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ABSTRACT 

Current methods can, in a non-invasive manner, assess neural activity in all areas of the human brain but 

the olfactory bulb (OB). The OB is intimately involved in a long list of olfactory tasks, has been suggested 

to fulfill a role comparable to that of V1 and the thalamus in the visual system, and have been closely linked 

to a wide range of neuropathologies. Here we present a method for non-invasive recording of signals from 

the human OB with millisecond precision. We demonstrate that signals obtained via recordings from EEG 

electrodes at the nasal bridge represent responses from the olfactory bulb - recordings we term Electrobulb-

ogram (EBG). The EBG is localized to the OB, is reliable, and follows response patterns demonstrated in 

non-human animal models. The EBG will aid future olfactory-related translational work but can also easily 

be implemented as an everyday clinical tool to detect pathology-related changes in human central olfactory 

processing in neurodegenerative diseases. 

 
 

INTRODUCTION 

Measures of neural processing can be obtained us-

ing non-invasive methods from all areas of the hu-

man brain but one, the olfactory bulb (OB). The OB 

is the critical first central processing stage of the ol-

factory system, intimately involved in processing of 

an ever-increasing list of olfactory tasks: odor dis-

crimination, concentration-invariant odor recogni-

tion, odor segmentation, and odor pattern recogni-

tion (Wilson and Sullivan 2011), to mention but a 

few. Moreover, recent studies demonstrate that the 

role of the OB is not limited to the olfactory system, 

but that it impacts many brain functions (Biskamp 

et al. 2017). Within the olfactory system, the OB has 

been suggested to fulfill a role comparable to both 

V1 (Shepherd et al. 2004) and the thalamus in the 

visual system (Kay and Sherman 2007). Critically, 

all our knowledge about the OB comes from animal 

studies. In rodents the relative size of the OB com-

pared to the rest of the brain is very large (McGann 

2017) and as such, it is not surprising that the OB is 

one of the most well-studied brain areas in the mam-

malian brain. 

The OB is also linked to several disabling neuro-

degenerative diseases (Murphy 2019) where a 

strong link to Parkinson's disease stands out (Doty 

et al. 1988). The OB is the very first cerebral area 

of insult in Parkinson's disease (Halliday et al. 

2011) which explains why behavioral olfactory dis-

turbances commonly precede the characteristic mo-

tor symptoms defining the disease by several years 

(Ross et al. 2008) and why early occurrence of ol-

factory dysfunction is more prevalent (~91%) than 

motor problems (~75%) (Haehner et al. 2009; Doty 

et al. 1988). Thus, the development of a non-inva-

sive method to assess OB processing in the awake 

human is a necessary and important step to fully un-

derstand the neural mechanisms of human olfactory 

processing in both health and disease. 

The only published data of human OB responses 

dates back fifty years and was obtained from elec-

trodes placed directly on the human olfactory bulb 
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during intracranial surgery (Hughes et al. 1969). At-

tempts to acquire neural signals from the human OB 

using functional neuroimaging have failed either 

due to poor spatial resolution of the method (Posi-

tron Emission Tomography; PET) or, in the case of 

functional magnetic resonance imaging (fMRI), due 

to the OB’s proximity to the sinuses where the cav-

ity creates susceptibility artifacts and reduced signal 

strength in the OB area (Glover and Law 2001). 

Electroencephalogram (EEG) signals do not suffer 

from interferences from the sinuses and recordings 

in rabbits demonstrate that OB signals can be ob-

tained from scalp electrodes placed above the OB 

(Yamamoto 1961; Evans and Starr 1992). However, 

until now, no attempts have been made to demon-

strate non-invasive recordings of OB function in hu-

mans using EEG. 

Odor-dependent EEG recordings in humans have, 

by tradition, used low-pass filters at around 30Hz 

(Hummel and Kobal 2001), based partly - on the 

now disputed assumption - that most human percep-

tual processes occur in lower frequency bands, and 

on the observation that human cortical processing 

of odors mainly operates at around 5Hz (Huart et al. 

2012). In sharp contrast, odor processing within the 

rodent olfactory bulb has been demonstrated to pro-

duce both beta and gamma oscillations (Kay 2014). 

However, when centrifugal input to the OB is elim-

inated, only gamma oscillations remain (Martin and 

Ravel 2014; Neville and Haberly 2003). Given that 

gamma and gamma-like oscillations in the OB have 

been related to odor processing in a range of species 

(Nusser et al. 2001; Kay et al. 2009) and gamma 

band responses have been observed in the only 

study to date where intracranial recordings from the 

human OB have been collected (Hughes et al. 

1969), we hypothesized that non-invasive signals 

from the OB, a so-called electrobulbogram (EBG), 

should be detectable within the gamma-band range. 

Specifically, this activation should occur within 

100-200ms after odor onset based on the temporal 

limits given by the biology of the olfactory system 

(see Supplementary data) and past studies demon-

strating that down-stream areas are activated shortly 

before 300ms post odor onset (Hudry et al. 2003; 

Jiang et al. 2017). To this end, we addressed the hy-

pothesis that signals from the human olfactory bulb 

can be assessed from the scalp using micro-ampli-

fied EEG using a four-stage approach. First, we op-

timized electrode placement by simulating how a 

potential signal would be manifested on the scalp. 

Second, we determined an EBG signal on the sensor 

level that on the source level was located to the OB, 

with a good reliability of the obtained measure. 

