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Abstract 18 

Magnetic resonance imaging (MRI) offers the possibility to non-invasively map the brain’s metabolic 19 
oxygen consumption (CMRO2), which is essential for understanding and monitoring neural function 20 
in both health and disease. However, in depth study of oxygen metabolism with MRI has so far been 21 
hindered by the lack of robust methods. One MRI method of mapping CMRO2 is based on the 22 
simultaneous acquisition of cerebral blood flow (CBF) and blood oxygen level dependent (BOLD) 23 
weighted images during respiratory modulation of both oxygen and carbon dioxide. Although this 24 
dual-calibrated methodology has shown promise in the research setting, current analysis methods are 25 
unstable in the presence of noise and/or are computationally demanding. In this paper, we present a 26 
machine learning implementation for the multi-parametric assessment of dual-calibrated fMRI data. 27 
The proposed method aims to address the issues of stability, accuracy, and computational overhead, 28 
removing significant barriers to the investigation of oxygen metabolism with MRI. The method 29 
utilizes a time-frequency transformation of the acquired perfusion and BOLD-weighted data, from 30 
which appropriate feature vectors are selected for training of machine learning regressors. The 31 
implemented machine learning methods are chosen for their robustness to noise and their ability to 32 
map complex non-linear relationships (such as those that exist between BOLD signal weighting and 33 
blood oxygenation). An extremely randomized trees (ET) regressor is used to estimate resting blood 34 
flow and a multi-layer perceptron (MLP) is used to estimate CMRO2 and the oxygen extraction 35 
fraction (OEF). Synthetic data with additive noise are used to train the regressors, with data 36 
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simulated to cover a wide range of physiologically plausible parameters. The performance of the 37 
implemented analysis method is compared to published methods both in simulation and with in-vivo 38 
data (n=30). The proposed method is demonstrated to significantly reduce computation time, error, 39 
and proportional bias in both CMRO2 and OEF estimates. The introduction of the proposed analysis 40 
pipeline has the potential to not only increase the detectability of metabolic difference between 41 
groups of subjects, but may also allow for single subject examinations within a clinical context.  42 

 43 

1 Introduction 44 

Under normal conditions the brain’s energy needs are met via a continuous supply of oxygen and 45 
glucose for the local production of ATP via aerobic metabolism (Verweij et al., 2007). Any 46 
disruption of the supply of oxygen to the brain tissue can have significant consequences (Safar, 47 
1988), and impaired cerebral oxygen metabolism is associated with a wide variety of neurological 48 
conditions (Frackowiak et al., 1988; Ishii et al., 1996; Miles and Williams, 2008). Therefore, 49 
monitoring and mapping the brain’s consumption of oxygen is vital for understanding the diseases 50 
and mechanisms by which the metabolic consumption of oxygen may be affected. The cerebral 51 
metabolic rate of oxygen consumption (CMRO2) has traditionally been measured with positron 52 
emission tomography (Frackowiak et al., 1980). However, this method has some substantial 53 
limitations including the use of ionizing radiation and the need for local production of 15-oxygen 54 
labeled tracers. Due to these limitations there is great interest in developing alternative, non-invasive, 55 
methods of mapping CMRO2. One promising technique of non-invasively mapping CMRO2 is the 56 
so-called dual-calibrated fMRI (dc-fMRI) method (Bulte et al., 2012; Gauthier et al., 2012). This 57 
method is finding growing adoption in the research setting, and has already been applied in 58 
Alzheimer’s disease (Lajoie et al., 2017), carotid artery occlusion (De Vis et al., 2015), and studies of 59 
pharmacological modulation (Merola et al., 2017). For a review of the method and details on the its 60 
practical application please see (Germuska and Wise, 2019). Despite the promise shown by this 61 
technique, the reported between-session repeatability is relatively low (Merola et al., 2018) and 62 
improvements in the data acquisition and/or analysis are required if individualized assessment is to 63 
be made possible.  64 

