (GSK3) inhibitors 

clustered together with the protein kinase c (PKC) inhibitor enzastaurin. This is in accordance 

with previous data, showing that enzastaurin targets the alpha and beta subunits of GSK 

besides its primary target PKC22. Interestingly, the EGFR inhibitors co-localized with the 

VEGF inhibitor ZM 306416, which has previously been revealed as potent EGFR inhibitor23 

and two BCR-ABL / SRC tyrosine kinase inhibitors (imatinib and saracatinib). The effect of 

both BCR-ABL TKIs on EGFR is not clear, however, data suggests direct anti-EGFR effects 

of saracatinib24 and indirect effects of imatinib25. Finally, the cluster enriched for cyclin 

dependent kinase (CDK) inhibitors also featured two focal adhesion kinase (FAK) inhibitors 
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and one p12 activated kinase (PAK) inhibitor. All three of these targets are closely related to 

the cell cycle and to apoptosis26,27. Accordingly, we hypothesized that the identified 

phenotypic cluster would be related to cell cycle arrest or apoptosis.  
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Figure	 5:	 High-throughput	 organoid	 profiling	 identifies	 compounds	 by	 mode-of-action.	 a,	
Measuring	 drug-induced	 phenotypes	 using	 single-organoid	 data	 with	 a	 support	 vector	 machine	
(SVM)	 based	 approach.	 To	 define	 the	 phenotypic	 change	 that	 organoids	 undergo	 after	 treatment	
with	 drug	 A,	 an	 SVM	 classifier	 is	 trained	 to	 distinguish	 between	 individual	 untreated	 and	 treated	
organoids	in	a	multidimensional	PCA-transformed	feature	space.	A	normal	vector	(red)	orthogonal	to	
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the	 SVM-hyperplane	 is	 used	 to	 describe	 the	 induced	 phenotype.	 Phenotype-vectors	 from	multiple	
compound	treatments	can	be	compared	by	measuring	the	enclosed	angle.	Smaller	angles	between	
vectors	(Drug	C	and	D)	represent	more	similar	drug	induced	phenotypes	than	larger	angles	(Drug	A	
and	B).	b,	Histogram	of	compound	treatment	activities.	A	compound	treatment	of	a	given	PDO	line	is	
tested	 for	 its	 activity	 to	 induce	 a	 diverging	 phenotype	 (compared	 to	 negative	 control	 DMSO)	 by	
assessing	 the	 classification	 performance	 of	 its	 corresponding	 SVM.	 Treatments	 in	 which	 the	 SVM	
reaches	a	classification	performance	of	>0.85	area	under	the	receiver	operating	characteristic	curve	
(AUROC)	 are	 considered	 active.	 c,	 A	 map	 of	 related	 compound	 induced	 phenotypes	 across	 all	
organoid	lines	(N=13).	Shown	are	multiple	clusters	with	small	angles	between	the	aggregated	normal	
vectors	 (i.e.	 similar	 compound	 induced	 phenotypes).	 Selected	 clusters	 enriched	 with	 the	 same	
perturbed	molecular	target	are	color-labeled.	Clusters	enriched	with	MEK	inhibitors,	CDK	inhibitors,	
mTOR	inhibitors,	EGFR	inhibitors	and	GSK3	inhibitors	are	zoomed	out	to	show	compounds	exhibiting	
similar	compound	related	phenotypes	induced	by	effects	on-	or	off	the	primary	target.	Fisher’s	exact	
test	was	used	to	identify	enrichments	of	compounds	with	the	same	mode	of	action.	d,	Significantly	
enriched	 clusters	 of	 compound	 induced	 phenotypes	 contain	 lethal,	 non-lethal	 and	 sub-lethal	
phenotypes.	 LDC	 was	 applied	 to	 profiling	 data	 from	 13	 PDO	 lines	 treated	 with	 464	 experimental	
compounds.	Compounds	(on	the	x-axis)	were	arranged	in	the	same	order	as	in	c,	to	analyze	viability	
of	the	compound	induced	multiparametric	clusters	identified	with	the	SVM	approach.		
	

To analyze the relationship of multiparametric compound induced morphological 

profiles with PDO viability, we applied our LDC to the dataset. We arranged the viability 

measurement in the same order as the clustering of multiparametric PDO phenotypes 

generated with the SVM approach (Figure 5d) to visualize associations between enriched 

clusters and viability. As expected, this revealed the CDKi cluster to be related to cell death. 

Alongside, a few other drug induced phenotypic clusters, including those enriched for ATM 

inhibition, JAK inhibition or PLK inhibition represented dead PDOs. Consequently, these 

compounds aggregated in a meta-cluster defined by reduced viability in all or most PDO 

lines. Importantly, however, many other compound induced phenotypes, including those 

caused by PKC inhibitors, PI3K inhibitors, AKT inhibitors, mTOR inhibitors, WNT inhibitors, 

SRC inhibitors, VEGFR inhibitors, TGF-beta inhibitors, SRC inhibitors or GSK3 inhibitors 

were non-lethal or at most sub-lethal. Interestingly, some phenotypes (including those 

induced by MEK-inhibition or EGFR inhibition) showed viability effects only in a subset of 

PDO lines.  