Third, we demonstrated that while participants after 

long odor exposure perceptually habituate, the EBG 

signal is insensitive to odor habituation. This is a 

hallmark neural signature of the OB commonly re-

ported in animal models (Wilson 1998). Finally, us-

ing a human lesion-type model - i.e., an individual 

born without bilateral olfactory bulbs - we deter-

mined that absence of olfactory bulbs abolishes the 

EBG signal 

METHOD 

Participants 

In Study 1, 29 individuals participated (age = 27.07 

±5.30, 18 women); in Study 2, 18 individuals (age 

= 28.89 ±4.80, 7 women) participated in three sep-

arate testing sessions on different days; in Study 3, 

21 individuals participated (age = 29.55 ±5.59, 11 

women); in Study 4, a 27 years old male, otherwise 

healthy, individual with the diagnosis of isolated 

congenital anosmia participated. The diagnosis was 

confirmed by an ENT physician within the Swedish 

healthcare system and further supported by our own 

assessments that indicated that he scored at random 

when his ability to identify, discriminate, and detect 

odors was assessed with the standardized clinical 

odor test Sniffin Sticks (Hummel et al. 2007; Kobal 

et al. 2000). Moreover, both his parents, as well as 

himself, reported no recollection of him ever having 

an odor sensation and T1-weighted and T2-

weighted MR images indicated total absence of bi-

lateral olfactory bulb and having an average olfac-

tory sulcus depth of 1.12mm, both morphological 

measures are indicative of congenital anosmia 

(Huart et al. 2011). All other participants had a 

functional olfactory sense with no history of head 

trauma leading to unconsciousness, did not use any 

prescription drugs, were not habitual smokers, and 

declared themselves as generally healthy. Func-

tional sense of smell was assessed both by verbal 

confirmation from the participant and a 5-item 4-al-

ternative cued odor identification test comprising of 

odors from the Sniffin Sticks odor identification test 

(Kobal et al. 2000). A minimum of 3 correct an-

swers were required to participate (mean correct 

over Studies 1-4: 4.5). Given the low rate of func-

tional anosmia in our tested age group and the 

known chance score, the likelihood of erroneously 

labeling an individual with anosmia as having a 
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functional sense of smell is about 0.05%. Partici-

pants were recruited through the Karolinska Insti-

tutet’s participant recruiting site and signed in-

formed consent was obtained before participants 

enrolled in the respective study. A unique set of par-

ticipants was used for each study. All aspects were 

approved by the local ethical permission board 

(EPN: 2017/2332-31/1). 

Odor stimuli and odor presentation methods 

We used different sets of odors in the studies to 

demonstrate the generalizability of results. In Study 

1, Orange (Sigma Aldrich, # W282510, CAS 8008-

57-9), Chocolate (Givaudan, VE00185273), and n-

Butanol (Merck, CAS 71-36-3) were diluted to 

30%, 15%, and 20%, respectively, in neat diethyl 

phthalate (99.5% pure, Sigma Aldrich, CAS 84-66-

2). In Study 2, we used Linalool (Sigma Aldrich, 

CAS 78-70-6), Ethyl Butyrate (Sigma Aldrich, 

CAS 105-54-4), 2-Phenyl-Ethanol (Sigma Aldrich, 

CAS 60-12-8), 1-Oceten-3-OL (Sigma Aldrich, 

CAS 3391-86-4), Octanole Acid (Sigma Aldrich, 

CAS 124-07-2), and Deithyl Disulfide (Sigma Al-

drich, CAS 110-81-6) diluted in neat diethyl 

phthalate to 0.14%, 0.25%, 0.1%, 0.2%, 1%, 0.25%, 

respectively. In Study 3, we used 1% isopropyl al-

cohol (99% pure, Fisher Scientific, CAS 67-63-0) 

diluted in Propylene Glycol (99% pure, Sigma Al-

drich, CAS 57-55-6). In Study 4, Chocolate (Givau-

dan, VE00185273), n-Butanol (Merck, CAS 71-36-

3), and 1-Oceten-3-OL were diluted to 30%, 15%, 

and 1%, respectively, in neat diethyl phthalate. All 

dilution values above are given as volume/volume 

from neat concentration. 

In all studies, odors were delivered birhinally using 

a computer-controlled olfactometer with a known 

rise-time (time to reach 90% of max concentration 

from triggering) of about 200 ms (Lundström et al. 

2010) and a total flow-rate of 3 liter/minute (l/min) 

per channel and inserted into an ongoing 0.3 l/min 

constant flow to avoid tactile sensation of the odor 

onset. This means that total airflow per nostril was 

never higher than 1.65 l/min, a flow significantly 

lower than airflows known to elicit nasal irritation 

(Lundström et al. 2010). 

The olfactory and respiratory system are tightly in-

tertwined. To remove potential effects of respiration 

from the measure, we used a sniff-triggered design: 

in Study 1, 2, and 4, all trials were initiated at the 

onset of inhalation. This was achieved by monitor-

ing the sniff pattern by means of temperature pod 

attached close to the right nostril sampling at rate of 

400 Hz (Powerlab 16/35, ADInstruments, Colo-

rado) and processed in LabChart Pro version 8.1.13. 

As the individual breathes in, the cold air lower the 

temperature and as the person breathes out, warm 

air elevates the temperature. The change of temper-

ature therefore indicates the respiration cycle. An 

individual threshold was set to trigger the olfactom-

eter slightly before the nadir of the respiratory cycle 

to synchronize odor presentation with nasal inspira-

tion. In Study 3, we employed a different strategy to 

remove the effect of respiration by instructing the 

participant to breathe through their mouth through-

out the study, thus abolishing the sniff cycle, and the 

odor stimuli were passively presented. 

Stimulus triggering and timing was achieved using 

E-prime 2 (Psychology Software Tools, Pennsylva-

nia). To avoid participants predicting the onset of 

the trial, a jittered pre-stimulus interval (600~2000 

ms) was inserted before each trial. Moreover, to 

minimize habituation, a long inter-trial-interval 

(ITI) was initiated after odor offset (14000 ms), ex-

cept in Study 3 where habituation was sought. 

Moreover, to minimize potential redundant disturb-

ances, participants were tested in a sound attenuated 

recording booth with good ventilation and potential 

sounds from the olfactometer and odor mixing man-

ifold, which might give away odor onset, was 

masked with low volume white noise presented via 

headphones throughout the whole experiment. The 

volume of noise was adjusted for each individual to 

keep them comfortable through the full experiment. 