One of the key difficulties in analyzing dual-calibrated fMRI data is noise propagation through the 65 
analysis pipeline, which leads to unstable parameter estimates. We have previously presented 66 
regularized non-linear least squares fitting approaches that utilize prior physiological knowledge to 67 
produce more robust parameter estimates (Germuska et al., 2019; Germuska et al., 2016). Even 68 
though such regularization reduces the mean square error it does so by trading off a reduction in 69 
variance with an increase in bias. An alternative approach to reduce the prediction error is the use of 70 
noise insensitive machine learning regression methods. Decision tree based regression methods, for 71 
example random forest (Breiman, 2001) and extremely randomized trees (Geurts et al., 2006), are 72 
robust to both output (Breiman, 2001; Geurts et al., 2006) and input noise (Yue et al., 2018) and are 73 
able to capture non-linear relationships between input features and target parameters. This noise 74 
immunity is likely due to the randomization included in the choices of features at splitting nodes 75 
(random forest) and cut-points (extremely randomized trees), which improve the generalizability of 76 
the regressors. For non-linear mappings with a high degree of complexity artificial neural networks 77 
such as the multi-layer perceptron (MLP), a feedforward network with multiple hidden layers, offer a 78 
machine learning method that is inherently robust to noise (Bernier et al., 1999). In this paper we 79 
present an analysis pipeline comprised of an extremely randomized trees regressor and a MLP, 80 
cascaded to infer resting CBF and CMRO2 from dual-calibrated fMRI data. A frequency-domain 81 
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representation of simulated MRI data with the additive noise is used to train each of the regressors. 82 
Simulated data has the advantage over in-vivo data in this application as it allows a balanced dataset 83 
to be generated that covers a broad range of physiological variation. Such a dataset is essential to 84 
avoid bias in parameter estimation and to provide generalizability across groups and diseases. A 85 
frequency-domain representation is chosen as it allows for convenient dimensionality reduction, with 86 
most of the information of interest encoded at low temporal frequencies, and takes advantage of the 87 
superior ability of artificial neural networks to learn discriminative features from frequency-domain 88 
representation of a signal compared to a time-domain representation (Hertel et al., 2016). The 89 
performance of the proposed machine learning (ML) implementation is compared to an existing 90 
regularized non-linear least squares (rNLS) method (Germuska et al., 2019) both in simulation and in 91 
data acquired from a cohort of 30 healthy volunteers. We hypothesized that the machine learning 92 
approach would be able to achieve comparable or reduced prediction error with significantly reduced 93 
bias and computational overhead. 94 

2 MRI Data Acquisition 95 

Thirty healthy volunteers (16 males, mean age 32.53 ± 6.06 years) were recruited to the study. The 96 
local ethics committee approved the study and written informed consent was obtained from each 97 
participant. Blood samples were drawn via a finger prick prior to scanning and were analyzed with 98 
the HemoCue Hb 301 System (HemoCue, Ängelholm, Sweden) to calculate the systemic [Hb] value 99 
for each participant. All data was acquired using a Siemens MAGNETOM Prisma (Siemens 100 
Healthcare GmbH, Erlangen) 3T clinical scanner with a 32-channel receiver head coil (Siemens 101 
Healthcare GmbH, Erlangen). The acquisition protocol was as previously described (Germuska et al., 102 
2019). Briefly, an 18-minute dual-excitation pseudo-continuous arterial spin labeling (pCASL) and 103 
BOLD-weighted acquisition was acquired during modulation of inspired oxygen and carbon dioxide. 104 
Gas modulation was performed according to a protocol previously proposed by our lab (Germuska et 105 
al., 2016), and end-tidal monitoring was performed throughout the acquisition from the volunteer’s 106 
facemask using a rapidly responding gas analyzer (PowerLab®, ADInstruments, Sydney, Australia). 107 
The prototype pCASL sequence (Germuska et al., 2019) parameters were as follows: post-labeling 108 
delay and label duration 1.5 seconds, EPI readout with GRAPPA acceleration (factor = 3), TE1 = 109 
10ms, TE2 = 30ms, TR = 4.4 seconds, 3.4 x 3.4mm in-plane resolution, and 15 (7mm) slices with 110 
20% slice gap. 111 

3 Synthetic MRI Data Generation 112 

Synthetic data was simulated to match the 18-minute in-vivo acquisition protocol using standard 113 
physiological models for the change in BOLD signal (Bulte et al., 2012; Gauthier and Hoge, 2013; 114 
Wise et al., 2013), as summarized by equation 1.  115 

∆𝐵𝑂𝐿𝐷
𝐵𝑂𝐿𝐷!

= M 1−
𝐶𝐵𝐹
𝐶𝐵𝐹!

! 1− 𝐶𝑎𝑂! − 𝐶𝑀𝑅𝑂! 𝐶𝐵𝐹
𝜑 𝐻𝑏

1−
𝐶𝑎𝑂!,! − 𝐶𝑀𝑅𝑂!,! 𝐶𝐵𝐹!

𝜑 𝐻𝑏

!