These analyses demonstrate that phenotypes induced by compounds in multicellular 

PDOs can be detected by unsupervised, automated image analysis. We found that 

compound-induced PDO phenotypes clustered by compound mode-of-action. This allows 

identification of novel modes-of-action or off-target effects of known compounds and can be 
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used to classify compounds with unknown targets. Furthermore, we demonstrated that apart 

from viability defects, non- or sub-lethal morphological phenotypes are often responsible for 

compound clustering. Therefore, high-throughput imaging provides an in-depth phenotypic 

view complementary to viability drug profiling. 

Compound-induced organoid phenotypes exhibit biological mechanisms 

Next we aimed to characterize the compound induced phenotypes in more detail. 

Compounds with similar mode-of-action clustered together across different PDO lines, 

suggesting links to molecular targets and pathways (Figure 6a-c). The strongly enriched 

organoid phenotype caused by inhibition of MEK signaling for instance led to a cystic 

reorganization, i.e. development of a detectable lumen or enlargement of an existing lumen, 

towards round and thin-walled organoids from diverse basal phenotypic subsets (Figure 6a). 

On the feature level, this phenotype was represented by a greater degree of eccentricity, 

while actin and DNA intensity were reduced. The RAF (upstream of MEK) inhibitor, as well 

as the ERK inhibitor (downstream of MEK in the MAPK pathway) found in the MEKi-enriched 

cluster (compare Figure 5c) exhibited the same cystic phenotype (Supplemental Figure S8a). 

EGFR inhibition caused a less striking morphology (Supplemental Figure S8b), thereby 

suggesting the cystic reorganization phenotype to be related to MAPK signaling downstream 

of RAF kinase level. The cystoid phenotype occurred in PDOs not dying of MEK inhibition 

(e.g. D007T, D018T, compare Figure 5d) and PDOs with mild viability defects due to the 

treatment (D019T, D027T). Interestingly, we observed the same phenotype also in PDO lines 

with strong viability response (D004T, D046T, next to cloudy dead organoid in Figure 6a), 

suggesting that this phenotype is independent of PDO viability.  

We have shown above that GSK inhibitors did not cause strong decreases in viability 

of PDOs in our phenotypic profiling assay. Nevertheless the phenotype caused by GSK-3 

inhibition was striking, inducing a disintegration of PDO architecture towards irregular shaped 

organoids with small, dismembered structures, evocative of grape-like shapes (Figure 6b) In 

contrast, inhibition of CDKs prove to be related to cell death as shown by LDC. PDOs 
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exhibited markedly reduced organoid size and disappearance of a lumen, sometimes with 

speckled satellite cells (Figure 6c). Intensity of actin and DNA staining were markedly 

reduced in this phenotype, while eccentricity and permeability staining were increased. 

Remarkably, the same death-phenotype was observable among PDO lines of considerably 

different baseline morphology. The phenotypes induced by inhibition of PI3K/AKT/mTOR 

signaling and others were less striking. mTORi for instance led to reduced organoid size and 