Electrode placement- Electrobulbogram 

The optimal location of the Electrobulbogram 

(EBG) channels were determined based on simu-

lated lead-field. The scalp lead-field were simulated 

for two dipoles placed in left and right olfactory 

bulb. The left and right OB location were deter-

mined on the native space of individual T2 weighted 

images in ACPC coordinate system and converted 

to the MNI coordinate system; left OB (x -6, y 30, 

z -32) and right OB (x 6, y 30, z -32).  
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Fig.1 Overview of the methodological procedure to extract signal from olfactory bulbs. A) Flowchart of the procedures. B) 

A lead field simulation of olfactory bulb activity projected on the scalp using a symmetrically located dipole in each olfactory 

bulb (left/right). C) Electrode placement for the electrobulbogram (EBG) on the forehead and exemplary recordings. D) Multi-

taper time frequency decomposition using two Slepian tapers. E) Cross-spectral density between scalp electrodes and EBG chan-

nels. F) Four concentric spheres used to construct the head model. G) The undetermined source model of every voxel of brain 

with gray matter probability more than 40% together with the digitalized sensor position of each individual and head model fed 

into dynamical imaging of coherent source to localize the cortical sources.  

 

The dipoles momentum was assumed to face radi-

ally outward and the same head model as the main 

analysis was used to project the lead-field on the 

scalp level (Fig. 1B). The simulation suggested that 

the majority of the OB’s energy concentrate on the 

forehead; therefore, optimal placement of the 4 

electrodes were determined to be a curved configu-

ration on the forehead slightly above the eyebrows, 

bilaterally, in addition to two mastoid electrodes as 

the reference electrodes (Fig. 1C; mastoid elec-

trodes are not shown in the figure). 

Electroencephalography, Electrobulbogram, 

and neuronavigation measurement 

In all studies, the EEG/EBG signal was sampled at 

512 Hz using active electrodes (ActiveTwo, Bio-

Semi, Amsterdam, The Netherland) and band-pass 

filtered at 0.01-100 Hz during recording within the 

ActiView software (BioSemi, Amsterdam, The 

Netherland). Before the actual EEG/EBG record-

ing, electrode offset of each electrode was visually 

checked and electrodes with offset above 40mV 

was adjusted until the offset reached below the ac-

cepted threshold value. EEG electrode placement 

followed the international 10/20 standard in all 
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studies and two mastoids electrodes were used as 

reference. 

In Study 1 and 2, the EEG/EBG recording included 

64 EEG scalp electrodes and 4 EBG electrodes. Af-

ter the attachment of all electrodes, the positions of 

each electrode in stereotactic space were digitalized 

using an optical neuro-navigation system (Brain-

Sight, Rogue Research, Montreal, Canada). The 

digitalization protocol comprised of localizing fidu-

cial landmarks such as the nasion and left/right 

preauricular as well as the central point of each elec-

trode. These landmarks were next used to co-regis-

ter each electrode to the standard MNI space. The 

digitalized electrode positions were later used in the 

Beamforming algorithm to enable the localization 

of cortical sources. In Study 3 data were recorded 

from 32 EEG scalp electrodes and 4 EBG electrodes 

and Study 4 used 64 EEG scalp electrodes and 4 

EBG electrodes 

EEG/EBG Data Analysis 

Preprocessing  

EEG/EBG signals were preprocessed by epoching 

data from 500 ms pre-stimulus to 1500 ms post 

stimulus. Next, data were re-referenced to the aver-

age of left and right mastoids electrodes, band-pass 

filtered at 1 Hz - 100 Hz, and line-filtered at electri-

cal frequency. The line filtering was performed with 

discrete Fourier transform (DFT) filters in which we 

applied a notch filter to the data to remove power 

line noise. The notch filter was implemented by fit-

ting a sine and cosine function to the data at power 

line frequency with subsequent subtraction of the 

noise component. The epoch length in all analysis 

was at least 2 seconds, covering 100 to 120 cycles 

of power line noise component and led to sharp 

spectral of the notch filter. This sharp spectral fea-

ture of the notch filter increases the specificity of 

removing the noise component (Oppenheim 1981; 

Percival and Walden 1993). Furthermore, trials 

with different types of artifacts (i.e. muscle and eye 

blinks) were identified with automatic algorithms. 

Identifying muscle artifacts was performed by band 

pass filtering the raw data using Butterworth filter 

order of 8 and Hilbert transformed to extract ampli-

tude values, followed by z-score. Trials with z-

value above 6 were identified as trials contaminated 

by muscle artifact and removed from further analy-

sis. 

Trials with eye blinks were identified by band-pass-

ing the raw data by Butterworth filter order of 4 and 

Hilbert transformed to extract amplitude values, fol-

lowed by z-score. The major concern for EBG sig-

nal is eye blinks and eye movements therefore, a 

lower z-value of 4 was used to increase the detec-

tion sensitivity of the algorithm. Trials with value 

exceeding 4 were removed from further analysis. 

Finally, a manual inspection was carried out and tri-

als with comparative high variance were removed. 

EBG time frequency analysis: detecting the OERS 

Development of power across time and frequency 

of the EBG channel in the gamma frequency was 

determined by employing a multi-taper sliding win-

dow (range 30-100 Hz with step 0.1 Hz). Power was 

estimated at each bin using wavelet with two tapers 

from discrete prolate spheroidal sequences (DPSS). 

The window length was adjusted to capture 3 cycles 

of the signal at each frequency bin. For lower fre-

quencies, we considered a wider window and as the 

frequencies reaches higher value the window also 

becomes narrower. A narrower window at the 

higher frequencies increases the sensitive of the 

power estimation by implementation of a higher 

time resolution but also lower frequency resolution. 

In the gamma band, lower frequency resolution is 

not a significant confound because the gamma band 

is considered to be broadband (i.e., 30-100 Hz). 