                   1  

Where, ∆𝐵𝑂𝐿𝐷/𝐵𝑂𝐿𝐷! is the fractional change in BOLD signal due to a change in arterial oxygen 116 
content (CaO2) or CBF due to either a hyperoxic or hypercapnic respiratory stimulus. M is a lumped 117 
parameter that is equal to 𝐾 ∙ 1− 𝑆𝑣𝑂! ∙ 𝐻𝑏 !

. Where K is a scaling factor dependent on the 118 
field strength, resting venous blood volume, tissue structure, and water diffusion effects in the 119 
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extravascular space. [Hb] is the blood hemoglobin concentration and SvO2 is the venous oxygen 120 
saturation. φ is the oxygen binding capacity for Hb (1.34 ml/g), α is the Grubb exponent that couples 121 
blood volume and blood flow changes, and β is a field strength dependent constant that summarizes 122 
the non-linear effects associated with the tissue structure and water diffusion effects. The values of α 123 
and β were fixed to the optimized values (0.06 and 1) found by (Merola et al., 2016), which minimize 124 
the error in OEF estimates over a range of vascular physiology. The subscript 0 represents the 125 
baseline or resting state. The hyperoxic and hypercapnic stimuli are assumed to be iso-metabolic, so 126 
CMRO2 = CMRO2,0.  127 

The arterial spin labeling signal was modeled according to the simplified pCASL kinetic model 128 
(Alsop et al., 2015), and physiological constraints on baseline parameters were applied according to a 129 
simple model of oxygen exchange (Gjedde, 2002; Hayashi et al., 2003), equation 2.  130 

𝐶𝑀𝑅𝑂!,! = D 𝑃!"
2

𝑂𝐸𝐹!
− 1

!
− 𝑃!"#!!                    2  

Where D is the effective oxygen diffusivity of the capillary network and can be expressed as a 131 
product of the effective oxygen permeability and the capillary blood volume, 𝐷 = 𝜅 ∙ 𝐶𝐵𝑉!"#.  P50 is 132 
the blood oxygen tension at which hemoglobin is 50% saturated (26 mmHg), h is the Hill coefficient 133 
(2.8) and 𝑃!"#!! is the minimum oxygen tension at the mitochondria (which is thought to be 134 
negligible in healthy tissue (Gjedde, 2002)). In the modeling we assume a fixed value for κ of 3 135 
µmol/mmHg/ml/min, corresponding to a typical diffusivity of 3 (Mintun et al., 2001) to 4 136 
µmol/100g/mmHg/min (Vafaee and Gjedde, 2000) for CBVcap = 1 to 1.33 ml/100g. The 137 
physiological parameter space encompasses a wide range of plausible physiology including both 138 
healthy and dysfunctional brain tissue, and is summarized in Table 1. A summary of MRI 139 
abbreviations and all model parameters used in the simulations is given in table 2. 140 

The partial pressure of arterial oxygen (PaO2) and change in carbon dioxide (ΔPaCO2) were modeled 141 
to match the range of end-tidal recordings acquired from healthy volunteers. The baseline PaO2 had a 142 
range of 90-120 mmHg, ΔPaO2 was 200 to 300 mmHg, and ΔPaCO2 was set to 8-12 mmHg. 143 
Rectangular stimulus blocks were convolved with a gamma density function with shape parameter 144 
0.5-2.5 to account for the variation in biological rise and fall times of the hyperoxic and hypercapnic 145 
stimuli. Drift in ΔPaCO2, which was observed in some subjects, was included by adding a bandpass 146 
filtered noise signal (4th order IIR filter, lowcut/highcut = 0.005/0.05 of the Nyquist frequency). 147 
Change in the arterial blood longitudinal relaxation rate due to dissolved oxygen was included in 148 
pCASL calculations as per (Germuska et al., 2019). Noise (BOLD tSNR = 90, pCASL tSNR = 3 for 149 
CBF = 60 ml/100g/min) was added to simulated BOLD and pCASL time series. The pCASL noise 150 
was bandpass filtered (4th order IIR filter, lowcut/highcut = 0.05/0.8 of the Nyquist frequency) and 151 
the BOLD noise was lowpass filtered (1st order IIR filter, highcut = 0.5 of the Nyquist frequency) to 152 
match the noise characteristics of the in-vivo data. In addition, the BOLD timeseries data was 153 
highpass filtered with a 320 second cut-off using the filter implementation in FSL (Jenkinson et al., 154 
2012), which is routinely used for de-trending fMRI data. Figure 1 shows 50 randomly generated 155 
pCASL and BOLD timeseries overlaid with the temporal mean to demonstrate the typical output of 156 
the simulations. Please note that the pCASL timeseries are divided by the equilibrium magnetization 157 
of arterial blood (M0blood), and the baseline signal has been set to zero for display purposes. 158 