a more compact PDO organization (reduced eccentricity, Supplemental Figure S8c).   
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Figure	 6:	 Compound-induced	 organoid	 phenotypes	 exhibit	 biological	 mechanisms.	 a-c,	
Representative	 compound	 induced	 phenotypes	 across	 different	 PDO	 lines.	 PDOs	 treated	 with	 the	
negative	control	(DMSO	0.1%)	are	shown	at	the	top.	Average	images	were	selected	for	each	organoid	
phenotype,	 automatically	 cropped	 and	 embedded	 in	 black	 background	 to	 visualize	 phenotype	
differences	 on	 organoid	 level.	 Cyan	 =	DNA,	magenta	 =	 actin,	 yellow	 =	 cell	 permeability;	 scale	 bar:	
50µm.	Bottom:	Quantification	of	phenotype	changes	for	each	 line	and	compound-cluster.	Shown	is	
the	 z-scaled	 deviation	 from	 the	 negative	 control	 of	 representative	 features	 for	 both	 biological	
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replicates.	a,	Representative	examples	 for	 the	MEK1/2	 inhibition	 induced	phenotype	 illustrated	by	
PDO	lines	D018T,	D027T	and	D046T	treated	with	three	different	MEK1/2	inhibitors,	respectively.	b,	
Representative	examples	for	the	GSK3	inhibition	induced	phenotype	illustrated	by	PDO	lines	D007T,	
D019T	and	D030T,	each	treated	with	three	different	GSK3	inhibitors,	respectively.	c,	Representative	
examples	for	the	CDK	inhibition	induced	phenotype	illustrated	PDO	lines	D018T,	D019T	and	D046T,	
each	 treated	 with	 three	 different	 GSK3	 inhibitors,	 respectively.	 d,	 Volcano	 plot	 of	 differentially	
expressed	genes	between	PDO	lines	D004T,	D007T	and	D019T	treated	with	DMSO	vs.	MEK	inhibitor	
trametinib.	PDOs	were	incubated	with	the	drug	for	96	hours	(analog	to	the	screening	setting)	before	
expression	profiling	was	performed.	Three	biological	replicates	were	made.	Red	dots	indicate	MAPK	
signaling	 related	 genes,	 blue	 dots	 indicate	 stem	 cell	 signature	 genes.	 Yellow	 dots	 indicate	 genes	
related	 to	 cell	 cycle.	 Statistical	 significance	was	 assessed	 using	 a	moderated	 t-test.	 The	 horizontal	
lines	indicate	5%	false	discovery	rate.	e,	Volcano	plot	of	differentially	expressed	genes	between	PDO	
line	D019T	treated	with	DMSO	vs.	GSK3	inhibitor	CHIR-98014.	PDOs	were	incubated	with	the	drug	for	
96	hours	(analog	to	the	screening	setting)	before	expression	profiling	was	performed.	Two	biological	
replicates	were	made.	Blue	dots	 indicate	 focal	adhesion	PI3K-AKT-mTor	 related	genes.	Yellow	dots	
indicate	genes	related	to	integrin	signaling.	Statistical	significance	was	assessed	using	a	moderated	t-
test.	 The	 horizontal	 lines	 indicate	 5%	 false	 discovery	 rate.	 f,	 Perturbation	 induced	 phenotypes	 are	
differentially	enriched	for	individual	organoid	lines.	The	SVM	approach	to	identify	similar	compound	
induced	phenotypes	was	performed	on	every	profiled	PDO	line	individually	(N=13).	Clusters	of	similar	
induced	phenotypes	were	tested	for	enrichment	of	annotated	molecular	targets	using	Fisher’s	exact	
test	 as	 described	 for	 Fig.	 5.	 The	 odds	 ratio	 for	 significantly	 enriched	 targets	 is	 shown	 across	 all	
profiled	PDO	lines.		
	

To elucidate the molecular mechanisms behind morphologic changes induced by 

compounds in more detail, we performed expression analyses of PDOs treated with MEK 

inhibitor trametinib and GSK inhibitor CHIR-09014. We selected PDO lines D004T, D007T 

and D019T that all showed the cystic reorganization phenotype but had different viability 

responses upon MEK inhibition. After treatment of the PDO lines with trametinib for 72h, we 

performed microarray analyses. Analyzing the data of all three tested PDO lines together, we 

observed a strong negative regulation of MAPK related genes and targets, showing effective 

targeting of MEK. Interestingly, we also observed upregulation of genes related to the cell 

cycle, alongside with LGR5/EphB2 stem cell signature genes. We had also observed these 

stem cell signatures to be enriched in large cystic PDOs in unperturbed state. Hence, 

sublethal inhibition of MEK kinase appeared to induce a paradoxical, stem cell rich 

phenotype in our colorectal cancer PDO models. Implications on MEK inhibiton in the clinical 

setting will have to be further studied. For analysis of the GSK inhibitor induced phenotype, 

we chose PDO line D019T and the compound CHIR-09014 as it strongly exhibited the grape-

like phenotype. Next to increases in RNA processing, indicating strong transcriptional 

activity, we specifically observed a strong regulation of the Focal Adhesion-PI3K-AKT-
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mTOR-signaling pathway (Wikipathways; q < 0.04), IRS mediated signaling (Reactome; q < 

0.04 and integrin cell surface signaling (PID; q < 0.04). These results point to a regulation of 

the phenotype via GSK, IRS/PI3K pathway and integrin signaling leading to disassembling of 

organoid structures. Notably, we found no regulation of genes related to apoptosis or cell 

cycle arrest, substantiating LDC results.  

 Next, we asked whether compound induced phenotypes were uniformly induced in all 

PDOs, or whether some were specific to subsets of PDOs. For that, we clustered 

compounds by phenotypic profiles for every individual profiled PDO line. By calculating the 

odds ratio of specific mechanisms-of-action to be enriched, we identified differences in 

number and type of enriched phenotypes (Figure 6f). Some compound classes (including 

MEK and CDK inhibitors) induced significantly enriched phenotypes in almost all PDO lines, 

while several others (including AKT inhibitors, PKC inhibitors or GSK3 inhibitors) were 

specific to subsets of PDO lines. Accordingly, PDO lines D020T or D021T treated with GSK 

inhibitors only rudimentarily exhibited the typical GSK phenotype observed in other PDO 

lines (Supplemental Figure S8d). We then wondered if occurrence of specific compound 

induced phenotypes could be dependent on molecular alterations observed in PDOs. 