Wavelets transformation at each time bin was car-

ried out by two sets of wavelet function that was de-

rived from the two DPSS tapers. To perform the 

wavelet transformation, the wavelet function had to 

convolve with the EEG/EBG signal (Fig. 1D). The 

convolution was implemented in the frequency do-

main as a multiplication of fast Fourier coefficients 

of the signal and the wavelets. Next, the estimated 

power of the epochs was demeaned by normalizing 

to the average power of the whole epoch and con-

verted to decibel values (dB). 

Beamforming source reconstruction: localizing the 

OERS’ cortical source 

To localize the cortical source of the detected 

OERS, spectral density of the signal at the time pe-

riod of 100 to 250 ms post-stimuls were estimated 

using fast Fourier algorithm with central frequency 

60 Hz (i.e. the central frequency of the OERS) and 

taper smoothing parameter 5 Hz, meaning that the 

range from 55 Hz to 65 Hz were taken into the com-

putation of cross spectral density for source locali-

zation (Fig. 1E). The number of tapers was esti-

mated as the time half bandwidth (Percival and 

Walden 1993). Prior to cross-spectral density esti-

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 4, 2019. ; https://doi.org/10.1101/660050doi: bioRxiv preprint 

https://doi.org/10.1101/660050
http://creativecommons.org/licenses/by-nd/4.0/


6 

 

mation noisy electrodes were identified by examin-

ing the power of power line noise (50 Hz) of the 

electrodes for given time window, those electrodes 

with z-value more than 3.5 were interpolated using 

weight average of the adjacent electrodes. Then, the 

cross-spectral density between pairs of electrodes 

was derived by multiplying the spectral density of a 

channel with conjugated spectral density of other 

channels. To solve the inverse problem on a trial 

level, a linear transformation of Dynamic Imaging 

of Coherent Sources (DICS) was used (Gross et al. 

2001). Given the associations among electrodes, a 

unique configuration of cortical sources can be es-

timated by DICS that explains the scalp potential. 

Association among electrodes was measured by co-

herence derived from cross-spectral density be-

tween pairs of channels at the central frequency (i.e. 

60 ± 5 HZ). We also assigned the regularization pa-

rameter to 10% in order to reduce the effect of nui-

sance parameter. 

Digitalized electrode-positions of each participant 

were co-registered to the default MNI brain. Co-

registration was performed automatically with 6 pa-

rameters affine transformation followed by manual 

inspection for any misalignment. Subsequently, a 

head model was created based on a multi-shell 

spherical head model. Construction of the head 

model was initiated by tissue segmentation on the 

default MNI T1-weighted image. The segmentation 

procedure included scalp, skull, gray matter, and 

white matter. Next, spherical volume conductors 

with the conductivity of 0.43, 0.01, 0.33 and 0.14 

were assigned to scalp, skull, gray matter, and white 

matter respectively (Fig. 1F). An underdetermined 

source model was used in which distributed sources 

were equally spread over the full brain. The brain 

was divided into a three dimensional grid, covering 

the whole brain with at least 10mm spacing between 

two points on the grid. We constructed the source 

model on each grid-point depending on the gray 

matter probability of that particular point. A dipole 

was placed on the points with the gray matter prob-

ability larger than 40% (Fig. 1G). The DICS algo-

rithm looks for a weighted summation of the scalp 

electrodes in order to reconstruct the cortical 

sources on trial level. We used the balanced com-

mon filter approach: here, sources for both condi-

tions (i.e. Odor and Air) were concatenated and a 

common solution for the inverse problem was com-

puted. Therefore, the difference of the cortical 

sources between two conditions is free from biases 

originating from different solutions estimated by 

DICS. Subsequently, Odor trials and Air trials were 

averaged within individuals. Moreover, to quantita-

tively investigate the goodness of fit for the inverse 

model, we used the dipole fitting approach (deter-

mined source model) to assess the amount of power 

each hypothetical sources can explain. Multiple 

sites of the brain selected including olfactory bulb, 

anterior piriform cortex, orbitofrontal cortex, and a 

non-olfactory related area, primary auditor cortex, 

as the underlying sources. Two symmetric dipole 

place in each of these sites bi-hemispherically. 

Then, the forward problem was solved with the 

same head model as inverse problem within time 

frequency of the interest for each scenario and the 

explained power and error estimated. DICS analysis 

were carried out in the open source Fieldtrip toolbox 

(Oostenveld et al. 2011). 

Statistical analysis 

All statistical analyses were performed within the 

MATLAB (version 2018a) environment with Sig-

nal Processing and Fieldtrip toolboxes. The spectral 

density of the four EBG electrodes were averaged 

on the participant level. Then, Monte Carol permu-

tation tests was used to examine if the power of av-

eraged EBG spectral density was significantly 

higher in Odor compared with Air on the group 

level. Non-parametric permutation tests were used 

to assess statistical significance rather than para-

metric statistics given the tests ability to assess a 

sharp null hypothesis (i.e. no difference between 

conditions), its ability to provide exact control of 

false positives, because the EBG measure is produc-

ing an unknown distribution, and the increase in 

generalization of obtained results. A 1000 permuta-

tions were performed on the averaged EBG spectral 

density so that in each permutation, 50% of condi-

tions where shuffled and the difference between 

Odor and Air calculated by means of two tailed t-

test between the actual data and shuffled data. The 

exact p-value was derived by the average number of 

the times that the actual data is bigger than shuffle 

data out of 1000 permutations. For purpose of illus-

tration, t-maps where smoothed while maintaining 

the shape of the observation. Standard conservative 

corrections for multi-comparison could not be em-

ployed due to extensive number of test elicited by 

the high resolution of the spectral density maps. We 

therefore reduced the risk of false positive results 

induced by the many statistical tests by replicating 

the main EBG finding in independent experiments 
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(Study 1, 2, and 3). Test-retest reliability was as-

sessed by bivariate Pearson correlations and inter-

class correlation determined with ICC(2, k), a meas-

ure widely used to quantify the agreement of the tar-

get measure (i.e. OERS power) between individuals 

across different sessions(Shrout and Fleiss 1979). 