4 Methods 159 
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A schematic diagram describing the analysis/training pipeline is shown in figure 2. ASL and BOLD 160 
timeseries data, either simulated (as described in section 3) or in-vivo data, are Fourier transformed 161 
into magnitude and phase data. This frequency domain data is then truncated after the first 15 data 162 
points (low pass filtered) and combined with physiological recordings and sequence parameters to 163 
create a feature vector for model training/prediction (if in-vivo data is being analyzed). Parameter 164 
estimation is carried out in a two-stage process; first the resting blood flow (CBF0) is estimated, and 165 
then rate of oxygen consumption.  166 

Truncation of the frequency domain data removes high-frequency content that is unrelated to either 167 
the hyperoxic or hypercapnic respiratory modulations and thus removes noise from the training data. 168 
The resting blood flow is estimated separately from the rate of oxygen consumption to reduce the 169 
complexity of the required mapping between the MRI data and the target parameters. Additionally, 170 
the use of extremely randomized trees (ET) regression rather than an artificial neural network at this 171 
stage in the pipeline takes full advantage of the noise immunity of decision tree based methods (Yue 172 
et al., 2018) and reduces the potential of overfitting. The inclusion of the post-label delay in the 173 
feature vector is necessary to incorporate an implicit slice timing correction for CBF0 calculation, 174 
while the blood oxygenation parameters ([Hb], ΔPaO2, SaO2,0, CaO2,0 ) are included here due to the 175 
influence of dissolved oxygen on the longitudinal relaxation rate of arterial blood. In total each 176 
feature vector that is input into the ET regressor consists of 65 entries.  177 

The result of the ET regression is then incorporated into the feature vector (now 66 entries) and input 178 
into an ensemble of MLPs to predict CMRO2,0 / CaO2,0, from which CMRO2,0 and OEF0 can be 179 
calculated (CMRO2 / CaO2 = OEF x CBF via the Fick principle). The blood oxygenation parameters 180 
in this case not only inform on the relaxation rate of arterial blood, but also link the CBF and BOLD 181 
signal changes to the underlying metabolic parameters as described by equation 1. In practice each 182 
MLP in the ensemble is trained individually, with the average of their predictions being used for 183 
inference when deployed for the analysis of in-vivo data.  184 

The ET regressor and MLP were implemented in Scikit learn (Pedregosa et al., 2011). The extremely 185 
randomized trees regressor was trained with the following options, number of estimators = 50, 186 
bootstrap = True, and out-of-bag samples were used to estimate the R2 on unseen data. A total of 187 
50,000 simulations were used for training. The MLP network has two-hidden layers and 50 nodes in 188 
each layer. The activation function for each node was chosen to be a rectified linear unit (ReLU). The 189 
ADAM solver was used for training with 1x106 simulated feature vectors and 10% of the data were 190 
used for early stopping. Data simulation and training was repeated 40 times to create an ensemble of 191 
MLP networks to further reduce the uncertainty in parameter estimates (Sollich and Krogh, 1996). 192 

The validation score for the extremely randomized trees regressor for predicting resting cerebral 193 
blood flow was 0.997, slightly greater than the results obtained for a random forest implementation 194 
(0.961). The validation score for the MLP estimation of CMRO2,0 / CaO2,0 were 0.923 ± 0.002. 195 
Training of the MLP network was also undertaken while eliminating key elements of the simulation 196 
or feature vectors to see how this affected the performance of the MLP. When BOLD data was 197 
excluded from the feature vector the validation score dropped to 0.577. Excluding the CO2 and O2 198 
stimuli (but including the BOLD data) reduced the validation scores to 0.63 and 0.71 respectively.  199 