(Supplemental Figure S9a-b). As a measure of compound activity, we again used the 

AUROC of the SVM to differentiate active compound treatments from inactive treatments. 

We then proceeded to check for compounds in which activity significantly depended on the 

mutation status of the treated PDOs. Here we focused on genes mutated at sufficient 

frequency in our organoid panel (n ≥ 3; PIK3CA, RAS, TP53 and APC). For most compounds 

we could not detect any genotype-dependent differences in activity, but we found a number 

of interesting exceptions (Supplemental Figure S9a). Our data suggests, for example, that 

the mutation status of PIK3CA influences the activity of several compounds targeting the 

PI3K/AKT pathway, including HER2 (Typhostatin AG 879), AKT (AT7867) or mTOR (WYE-

354).	Accordingly, images of PDOs treated with AT7867 revealed morphological differences 

between PIK3CA mutated and PIK3CA wild-type lines (Supplemental Figure 9b).  
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These analyses demonstrated that three-dimensional, multicellular PDOs showed 

characteristic and complex morphological responses to defined molecular perturbations. We 

detected compound specific phenotypes that were reproducible between PDOs from different 

donors. Furthermore, we explained morphological responses on a molecular level with 

changes in RNA expression programs of specific pathways. Also, we found phenotypes 

present only in subsets of PDO lines. Cancer mutations could influence the overall 

morphologic response of PDOs to targeted compounds even when the treatment might not 

affect viability of the PDOs. 

 

Discussion 

In this manuscript, we describe large-scale microscopy-based drug profiling of three-

dimensional, multicellular PDOs. We found a variety of reproducible morphologic PDO 

phenotypes which can be detected by automated image analysis. Phenotypes clustered by 

compound mode-of-action and could be linked to molecular processes. Some of the 

phenotypes were specific to subsets of PDOs, indicating the value of personalized drug 

discovery with image based organoid profiling. Importantly, morphological compound 

induced phenotypes included both, lethal and non-lethal responses and therefore are not 

detectable using current viability profiling methods. Furthermore, complex compound induced 

phenotypes were influenced by cancer mutations. Finally, we show examples of the possible 

therapeutic potential of PDO drug profiling in personalized treatment.  

 The analysis of visual phenotypes upon perturbation of a biological system is a long 

established strategy in biological studies, for instance to identify genes involved in 

developmental processes in model organisms. High-throughput phenotypic screening of cells 

with automated microscopy has more recently become an important tool in cell and 

molecular biology to systematically cluster perturbations according to changes in cell 

morphology and thereby dissect molecular mechanisms10-12. For drug discovery, this can be 

used to decipher the mode-of-action or off-target effects of novel drug candidates12-14,28. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 7, 2019. ; https://doi.org/10.1101/660993doi: bioRxiv preprint 

https://doi.org/10.1101/660993


 24 

Furthermore, using RNAi or genetic perturbations together with high-throughput imaging, 

gene function, cellular pathways or genes altered in cancer or other conditions have been 

analyzed11. 

PDOs are currently the most complex and advanced in vitro cancer models with high 

morphological and molecular similarity to their tumors of origin1-3,5. Therefore, they have the 

potential to supersede current cell line models and - to some extent - animal models for 

improved drug discovery and personalized treatments29,30. In line with this, previous studies 

have successfully used PDOs to perform small- and medium-scale drug screenings to 

analyze differential drug responses measured by cell viability assays3,6,31. However, 

systematic analyses concerning the nature and extent of morphologic development and the 

organization of these complex multicellular models upon molecular perturbations were 

lacking. Importantly, morphologic features of the tissue of origin have repeatedly been shown 

to be represented by organoids2,3,7-9, yet automated analysis and quantitative description of 

those phenotypes has not been achieved so far. 

With our high-throughput imaging and automated image analysis workflow, we have 

identified reoccurring compound induced phenotypes in PDOs that go far beyond 

identification of viable and dead organoids. In a novel approach we systematically used this 

resource to study molecular perturbations that alter the cellular organization of human 

multicellular in vitro models. Analysis of complex compound-induced morphologies allowed 

us to cluster compounds by mode-of-action and consequently to identify off-target effects of 

known compounds. The multicellular phenotypes of our complex 3D models were 

reoccurring, but often specific to subsets of PDOs (Figure 5-7). Capturing of non-lethal or 

sub-lethal phenotypes was important in classifying small molecule mode-of actions (Figure 

4). The differences between imaging and metabolic viability assays also underline the added 

information from image-based profiling.  

We were able to identify biological mechanisms underlying the phenotypic response. 