All tests, when applicable, are two-sided. 

RESULTS 

Determining and localizing the electrobulb-

ogram  

We first assessed optimal electrode positions by 

performing a lead field simulation where bilateral 

dipoles where placed in the olfactory bulb of an an-

atomical head model (Fig. 1B). Optimal electrode 

position for signal acquisition was determined on 

each side of the nasal bridge, just above the eye-

brows. In Study 1, we therefore placed four micro-

amplified EEG electrodes (ActiveTwo, BioSemi, 

Amsterdam, The Netherlands), two on each side of 

the nasal bridge (Fig. 1C) to capture the dipole 

spread and to reduce potential influence of artifacts 

from single electrodes. Analyses (Fig. 1A, D-F – 

see Material and Methods for details) were based on 

averaged responses to 1s odor or clean air presenta-

tions, presented by a computer-controlled olfactom-

eter (Lundström et al. 2010). Spectral density of the 

signal was time-locked to stimulus onset, assessed 

and adjusted by a photoionization detector (Ohla 

and Lundström 2013) and averaged across the four 

electrodes and trials to optimize signal-to-noise ra-

tio. 

Stimuli were triggered shortly after the nadir of the 

sniff cycle to optimize odor stimulus perception and 

to eliminate sniff-cycle dependent effects. We 

therefore first determined whether the motor task of 

sniffing produced any signal within the designated 

time and frequency band at the sensor level. To this 

end, we assessed sniff onset-related responses in the 

time frequency map (TFR) within the clean air only 

condition (Air). Minor and non-significant sniff-re-

lated activity was indicated in the lower frequency 

range (~38-45 Hz) around stimulus onset (Fig 2A); 

however, this activity did not differ from baseline 

(Fig. 2B; Monte Carlo permutation test with 1000 

permutations). We then determined the TFR for 

odor trials within the designated time and frequency 

band. To exclude contamination by sniffing and 

other motor-related artifacts that were not observa-

ble, we contrasted the Odor against the Air condi-

tion. An odor event-related synchronization 

(OERS) was observed in the gamma band (~55-65 

Hz) around ~100-150 ms post stimulus (Fig. 2D). 

Subsequent permutation testing (1000 permuta-

tions) revealed significant differences between 

Odor vs. Air conditions. To directly determine the 

direction of the effect, we compared the averaged 

power within the time/frequency of interest for each 

condition against their baseline. Power during the 

Odor condition (Fig 2F) was significantly larger 

than during the Air condition (Fig 2C), t(28) = 3.62, 

p < .01, CI [.23, .91] providing further evidence 

that the effect is mediated by the presence of an 

odor, and not de-synchronization during presenta-

tion of air. 

Due to the proximity to the eyes and facial muscles, 

the EBG measure is artifact sensitive. In Study 1, an 

average of 52% of all trials were removed from 

analyses due to artifacts. Thus, to determine the 

number of trials needed to detect a reliable signal 

from the EBG with the same statistical power as 

demonstrated in Study 1, trials were stepwise added 

to power analyses. Only 7 clean trials were required 

to reach full statistical power (Supplementary Fig-

ure S1). From this, we conclude that with the aver-

age trial rejection rate, a simple experimental ses-

sion with one condition would need a minimum of 

15 trials to detect a robust EBG signal. 

The above detailed power analyses demonstrated 

that odor stimuli produce a significant EBG signal 

in the predicted time and frequency domain on the 

sensor level, and that this was not a function of po-

tential motor and attention-related confounds pro-

duced by sniffing. We next asked if the olfactory 

bulb is the specific source of this signal. We did this 

by applying a multi-taper time-frequency decompo-

sition (Fig 1D) on the signal from all EBG and scalp 

electrodes in the time/frequency area of interest and 

localized the signal at single trial level. Importantly, 

the individual EEG data was co-registered to a mul-

tiple-tissue head (Fig 1F) and a source model (Fig 

1G) using a neuronavigation system (Brainsight, 

Rogue Research, Montreal, Canada) for improved 

spatial precision. The reconstructed source of the 

OERS revealed elevated power in the OB, with a 

8% increase in power in Odor compared with Air 

condition (Fig. 2G). No other major sources were 

detected in the time and frequency domain of inter-

est suggesting the OB is, in fact, the underlying 

source of the EBG signal. 

The undetermined source model indicated the OB 

as the underlying source of the EBG but this does 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 4, 2019. ; https://doi.org/10.1101/660050doi: bioRxiv preprint 

https://doi.org/10.1101/660050
http://creativecommons.org/licenses/by-nd/4.0/


8 

 

not directly compare competing solutions. To di-

rectly compare different hypothetical potential sig-

nal sources, we used a constrained source-model 

(guided dipole placement; Supplementary Figure 

S2A) to compare the OB, the anterior piriform cor-

tex, the medial orbitofrontal cortex, and, as a non-

olfactory control, the primary auditory cortex. The 

OB solution explained more than twice the amount 

of the total variance of the signal source space pa-

rameters than did dipole solutions in piriform-, or-

bitofrontal-, and auditory cortex (Supplementary 

Figure S2B).
 