A further 5,000 simulated datasets (with OEF restricted to 0.15 to 0.65, all other parameters as in 200 
table 1) were constructed to compare the performance of the proposed machine learning 201 
implementation with a previously implemented regularized non-linear least squares fitting method 202 
(Germuska et al., 2019). Each method was compared to the simulated data using a robust regression 203 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 18, 2020. ; https://doi.org/10.1101/660357doi: bioRxiv preprint 

https://doi.org/10.1101/660357
http://creativecommons.org/licenses/by-nc-nd/4.0/


  CMRO2 frequency-domain machine learning 

 
6 

This is a provisional file, not the final typeset article 

method (bisquare) in terms of the RMS error and proportional bias. A bisquare cost function was 204 
used for the regression to reduce the influence of outliers and allow a robust estimate of the 205 
proportional bias. The rNLS fitting was implemented with regularization applied to the resting OEF 206 
and the effective oxygen diffusivity (D), as previously described. The relative weighting between 207 
OEF and diffusivity regularization was maintained constant, as per the optimization in (Germuska et 208 
al., 2019). However, the total weighting was varied to assess the impact on OEF and CMRO2 error 209 
and proportional bias (slope of the simulated parameter values plotted against the parameter 210 
estimates). 211 

5 Results 212 

5.1 Simulations 213 

Analysis of the simulated data demonstrated a substantial reduction in the RMS error of machine 214 
learning OEF estimates compared to rNLS estimates. The bisquare RMS error was 0.047 when using 215 
the mean prediction from the 40 MLP networks, and 0.055 for a randomly chosen MLP network. The 216 
rNLS approach produced a minimum bisquare RMS error of 0.094. The ML approach displayed 217 
negligible proportional bias in OEF estimates (slope of true vs. estimated values  = 0.982), whereas 218 
rNLS estimates had variable levels of bias depending on the level of regularization, see figure 3a for 219 
a summary of the results. As expected from the OEF results, ML estimates of CMRO2 also had 220 
significantly reduced error and bias compared to the rNLS implementation. The proportional bias for 221 
the ML implementation was 0.977 compared to a minimum bias of 0.913 for the rNLS method. The 222 
bisquare RMS error in CMRO2 estimates for the ML implementation was 20.3 µmol/100g/min (22.6 223 
for an individual MLP network) whereas the error for rNLS estimates ranged from 29.6 to 52.4 224 
µmol/100g/min depending on the level of bias (with greater bias coinciding with reduced error), see 225 
figure 3b.  226 

Training of the MLP with reduced feature vectors (excluding the BOLD data) or limited respiratory 227 
stimuli (excluding either CO2 or O2 modulation) highlights the importance of each signal and 228 
stimulus in estimate the rate of oxygen consumption. As expected, removing the BOLD signal 229 
resulted in a significant reduction in the network’s ability to estimate CMRO2 (validation R2 reduced 230 
from 0.923 for the full model to 0.58). In this instance there should be no information relating to OEF 231 
in the feature vector and so the inference is based solely on the correlation between baseline flow and 232 
CMRO2 in the simulated data. Adding the BOLD data back in but with only an O2 stimulus does 233 
little to improve the performance of the network (R2 = 0.63). This is not unexpected as the hyperoxic 234 
BOLD signal is largely related to venous blood volume (Blockley et al., 2013) with little influence 235 
from OEF. Perhaps unexpectedly, including the CO2 stimulus but not the O2 stimulus significantly 236 
improves the ability of the network to infer resting CMRO2 (R2 = 0.71). While this is still 237 
significantly worse than the full model, it suggests that some quantitative metabolic information may 238 
be extracted from hypercapnic calibration studies that are normally employed to estimate relative 239 
changes in CMRO2 (Hoge, 2012). Additionally, such results suggest that the simulation framework 240 
could be utilized to optimize data acquisition by designing respiratory stimuli that maximize the 241 
performance of the ML implementation, and that such respiratory paradigms may be different 242 
compared to those for standard analysis methods (which are unable to infer resting CMRO2 243 
information from a hypercapnic calibration experiment). 244 

5.2 In-vivo 245 

Due to the limited availability and technical challenges associated with acquiring 15-oxygen PET 246 
data for CMRO2 mapping (the gold standard approach) it is difficult to directly validate the in-vivo 247 
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results obtained in this study. However, a number of fundamental relationships between resting 248 
physiological parameters have consistently been observed across groups of healthy individuals. Here 249 
we compare these observed relationships against the acquired data to infer the relative error and bias 250 
for each analysis method. One of the most frequently reported relationships in the healthy human 251 
brain is that resting blood flow is linearly correlated with resting oxygen metabolism (Coles et al., 252 
2006; Lebrun-Grandie et al., 1983; Leenders et al., 1990; Powers et al., 2011; Scheinberg and Stead, 253 
1949). Additionally, PET data suggests that the OEF should be approximately uniform across the 254 
cerebral grey matter e.g. (Hyder et al., 2016). Thus, we can use the coefficient of variation (COV) of 255 
grey matter OEF estimates as an indicator of parameter error, and examine the variation in the slope 256 
of the CBF-CMRO2 relationship to infer the proportional bias or sensitivity to physiological variation 257 
of CMRO2 estimates.  258 