In particular, we identified a novel (paradox) activation of stemness and cell cycle related 

genes by MEK inhibition, which was independent of the viability response induced by MEK 
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inhibitors. Further studies may elucidate the exact mechanism behind this, however, it may in 

part explain the limited success of using MEK inhibitors as monotherapy in colorectal cancer 

patients32. The grape-like phenotype of disassembled PDOs induced by different GSK 

inhibitors could be related to integrin regulation by the focal adhesion-PI3K-AKT-mTor 

signaling pathway.  

In the image-based experiments presented here, we have profiled the response of a 

collection of heterogeneous PDOs to more than 527 defined compounds, a subset of these 

with varying concentrations. This resulted in a dataset of more than 3,700,000 images. 

Evidently, processing and analysis of PDO profiling data is a major challenge that will persist 

as future experiments will increase in size and 3D resolution. To facilitate the use of PDOs 

for high-throughput image-based profiling, we established the SCOPE framework for 

automated PDO image analysis. Both, our dataset and the described experimental and 

analysis toolkit can be regarded as a resource for future image based profiling studies with 

organoids. To capture organoids in 3D, we chose a fragmented 3D-imaging approach. 

Thereby, we gathered several confocal layers with considerable offsets per field and 

projected them onto a 2D plane. While recent imaging methods like light-sheet microscopy 

may be superior for a more detailed analysis of PDO organization, modifications to this 

method for screening multiple PDO lines against large drug libraries are still pending. In 

addition to hardware related limitations with respect to microscopy and computational power, 

the descriptive features currently used in biological image analysis are optimized for single 

cells and may not be ideal to capture PDO characteristics. As an outlook, future image based 

PDO profiling may benefit from improved microscopy solutions and increased computational 

power allowing rapid single cell resolution imaging and novel feature extraction methods 

based on machine learning algorithms33. 

Apart from quantitative morphological analysis, we show potential clinical relevance of 

phenotypic drug profiling of PDOs. We identified known molecular markers for drug response 

like RAS status for EGFR inhibition or TP53 mutation status for nutlin3a response, illustrating 

the utility of our approach for biomarker discovery. We also identified associations between 
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non-lethal phenotypes and cancer mutations with our multiparametric analysis. This was 

observed for example in the AKT inhibitor AT7867, which led to a morphological response in 

PIK3CA mutated but not in wild-type PDO lines (Supplemental Figure S9). Associations like 

these might be important information in drug discovery not gathered by viability profiling. 

Further studies are needed to characterize such associations, their mechanisms and clinical 

impacts in detail.  

 Our work opens new directions of research for PDO profiling. Given that PDO models 

can be established from a wide range of tumors and normal tissue with high efficiency1,7,16, 

our morphological profiling workflow has the potential to be used for analysis of drug action 

(or other perturbations) in many different patient derived models. Our work paves the way for 

imaging PDOs with higher spatial- and time resolution in the future. This may reveal 

mechanisms of organoid growth and perturbation response on a single cell level within 

multicellular organoids. Additionally, further development of imaging protocols will allow the 

analysis of mixed cultures in high-throughput imaging assays, for example to profile PDO 

and immune cell interactions30,34.  

In conclusion, we have built a resource for high-throughput fluorescence microscopy 

of PDO models. We used our pipeline for large-scale compound profiling experiments that 

showed heterogeneous morphology of PDOs and diverse drug-induced morphologic 

phenotypes linked to molecular targets. Thereby, we showed systematically for the first time 

how molecular perturbations alter the cellular organization of human multicellular in vitro 

models. Morphological compound induced phenotypes could be both lethal- or non-lethal, 

providing complementary information to viability profiling methods. Our framework and 

dataset are thus resources that allow individual drug discovery with three-dimensional 

multicellular ex vivo models and open new avenues for drug discovery and personalized 

medicine.  
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Materials and Methods 

Patients 

All patients were recruited at University Hospital Mannheim, Heidelberg University, 

Mannheim, Germany. We included untreated patients with a new diagnosis of colon or rectal 

cancer in this study and obtained biopsies from their primary tumors and adjacent normal 

tissue via endoscopy. Exclusion criteria were active HIV, HBV or HCV infections. Biopsies 

were transported in phosphate buffered saline (PBS) on ice for subsequent organoid 

extraction. Clinical data, tumor characteristics and molecular tumor data were 

pseudonymized and systematically collected in a prospective database. The study was 

approved by the Medical Ethics Committee II of the Medical Faculty Mannheim, Heidelberg 

University (Reference no. 2014-633N-MA and 2016-607N-MA). All patients gave written 

informed consent before tumor biopsy was performed. In total, we extracted PDOs from 19 

patients with colorectal cancer, 5 of them female, 14 male, with a mean age of 68 years 

(median 68). 12 patients had a primary rectum carcinoma, 7 a primary colon carcinoma. 