 

Fig.2 Localization of odor-evoked response in sensor and source space. A) Sensor time-frequency decomposition of difference 
in power for Air vs. Baseline condition for the EBG electrodes. B) T-statistics derived from 1000 Monte Carlo permutations 
demonstrating no change in power for inhalation of Air only condition for the EBG electrodes. Circles show individual values. 
C) Averaged power change for Air across 100-125 ms with standard error of the mean (SEM). D) Sensor time frequency 
decomposition for Odor against Air conditions. E) T-statistics derived from 1000 Monte Carlo permutations contrasting Odor 
with Air conditions (p < .01). Orange color marks significant change in power for Odor against Air and the black horizontal line 
on the color-bar marks the threshold for displayed t-values. F) Averaged power change for Odor condition across 100-125 ms 
with SEM. Circles show individual values. G) Reconstructed sources of the olfactory evoked synchronization indicating olfactory 
bulb as the source. Color bars denote relative change in power and x, y, z coordinates in figures indicate coordinates of slice in 
Talairach space according to the MNI stereotactile reference system. 
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Reliability and precision of the electrobulb-

ogram 

Having established the EBG measure, we next de-

termined its reliability and precision by comparing 

the EBG in the same individuals across repeated 

testing sessions spanning multiple days. In Study 2, 

participants completed three identical testing ses-

sions that were at least one day and at most one 

month apart. The EBG was acquired using the 

above described method and analysis focused on the 

same time and frequency window of interest. First, 

to determine test-retest reliability, we assessed both 

intra-class correlation [ICC(2,k)], a measure of 

agreement (Shrout and Fleiss 1979), as well as pair-

wise similarities (i.e. correlation coefficient) be-

tween gamma-band power from both sessions. The 

ICC(2,k) showed agreement between measure-

ments (ri = 0.47) and subsequent F-test showed that 

the agreement was statistically significant, F(2, 

26.65) = 3.99 p < .03, indicating a low spread 

among individuals’ EBG values and therefore high 

agreement (Shrout and Fleiss 1979). Test-retest cor-

relations ranged between r = .76 to r = .81 (Fig 3A), 

thereby indicating high test-retest reliability. 

Although test-retest correlation is a widely used 

measure of reliability, the magnitude of a correla-

tion is, to some degree, dependent on the amount of 

true variability among participants that is in turn de-

pendent on within-participant homogeneity. So, to 

assess the precision of the EBG measure, we also 

assessed the mean effect size and the standard error 

of the mean (SEM), an estimate of the standard de-

viation of the single-trial EBG across an infinite 

number of sessions. The mean effect size across the 

three sessions demonstrated a medium effect (Co-

hen’s d = .44, Fig 3B) and the SEM value across the 

three sessions (± 0.067), compared to a mean power 

of 0.75, indicate that the EBG measure has good 

precision. Finally, we assessed dispersion rate using 

a within experiment meta-regression estimate (Q). 

The dispersion rate indicates whether the distribu-

tion is squeezed or stretched compared to an ideal 

distribution. Assessing the dispersion rate of the 

three sessions, as determined by help of meta-re-

gression, we found a Q value of 0.04 that is smaller 

than the experimental degrees of freedom (2) and 

indicate that the EBG measure has a low dispersion 

rate (Fig 3B). Taken together, these data suggest 

that the EBG measure is both reliable and precise. 

 

Fig.3 Test-retest reliability and dispersion rate of the EBG. A) Pairwise correlation matrix across the three sessions. Values 
indicate bivariate Pearson correlation coefficients and black dots within scatter plots shows individual values for each com-
parison. Colors indicate mean dispersion with colors indicating smoothed underlying distribution based on bootstrapping of 
the test data. B) Effect size and 95% confidence interval for EBG detection within each testing session (CIsession1 = [.16 .68], 
CIsession2 = [.27 .80] and CIsession3 = [.10 .62]). Overall effect showed medium effect size (Cohen's d = .44) and meta-regression 
showed insignificant dispersion among the three sessions. 
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Validating the electrobulbogram 

The signal source analyses (Fig 2G) support the 

conclusion that the EBG signal originates from the 

OB. However, the signal source solution is merely 

the most likely given the acquired data, and not a 

validation of the method per se. Because no estab-

lished measure of signal from the human olfactory 

bulb exists short of direct and invasive recording 

from the OB — a measure that is uniquely difficult 

to obtain due to the ethical dilemma of placing in-

tracranial electrodes that are not strictly needed 

from a clinical perspective — validation of the 

measure needs to be indirect. We therefore assessed 

whether the EBG signal displayed a hallmark signa-

ture demonstrated in OB data obtained in several 

non-human animal models, namely insensitivity to 

habituation. Importantly, the piriform cortex is 

known to demonstrate a rapid habituation to re-

peated or prolonged odor exposure resulting in a 

clearly diminished neural signal (Poellinger et al. 

2001; Wilson 1998). This habituation can be clearly 

observed in ERPs of the scalp where a short inter 

trial interval between odor stimuli greatly reduce 

the signal. In contrast, the signal generated by the 

OB shows reduced sensitivity to habituation: even 

after repeated exposure, the OB in rats displays only 

a minimal reduction in odor-evoked activity (Wil-

son 1998; Zhao et al. 2016). Thus, a lack of a sig-

nificant modulation after rapid, repeated odor 

presentation would suggest the OB as a primary 

origin whereas a marked decline of the EBG would 

indicate that the signal has a major cortical source. 

In Study 3, we determined the effect of odor habit-

uation on the EBG response from rapid repetition of 

odor exposures with long duration, a paradigm that 

is known to introduce fast and sustained odor habit-

uation (Rankin et al. 2009). We measured responses 

from EBG electrodes as well as scalp EEG elec-

trodes. After each trial, participants rated the per-

ceived intensity of the odor on a 10 step computer-

ized visual analogue scale. We first assessed 

whether our experimental paradigm rendered per-

ceptual odor habituation. As expected, participants 

experienced a rapid decline in perceived intensity of 

the odor on repeated exposure (Supplementary Fig 

S3). We then assessed whether the EBG signal 

demonstrated a similar decline or whether the signal 

is uncoupled from the perceived intensity of the 

odor. As predicted by the hypothesis that the EBG 

signal originates from the OB, a mixed effect model 

(with trials as fixed effect and subjects as random 

intercepts) showed no significant slope in OERS 

power as a function of trial (Fig. 4A). Furthermore, 

to reduce variability and increase the chance of de-

tecting a potential change, we split the session into 

two halves (i.e. first half and second half of the ses-

sion), and statistically tested for potential signifi-

cant difference between early and late trials in 

power by 1000 permutations. Although a small 

nominal decrease in power in the area of interest 

was observed, there was no statistical change in 

power between early and late trials (Fig. 4B). We 

next assessed habitation effects for the scalp ERP 

signal were we hypothesized that the effect would 

be large. An established scalp ERP correlate of per-

ceived odor intensity is the difference (delta) in am-

plitudes between the N1 and P2/3 ERP components 

over the parietal cortex (Pause and Krauel 2000). 