As in the simulation experiments we investigated the in-vivo analysis for varying levels of 259 
regularization in the rNLS analysis and compare this to the ML results. Figure 4b plots the COV in 260 
OEF estimates for increasing levels of regularization against the slope of the CBF-CMRO2 regression 261 
(normalized by the slope of the ML estimate). As predicted by the simulations, the slopes of the ML 262 
estimates and the rNLS estimates are similar when little regularization is applied, with the slope of 263 
the rNLS estimates slightly reduced compared to the ML approach. As more regularization is applied 264 
the COV of OEF estimates is reduced and the slope between CBF and CMRO2 decreases, clearly 265 
demonstrating the trade-off between variance and bias. Again, as predicted by the simulations, the 266 
COV in ML estimates is significantly less than COV in rNLS estimates for a similar CBF-CMRO2 267 
slope.  268 

To investigate the bias in OEF estimates we take advantage of another physiological relationship 269 
reported in the literature; cerebral oxygen extraction is inversely related to [Hb] (Ibaraki et al., 2010) 270 
and the closely related parameter Hct (Morris et al., 2018). Taking the same approach as before we 271 
observe in-vivo results that closely match predictions from the simulation, see figure 4a.  As in the 272 
simulations, the slope in the [Hb]-OEF relationship is similar between the ML method and rNLS 273 
approach for a moderate amount of regularization. However, the slope is substantially increased 274 
when using minimal regularization, and reduced when applying strong regularization.  275 

Figure 5 shows scatter plots of the grey matter CBF-CMRO2 and [Hb]-OEF relationships observed 276 
with the ML and rNLS methods across the 30 healthy volunteers studied. The rNLS results are 277 
shown for a single level of regularization, where the slope of the [Hb]-OEF relationship most closely 278 
matches that of the ML analysis (see figure 4). The coefficient of determination is greater for the ML 279 
approach for each relationship, with R2 values of 0.56 and 0.35 for the CBF-CMRO2 and [Hb]-OEF 280 
relationships, compared to 0.34 and 0.14 for the rNLS approach (p<0.05 for all correlations).  281 

Table 3 reports the results of a bivariate analysis of [Hb] against OEF and CBF for both analysis 282 
methods. The slopes of the relationship between OEF and [Hb] are similar to that reported in healthy 283 
subjects by (Ibaraki et al., 2010), -1.75 Hb (g/dL). As per Ibaraki et al. the relationship between CBF 284 
and OEF did not reach significance (p=0.44) for the ML approach, however a significant negative 285 
correlation was observed in the rNLS analysis (p=0.005). A univariate analysis of CMRO2,0 against 286 
CBF0 is consistent with that observed in healthy controls by (Powers et al., 2011) (β1 = 0.2) for both 287 
analysis methods, β1 = 0.32 (p<0.001) and β1 = 0.24 (p<0.001) for the ML and rNLS approaches 288 
respectively. 289 

Figure 6 shows a comparison between CBF0, OEF0 and CMRO2,0 parameter maps calculated with the 290 
ML method (single MLP network and ensemble of 40 networks) and the rNLS method. The image 291 
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shows 7 slices from a single subject, which have been interpolated for display using cubic b-spline 292 
interpolation (Ruijters and Thevenaz, 2012) using FSLeyes (10.5281/zenodo.1470761). As expected 293 
OEF0 is not well estimated in the white matter, due to the T1 decay of the arterial spin labeling signal 294 
and the longer arrival time of white matter blood. Across grey matter containing voxels maps of 295 
OEF0 calculated with the ML methods are more uniform than those calculated with the rNLS 296 
approach, with the ensemble approach visibly outperforming the singe network MLP estimates. 297 
These observations are consistent with the results of the simulations and the grey matter COV 298 
observed for in-vivo OEF0 estimates. However, it is also apparent from the images that each method 299 
demonstrates sensitivity to regional susceptibility effects. For example, in the pre-frontal cortex and 300 
inferior temporal lobes the images show greater variability in OEF0 estimates, with regions of both 301 
over and under-estimation apparent. This instability is likely due to reduced BOLD SNR in these 302 
locations and alteration of the susceptibility of air in and around the nasal cavity and paranasal 303 
sinuses due to modulation of the inspired oxygen content during data acquisition. It is clear that the 304 
ML estimates, in particular those made from the ensemble of MLPs, are more robust to such regional 305 
susceptibility effects.  306 