Detailed patient characteristics, including stage and treatment data can be found in 

Supplemental Table S1.  

Organoid culture 

Organoid cultures were extracted from tumor biopsies as reported by Sato et al.1 with slight 

modifications. Tissue fragments were washed in DPBS (Life technologies) and digested with 

Liberase TH (Roche) before embedding into Matrigel (Corning) or BME R1 (Trevigen). 

Advanced DMEM/F12 (Life technologies) medium with Pen/Strep, Glutamax and HEPES 

(basal medium) was supplemented with Noggin (Peprotech), B27 (Life technologies), 1,25 

mM n-Acetyl Cysteine (Sigma), 10 mM Nicotinamide (Sigma), 50 ng/ml human EGF 

(Peprotech), 10 nM Gastrin (Peprotech), 500 nM A83-01 (Biocat), 10 nM Prostaglandin E2 

(Santa Cruz Biotechnology), 10 µM Y-27632 (Selleck chemicals) and 100 mg/ml Primocin 

(Invivogen). Initially, cells were kept in 4 conditions including medium as described (ENA), or 

supplemented with additional 3 uM SB202190 (Biomol) (ENAS), 50% Wnt-conditioned 
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medium and 20% R-Spondin conditioned medium (WENRA) or both (WENRAS), as 

described by Fujii et al.2. The tumor niche was determined after 7-14 days and cells were 

subsequently cultured in the condition with best visible growth. PDOs were passaged every 

7-10 days and medium was changed every 2-3 days. 19 PDO lines were established, data of 

all PDO lines including niche and growth rate are denoted in Supplemental Table S1. For 

molecular characterization and high-throughput profiling we selected PDOs based on growth 

rate for sufficient availability of material, as well as those from diverse clinical stages. 

Amplicon sequencing 

DNA was isolated from 19 organoid cultures with the DNA blood and tissue kit (Qiagen). 

Sequencing libraries were prepared with a custom panel (Tru-Seq custom library kit, 

Illumina) according to the manufacturers protocol and sequenced on a MiSeq (Illumina). 

Targeted regions included the most commonly mutated hot spots in colorectal cancer in 46 

genes captured with 157 amplicons of approximately 250bp length. A list of targeted hot-

spots that were sequenced can be found in Supplemental Table S5. After mapping of the 

reads to GRC38 reference genome using Burrows-Wheeler Aligner (BWA), data were 

analyzed using the Genome Analysis Toolkit (GATK)35,36. Base recalibration was performed 

and variants were called using MuTect2 pipeline. Variants with a variant frequency below 

10%, with less than 10 reads, or with a high strand bias (FS<60) were filtered out. Variants 

were annotated with Ensemble variant effect predictor37 and manually checked and curated 

using integrative genomics viewer, if necessary38. Only non-synonymous variants present in 

COSMIC39 were considered true somatic cancer mutations. Also, all variants annotated 

“benign” according to PolyPhen database and “tolerated” in SIFT database were excluded, 

as well as variants with a high frequency in the general population as determined by a 

GnomAD40 frequency of >0.001. 

Expression profiling 

Organoid RNA was isolated from 19 PDO lines with the RNeasy mini kit after snap freezing 

organoids on dry ice. Samples were hybridized on Affymetrix U133 plus 2.0 arrays. Raw 
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microarray data were normalized using the robust multi-array average (RMA) method41 

followed by quantile normalization as implemented in the ‘affy’42 R/Bioconductor43 package. 

In order to exclude the presence of batch effects in the data, principal component analysis 

and hierarchical clustering were applied. Consensus molecular subtypes were determined as 

described previously18 using the single sample CMS classification algorithm with default 

parameters as implemented in the R package ‘CMSclassifier’. In all cases, differential gene 

expression analyses were performed using a moderated t-test as implemented in the 

R/Bioconductor package ‘limma’44. Gene set enrichment analyses were performed using 

ConsensusPathDB45 for discrete gene sets or GSEA as implemented in the ‘fgsea’46,47 

R/Bioconductor package for ranked gene lists. 

Compound profiling 

Cell seeding 

PDO drug profiling followed a standardized protocol with comprehensive documentation of all 

procedures. Organoids were collected and digested in TrypLE Express (Life technologies). 