The N1-P2/3 difference in power over parietal areas 

(Pz scalp electrode) demonstrated a characteristic 

habituation slope with initial large responses that 

subsequently progressed over trials towards zero. 

Specifically, the linear trend (linear mixed model) 

of the effect demonstrated a significant slope across 

trials, t(971) = -3.15, p < .002, CI [-.010, -.002]. 

Together, the results show that the EBG signal pos-

sesses the hallmark signature of insensitivity to-

wards odor habituation. 

Validating the EBG response with a human le-

sion-type model  
Finally, we assessed whether unknown non-olfac-

tory related factors might mediate the EGB re-

sponse seen in Study 1-3. Although unlikely given 

the consistency of the EBG signal across experi-

mental conditions, there is a possibility that the 

EBG signal is mediated by some spurious effect that 

our experimental designs cannot account for, such 

as a systematic imbalance in attentional load, task-

demands, sniff-related motor activity, micro sac-

cades etc. Therefore, in Study 4, we ruled out these 

factors by applying the technique to a human lesion-

like model by testing whether an EBG signal would 

emerge when there is no bulb to produce it. We did 

this by testing one individual with isolated idio-

pathic congenital anosmia (ICA), i.e., born without 

the sense of smell. Critically, this individual was 

without bilateral olfactory bulbs but otherwise 

healthy. A magnetic resonance image examination 

using an OB sensitive image sequence indicated a 

complete absence of the OB in both hemispheres 

(Fig. 5A).  
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Fig 4. Lack of habituation of the EBG measure. A) Linear mixed model demonstrate that an odor habitation paradigm produce 
no significant change in power of the olfactory evoked synchronization across trials, slope = .008, t(437) = 1.58 p > .11 CI = [-
.002 .02]). Blue circles in figure represent the first half and rust colored cubes the second half of the total number of trials.  
Unfilled circles and cubes represent individual values and dashed line indicate the slope as a function of trials. B) T-statistics 
with 1000 Monte Carlo permutations demonstrating no significant change in power (p > .05). Positive values indicate larger 
signal for early trials. Circles indicate individual values C) Mean difference and 95% confidence interval of olfactory event-
related potentials (ERPs) of N1-P2/P3 for Pz as a function of trials. The mean curve is smoothed for presentation purposes. Blue 
line represent the slope revealed by the linear model and indicate an decrease in amplitude difference between N1-P2/P3 ERP 
components at electrode Pz across trials 

Although there is no definitive test that can distin-

guish between acquired anosmia, bulb degeneration 

at very young age, and ICA due to congenital ab-

sence of OB, recent studies have reported that an 

olfactory sulcus depth of less than 8mm is much 

more prevalent in ICA patients compared to healthy 

controls (Huart et al. 2011). The ICA subject tested 

in Study 4 had a mean olfactory depth of 1.12mm; 

a value more than 3SD away from an age-compara-

ble control population (Fig. 6C) and, as expected 

from an individual with anosmia, performed at 

chance level in a standardized olfactory identifica-

tion test. 

Using an identical experimental protocol as Study 

1, we demonstrate that the ICA subject did not ex-

hibit an EBG response following odor stimulation. 

Specifically, within the time and frequency window 

of interest, no significant EBG signal was observed 

for Odors compared with Air condition, Fig 6B. Im-

portantly, the mean EBG signal was 2.5SD below 

that of the mean of participants in Study 1 (Fig. 5C). 

This is yet further evidence that the EBG is sensitive 

to OB responsiveness. 
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Fig. 5 Lack of EBG from one individual with isolated congenital anosmia (ICA) missing both OBs. A) Coronal view of T2 
weighted image of the brain of an individual with ICA, lacking bilateral OB (marked with red). In the left corner is an example 
of OB from a healthy individual using identical MR examination with the yellow outline in the green circle delineating the OB. 
B) Monte Carlo permutation test with 1000 permutations demonstrating no change in the OERS signal between Odor vs. Air. 
C) Distribution of EBG power for the normosmic cohort from Study 1 represented by the green area, the observed sulcus depth 
(OS) and OB power (OERS) of the individual with isolated congenital anosmia is represented by an open red circle and square, 
respectively 

DISCUSSION 

Even though the OB is the first and, arguably, a crit-

ical processing stage of the olfactory neural net-

work, this is the first non-invasive measure of OB 

processing proposed in humans. The vast majority 

of olfactory-related electrophysiological recordings 

targeting odor perception in non-human animal fo-

cus on the OB and these explorations have deter-

mined that the OB is an important hub for funda-

mental neural mechanisms across a wide set of top-

ics, including, but not restricted to, memory, learn-

ing, social behavior, and motor function (Sullivan 

et al. 2015). Whether the OB serves the same im-

portant role in humans is not known. Using multiple 

approaches, we demonstrate that the neural pro-

cessing within the human olfactory bulb (OB) can 

be noninvasively and robustly measured with elec-

trodes placed at the base of the nose to obtain an 

electrobulbogram (EBG). We show that the meas-

ure can be obtained with only four EBG and two 

reference electrodes. The EBG measure requires 

relatively cheap and off-the-shelf equipment and as 

such, can be easily implemented even with limited 

financial or computational resources. This method 

allows for a direct comparison of future studies with 

humans and already existing non-human animal 

data. Moreover, the OB is the neural area of initia-

tion of Parkinson's disease (Halliday et al. 2011) 

and clear behavioral olfactory disturbances precede 

the characteristic motor symptoms defining the dis-

ease by several years (Ross et al. 2008). Because a 

large portion of the OB needs to be destroyed before 

significant behavioral reduction in olfactory perfor-

mance is detected (Lu and Slotnick 1998), record-

ing of EBG signal could potentially serve as a very 

early marker of PD. 