The in-vivo analysis also highlights the improvement in computational efficiency of the proposed 307 
method. The rNLS approach took approximately 20 minutes to analyze a complete dataset on a 308 
standard laptop (2.8 Ghz Intel Core i7, 16GB memory), while the ML approach was able to complete 309 
the same analysis in approximately 10 to 20 seconds (depending on the number of networks in the 310 
ensemble of MLP regressors).   311 

6 Discussion and Conclusions 312 

Instability in parameter estimates made using noisy in-vivo data may be reduced by incorporating 313 
prior knowledge of physiological parameters, e.g. (Chappell et al., 2010; Frau-Pascual et al., 2014; 314 
Germuska et al., 2016; Mesejo et al., 2015). Previous investigation of such methods (Germuska et al., 315 
2016) suggests that they are an effective means to increase the robustness of CMRO2 estimates made 316 
with dc-fMRI. However, these methods are computationally expensive and must necessarily make a 317 
trade off between parameter uncertainty and parameter sensitivity. Thus, they are not well suited to 318 
high throughput or rapid data analysis and care must be taken when using such methods not to 319 
unduly bias parameter estimates towards the priors. In the work presented here we take a different 320 
approach by training a machine learning implementation that is robust to input noise. Given an 321 
appropriately selected (or generated) training dataset, a well-implemented solution will be unbiased, 322 
robust, and have a low computational overhead.  323 

Computer modeling suggests that the proposed method outperforms previous analysis methods both 324 
in terms of uncertainty and bias. In-vivo data supports the predicted improvement in uncertainty with 325 
a significant reduction in the COV of grey matter OEF0 estimates when compared to a regularized 326 
non-linear least squares fitting of the data. Additionally, agreement was found between the predicted 327 
behaviors of each method and their associated biases when compared to reported physiological 328 
relationships. Qualitatively, the in-vivo parameter maps suggest that the ML approach, especially 329 
when paired with an ensemble implementation, is more robust to physiological noise; producing 330 
physiologically plausible parameter estimates in challenging brain regions, e.g. near the frontal 331 
sinuses. Such physiological noise was not modeled in the training data so it is perhaps unexpected 332 
that the ML method is robust to these noise sources. However, it is plausible that the discriminative 333 
features identified from the frequency-domain representation of the data during training are less 334 
sensitive to these regional susceptibility changes than a traditional time-domain fit of the data. It is 335 
possible that this aspect of the ML approach could be enhanced by extending the training data to 336 
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include such regional susceptibility changes, either on their own or in combination with a spatially 337 
informed approach to data fitting.  338 

The use of an ensemble of MLP networks reduced parameter uncertainty in simulation and reduced 339 
the coefficient of variation in grey matter OEF0 estimates in-vivo, demonstrating its utility in this 340 
application. However, it is anticipated that enforcing network diversity during training could make 341 
further improvements in performance. As it is has previously been demonstrated that, in the presence 342 
of noise, the performance of an ensemble of networks can always be improved by explicitly 343 
encouraging diversity during training (Reeve and Brown, 2018). 344 

The machine learning implementation presented here employs a combination of proven signal 345 
processing (time-frequency transformation) and machine learning methods (decision trees and fully 346 
connected artificial neural networks) that have been shown to select appropriate features for learning 347 
and are robust to input noise. The proposed analysis pipeline demonstrates an improvement in both 348 
the accuracy and precision in parameter estimates compared to published methods, and is appropriate 349 
for the study of both healthy volunteers and in clinical investigations. However, there are still many 350 
avenues that could be explored both in terms of signal processing and machine-learning. For example 351 
time domain data could be converted to 2D time-frequency representations such as a spectrogram, or 352 
into spectrogram-like representations using wavelet transforms (for increased time resolution). This 353 
type of pre-processing would open the door to the application of 2D convolution neural networks 354 
(CNN) that have been so successfully applied in the domain of image processing. It is possible that 355 
the application of such approaches could further improve the performance of machine learning when 356 
analyzing dc-fMRI data. However, a thorough investigation of all available machine learning 357 
methods and associated pre-conditioning of the data is beyond the scope of the current study, which 358 
focuses instead on the realization of a practical solution by combining well-proven techniques for the 359 
analysis of signal data.  360 