Fragments were collected in basal medium with 300 U/ml DNAse and strained through a 

40µm filter to achieve a homogeneous cell suspension with single cells and small clusters of 

cells, but without large organoid fragments. 384 well µclear assay plates (Greiner) were 

coated with 10µL BME V2 (Trevigen) at a concentration of 6.3 mg/ml in basal medium, 

centrifuged and incubated for >20 min at 37° C to allow solidification of the gel. PDO cell 

clusters together with culture medium (ENA) and 0,8 mg/ml BME V2 were added in a volume 

of 50µl per well using a Multidrop dispenser (Thermo Fisher Scientific). Plates were sealed 

with a plate-loc (Agilent) and centrifuged for additional 20 min allowing cells to settle on the 

pre-dispensed gel. Cell number was normalized before seeding by measuring ATP levels in 

a 1:2 dilution series of digested organoids with CellTiter-Glo (Promega). The number of cells 

matching 10,000 photons was seeded in each well. After seeding of organoid fragments, 

plates were incubated for three days at 37°C to allow organoid formation before addition of 

compounds. Two biological replicates of each PDO line were profiled. Mean passage 
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number of the PDO lines by the time of profiling of the first replicate was 9 (median 9) and 

PDOs were passaged one or two more times before the second replicate. In total, 16 PDO 

lines underwent profiling with the clinical cancer library (15 of those with both, CTG and high-

throughput imaging read outs), while the KiStem library was used with 13 PDO lines (with 

high-throughput imaging).  

Compound libraries  

Two compound libraries were used for screening: A library containing 63 clinically relevant 

drugs (clinical cancer library) and a large library of 464 compounds targeting kinases and 

stem cell or developmental pathways associated genes (KiStem library). The clinical cancer 

library was manually curated by relevance for current (colorectal) cancer therapy, 

mechanism of action and potential clinical applicability. Compounds of this library are in 

clinical use or at least in phase I/II clinical trials. Five concentrations per compound were 

screened (five-fold dilutions). The concentrations were determined by analysis of literature 

data from previous 3D and 2D drug screens and own experiments. A list of compounds 

included in this library and maximum concentrations used can be found in S3. The KiStem 

library includes 464 compounds targeting a diverse set of kinases and stem cell relevant 

pathways S4. All compounds in this library were used in a concentration of 7.5µM. All 

compounds were obtained from Selleck chemicals. Compounds of both libraries were 

arranged in an optimized random layout. We stored compound libraries in DMSO at -80 C. 

Compound treatment 

Medium was aspirated from all screening plates and replaced with fresh ENA medium devoid 

of Y-27632, resulting in 45µl volume per well. Drug libraries were diluted in basal medium 

and subsequently 5µl of each compound was distributed to screening plates. All liquid 

handling steps were performed using a Biomek FX robotic system (Beckmann Coulter). 

Plates were sealed and incubated with the compounds for four days.  
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Luminescence viability read out 

Plates undergoing viability screening were treated with 30µl CellTiter-Glo reagent after 

medium aspiration with a Biomek FX. After incubation for 30 minutes, luminescence levels 

were measured with a Mithras reader (Berthold technologies). 

Image-based phenotyping 

Image-IT DeadGreen (Thermo Fisher) was added to the cultures with a Multidrop dispenser 

(Thermo Fisher) in 100nM final concentration and incubated for four hours. Afterwards, 

medium was removed and organoid cultures were fixed with 3% PFA in PBS with 1% BSA. 

Fixed plates were stored at 4° C for up to three days before permeabilization and staining. 

On the day of imaging, organoids were permeabilized with 0.3% Triton-X-100 and 0.05% 

Tween in PBS with 1% BSA and stained with 0.1µg/ml TRITC-Phalloidin (Sigma) and 2µg/ml 

DAPI (Sigma). All liquid handling steps were performed with a BiomekFX. Screening plates 

were imaged with an Incell Analyzer 6000 (GE Healthcare) line-scanning confocal 

fluorescent microscope. We acquired 4 fields per well with z-stacks of 16 slices at 10x 

magnification. The z-steps between the 16 slices had a distance of 5µm, the depth of field of 

each slice was 3.9µm. 

Immunohistochemistry 

PDOs were fixed for 20 min in 4% (v/v) Roti Histofix (Carl Roth) followed by embedding into 

MicroTissues 3D Petri Dish micromolds (Sigma Aldrich) using 2 % (w/v) Agarose LE (Sigma) 

in PBS supplemented with 0.5 mM DTT. Thereafter, PDOs were subjected to dehydration 

steps and embedding in paraffin. Formalin-Fixed Agarose/Paraffin-Embedded sections (3-

5µm) were manually cut from blocks with a microtome (Leica RM 2145) and transferred to 

glass slides (Superfrost, Thermofisher Scientific) before H&E staining using automated 

staining devices. 

Proliferation assay 

Organoids were collected, digested, strained, normalized and seeded as in the drug profiling 

protocol described above. Medium change was performed on days 2 and 4. Viability of 
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plated organoids was measured 2, 4 and 8 days after seeding using CellTiter-Glo as 

described above.  