The EBG appears in the gamma band. It is very 

likely that other signals indicative of OB processing 

also appears in the alpha, beta, and theta bands at a 

later time. However, here we focus on the gamma 

band due to our aim of producing a measure that is 

localized to the OB and primarily represents pro-

cessing of the incoming signal with a lesser focus 

on centrifugal information. Gamma band pro-

cessing within the OB seems tightly linked to initial 

intra-bulb processing with limited to no centrifugal 

influence (Kay 2014; Martin and Ravel 2014). In-

deed, when centrifugal input to the OB is severed, 

only gamma oscillations can be detected within the 

OB in response to odors (Neville and Haberly 2003; 

Martin et al. 2006) whereas beta oscillations are 

more likely to be modulated by context of odor as-

sociations (Frederick et al. 2016). Similarly, gamma 

oscillations in the anterior piriform cortex, the area 

immediately upstream from the OB, are reduced 

when gamma oscillation is reduced in the OB 

(Osinski et al. 2018). Beta oscillations in the ante-

rior piriform cortex are not, however, affected by 

manipulating gamma in the OB, thus providing fur-

ther support that gamma activity within the OB re-

flects within-bulbar processing and potentially OB 

output – the target of the EBG measure. That said, 

a plethora of studies in non-human animals have 

demonstrated that beta oscillations in the OB is very 

important for the final odor percept. Future studies 
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should thus use the EGB measure to assess the role 

of beta and alpha oscillations in the human olfactory 

bulb. 

Our measure is dependent on several key methodo-

logical aspects that are required to enhance the EBG 

signal-to-noise ratio. First, participants were always 

tested when they were in a nutrition deprived state. 

This is because in non-human animals, the OB is 

decidedly more responsive to odors when the indi-

vidual is in a hungry compared to a satiated state 

(Pager et al. 1972; Royet and Pager 1981). Past 

studies have demonstrated that more mitral/tufted 

(M/T) cells are odor responsive when the animal has 

not been fed, whereas a significant portion of the 

M/T cells are inhibited during satiation. Second, in 

all studies but Study 3, odors were presented syn-

chronized to onset of the inhalation phase of the 

breathing cycle and without a detectable onset cue. 

About 50% of all M/T cells in the OB are locked to 

respiration (Bhalla and Bower 1997; Kay 2014) and 

oscillations in the olfactory system, and beyond 

(Perl et al. 2019), seem specifically attuned to the 

respiration cycle. However, note that respiration-

locked oscillations normally occur in the theta band 

and should not be prominently expressed in the 

gamma band (Bhalla and Bower 1997). Third, odors 

should not have a clear trigeminal perception. 

Given the automatic motor response of facial 

frowning elicited by the trigeminal nerve, a part of 

the pain system, use of trigeminal odors could po-

tentially mask the EBG response (Albrecht et al. 

2010). Finally, the measure is dependent on a tem-

porally reliable olfactometer (Lundström et al. 

2010) with precise stimuli onset given the depend-

ence on averaging across trails. Jittered onsets 

would significantly reduce the sensitivity of the 

EBG measure. 

A measure is only useful if it can produce reliable 

and consistent values that are relatively stable 

across similar sessions. The EBG measure produced 

test-retest r-values between .76 to .81; results that 

are in the same range as established event-related 

based olfactory and non-olfactory EEG measures. 

Test-retest of olfactory-derived scalp ERPs nor-

mally produce values between as low as .05 

(Welge-Lüssen et al. 2003) to as high as .81 (Thesen 

and Murphy 2002), dependent on manipulation. 

Similarly, test-retest coefficients for auditory and 

visual ERPs are commonly in the .48 to .80 range 

(Nordin et al. 2011). However, given the very low 

number of trials needed — 7 clean trials — future 

development of the measure should consider this 

potential by including synchronization between an 

automatic online artifact detection and olfactometer 

triggering where trials are only initiated when no 

muscle activity is detected. 

Only one publication has presented data originating 

from surface recordings of the human olfactory 

bulb. Hughes and colleagues(1969) recorded OB re-

sponses to odor stimuli and reported, as do we, pre-

dominantly gamma band responses to a range of 

odors. It could be argued that a weakness of our ap-

proach was to base our EBG development on infor-

mation mostly drawn from studies in non-human 

animal models. However, access to direct recording 

from the human OB is restricted because measures 

of OB processing in humans are only possible from 

recordings done from surgically implanted intracra-

nial electrodes in patients undergoing elected resec-

tion surgery for intractable epilepsy where clinical 

need direct placement. It is our hope that the EBG 

measure will produce a richer literature on the role 

the human olfactory bulb serves in creating an odor 

percept, and to delineate similarities and differences 

of odor processing in human and non-human animal 

models. 

In conclusion, the EBG measure is a valid and reli-

able measure of signals from the human olfactory 

bulb. All needed components are commonly availa-

ble in most neuroscience institutions and clinical es-

tablishments with the one exception being availabil-

ity of a temporally precise olfactometer. It is our 

hope that the EBG measures will enable detailed in-

vestigations into the role of the OB in the human 

olfactory system. Specifically, the measure allows 

the exploration of fundamental mechanistic ques-

tions, such as what role the human OB plays in pro-

cessing odor pleasantness, quality coding, and odor 

fear learning. Moreover, this method will allow fur-

ther investigation of a wide variety of clinical disor-

ders known to affect olfactory processing, such as 

neurodegenerative, eating disorders, as well as 

schizophrenia. 
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