All in-vivo analysis in this manuscript is performed in the absence of spatial smoothing, which is 361 
often employed to improve statistical estimates made from fMRI data (Friston et al., 1995). We chose 362 
not to employ spatial smoothing in this analysis for two principle reasons: first any such spatial 363 
filtering implies a prior assumption regarding the spatial extent of any variation (Rosenfeld and Kak, 364 
1982), and can thus lead to unwanted loss of sensitivity to physiological variation; second we did not 365 
want to increase the potential contamination of grey matter voxels with non-tissue signals, such as 366 
CSF or macrovessels (both of which are not included in the underlying signal model). The current 367 
study does not make any direct comparison between smoothed and unsmoothed analysis pipelines, 368 
however the presented method clearly avoids any possible smoothing artefacts that might otherwise 369 
bias the analysis. 370 

A limitation of the proposed method is the need to train new regressors for a given gas paradigm and 371 
set of acquisition parameters, e.g. arterial spin labeling tagging duration, repetition time and duration 372 
of the acquisition. In addition, there is a requirement that the in-vivo gas manipulation does not 373 
deviate significantly from the range of simulated designs. While it is a relatively straightforward 374 
process to retrain the regressors with a new set of parameters, to match the local acquisition protocol, 375 
the scope of the method could be increased if individualized gas traces could be incorporated into the 376 
training data; allowing a single pre-trained implementation to be applied across studies. 377 

The simulations and in-vivo results suggest that the proposed analysis method could significantly 378 
increase the utility of dc-fMRI, reducing the number of participants needed to detect a group 379 
difference in oxygen metabolism or oxygen extraction fraction and offering more physiological 380 
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interpretability of metabolic differences or alteration due to a stimulus. In addition, the significant 381 
reduction in processing time and the improved robustness of the individual parameter maps reduces 382 
two of the hurdles restricting clinical implementation of such techniques. 383 

 384 

Tables  385 

OEF CBF 

(ml/100g/min) 

[Hb] 

(g/dL) 

Mean capillary transit 
time  

(CBVcap / CBF, seconds) 

PminO2 

(mmHg) 

Cerebral Vascular 
Reactivity 

(% CBF / mmHg CO2) 

K 

0.05 – 
0.75 

1 – 250 10-18 0.25 – 4.0 0 - 30 1 - 7 0.01 – 
0.25 

Table 1. Range of physiological parameters used in the dc-fMRI data simulations for training of the 386 
machine learning regressors. 387 

Variable / 
abbreviation 

Expression (units) 

OEF 
CMRO2 

CBF 
φ 
[Hb] 
CaO2 
PaO2 
SaO2 
SvO2 
α 
β 
BOLD 
ASL 
M0blood 
PLD 
M 
K 
D 
CBVcap 
PminO2 

Oxygen Extraction Fraction (dimensionless) 
Cerebral Metabolic Rate of Oxygen consumption (µmol/100g/min) 
Cerebral Blood Flow (ml/100g/min)  
Oxygen binding capacity of hemoglobin (1.34 ml/g) 
Hemoglobin concentration (g/dL) 
Arterial oxygen content (ml/ml) 
Arterial oxygen tension (mmHg) 
Arterial oxygen saturation (dimensionless) 
Venous oxygen saturation (dimensionless) 
Grubb exponent 
Venous morphology / deoxy-hemoglobin - BOLD exponent 
Blood Oxygenation Level Dependent signal 
Arterial Spin Labeling 
Arterial blood MRI signal equilibrium magnetization (dimensionless) 
ASL post-label delay time (1.0 – 3.0 seconds) 
Maximum possible BOLD signal (BOLD calibration parameter) 
BOLD scaling factor = M / ([Hb] x (1-SvO2))β   
Effective oxygen diffusivity of the capillary network (µmol/100g/mmHg/min) 
Capillary blood volume (ml/100g) 
Minimum oxygen partial pressure at the mitochondria (mmHg) 
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h 
κ 

Hill coefficient (2.8) 
Effective permeability of capillary endothelium and brain tissue 
(µmol/mmHg/ml/min) 

Table 2. Summary of model parameters and abbreviation used in the dc-fMRI data simulations and 388 
their definitions. 389 

Predictor ML β1 (p value) rNLS β1 (p value) 

OEF -1.42 (0.001) -2.23 (0.001) 

CBF -0.07 (0.44) -0.37 (0.005) 

Intercept 61.95 (<0.001) 89.48 (<0.001) 

Table 3. Results of a bivariate regression of [Hb] against CBF0 and OEF0 grey mater estimates for 30 390 
healthy volunteers analyzed with the ML (ensemble of MLPs) and rNLS fitting methods. 391 
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