Image analysis 

Image processing 

Microscopic image z-stacks were compressed to HDF5 format for archival and underwent 

maximum contrast projection using the R/Bioconductor package MaxContrastProjection for 

further processing of the images. Segmentation of the projections based on intensity did not 

sufficiently identify organoids. Instead, we trained a deep convolutional neural network 

(DCNN) on the partially correct intensity segmentation, leveraging the robustness of DCNNs 

with regards to mislabeled training data and eliminating the need for expensive manual 

annotations. Standard image features, including shape, moment, intensity, and Haralick 

texture features48 on multiple scales, were extracted using the R/Bioconductor package 

EBImage49. Initially, we extracted a total of 1572 features for each individual organoid image. 

However, texture features are meaningless for scales larger than the actual organoid size. 

To simplify analysis, we only retained texture features for further analysis that were well 

defined for all organoids, i.e. on a scale smaller than the smallest organoids in the image 

dataset. This ensured that the dataset contained no NA-values that would complicate the 

analysis or require imputation. A feature is considered "well-defined' if the median absolute 

deviation across the entire dataset is strictly greater than 0. In other words, if more than half 

of all organoids exhibit an identical value for a feature then that feature is discarded for 

further analysis. This resulted in 973 well-defined features. We did not perform feature 

selection based on between-replicate correlation of well-averaged features as we used 

single-organoid features for further analysis and because the downstream methods used 

(SVM, Random-Forrest) do not require pre-selection of features. 

 Out-of-focus objects were programmatically removed from the dataset using a 

feature based random forest classifier. Data from one PDO line (D015T) screened with the 
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clinical cancer library had to be excluded from image analysis due to too many out of focus 

objects. 

Drug-induced phenotypes 

A principal component analysis (PCA) was performed on the entire dataset to reduce the 

dimensionality. 25 principal components were selected, explaining approx. 81% of the total 

variance within the dataset. A linear support vector machine (SVM) was trained per line and 

treatment (and per concentration where applicable) to differentiate treated organoids from 

negative controls based on the PCA-transformed features50. To allow comparison between 

various PDO lines and drug perturbations, the distributions of features describing organoids 

from different batches were adjusted. Drugs were categorized as either active or inactive 

based on the accuracy of the SVM. The histogram of accuracies made a threshold of 85% 

the most intuitive. The direction of the vector perpendicular to the SVM hyperplane was 

interpreted as the drug-induced effect. Drugs were clustered with regard to the angles of their 

corresponding effect vectors in PCA-feature space.  

Live-dead classification 

A random forest classifier was trained on the original single organoid features to differentiate 

living from dead organoids. Organoids treated with DMSO were used as negative (i.e. living) 

controls while organoids treated with Bortezomib and SN-38 at the two highest 

concentrations were used as positive (i.e. dead) controls. Visual inspection of the projected 

images confirmed our choice of positive controls. Binary classification results were averaged 

within wells to obtain viability scores ranging from 0 to 1, indicating how lethal a treatment 

was. A separate classifier was trained for each individual line to ensure inter-line 

independence. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 7, 2019. ; https://doi.org/10.1101/660993doi: bioRxiv preprint 

https://doi.org/10.1101/660993


 34 

Analysis of luminescence data and dose-response relationships 

Raw luminescence data of each plate were first normalized using the Loess-fit method 51 in 

order to correct for edge effects where increased luminescence intensity was observed along 

the edges of each plate. Subsequently, each plate was normalized by division with the 

median luminescence intensity of the DMSO controls. Drug response Hill curves (DRC) were 

fitted and area under the curve values were calculated for each DRC using the 

‘PharmacoGx’52 R/Bioconductor package. 

Proliferation assay 

The viability data gathered from day 2 and 4 was used to estimate organoid doubling times. 

Measurements from day 8 were excluded from further analysis because not all cell lines 

were in a log-phase of organoid growth at this time point. Organoid doubling time (Td) was 

calculated using the established formula below relying on time (t) and median photon count 

(pc) data:  

𝑇𝑑 = 𝑡! − 𝑡! ∗
ln (2)

ln (𝑝𝑐!𝑝𝑐!
)
 

Software and data availability 

Software within the SCOPE framework for organoid image analysis (including segmentation, 

feature extraction, analysis of drug-induced phenotypes, live-dead-classification), as well as 

the pipelines for analysis of luminescence data, dose response relationships and expression 

data are available under https://github.com/boutroslab/Supplemental-

Material/tree/master/Betge&Rindtorff&Sauer&Rauscher_2018. Organoid feature data are 

included within a package that bundles these scripts with all required source data in the 

figshare repository (https://figshare.com/s/e465d65a9964d3b999e9). Microarray data are 

made available in Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) 

under accession no. GSE117548. Amplicon sequencing data are made available through 

controlled access in the European Genome Phenome Archive (EGA, 

https://www.ebi.ac.uk/ega/home, accession no. EGAD00001004313). Data access requests 
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for sequence data will be evaluated and transferred upon completion of a data transfer 

agreement and authorization by the data access committee of Division Signaling and 

Functional Genomics, DKFZ and Department of Medicine II, Medical Faculty Mannheim. 
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