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Abstract (140 words) 32 

Cardiac	electrical	activity	is	controlled	by	the	carefully	orchestrated	activity	of	more	than	33 
a	 dozen	different	 ion	 conductances.	 Yet,	 there	 is	 considerable	 variability	 in	 cardiac	 ion	34 
channel	expression	levels	both	within	and	between	subjects.	In	this	study	we	tested	the	35 
hypothesis	that	variations	in	ion	channel	expression	between	individuals	are	not	random	36 
but	rather	there	are	modules	of	co-expressed	genes	and	that	these	modules	make	electrical	37 
signaling	in	the	heart	more	robust.	38 

Meta-analysis	 of	 3653	public	RNA-Seq	datasets	 identified	 a	 strong	 correlation	between		39 
expression	of	CACNA1c	(L-type	calcium	current,	ICaL)	and	KCNH2	(rapid	delayed	rectifier	40 
K+	current,	IKr),	which	was	verified	in	mRNA	extracted	from	human	induced	pluripotent	41 
stem	cell-derived	cardiomyocytes.	 In	 silico	modeling	 indicates	 that	 the	co-expression	of	42 
CACNA1c	 and	 KCNH2	 limits	 the	 variability	 in	 action	 potential	 duration	 and	 reduces	43 
susceptibility	to	early	afterdepolarizations,	a	surrogate	marker	for	pro-arrhythmia.		44 
 45 
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	49 

Introduction	50 

Robust	electrical	signaling	in	the	heart	is	critical	for	co-ordinating	the	efficient	pumping	of	51 
blood	around	the	body.	Failure	of	cardiac	electrical	signaling,	even	for	just	a	few	minutes,	52 
can	have	fatal	consequences,	with	sudden	cardiac	death	accounting	for	up	to	10%	of	deaths	53 
in	our	community	(1).	Despite	decades	of	research,	predicting	in	advance	who	is	more	or	54 
less	susceptible	to	sudden	cardiac	death	remains	challenging	(2).		55 

The	action	potential	(AP)	of	excitable	cells,	such	as	cardiac	myocytes	and	neurons,	reflects	56 
the	 orchestrated	 activity	 of	 at	 least	 a	 dozen	 distinct	 ion	 channels	 and	 electrogenic	57 
transporters	(3)	(4).		In	such	complex	systems,	both	theoretical	and	experimental	studies	58 
have	shown	that	there	is	considerable	inter-individual	variability	in	the	combinations	of	59 
molecular	input	parameters	that	can	produce	very	similar	integrated	outputs	(5)	(6).	This	60 
has	 led	 to	 a	 paradigm	 shift	 in	 computational	 modeling	 that	 relies	 not	 on	 generating	61 
idealized	outputs	based	on	mean	data	but	rather	development	of	populations	of	models	62 
that	 account	 for	 the	 observed	 variability	 in	molecular	 inputs	 (7)	 (8).	 Such	models	 are	63 
already	 proving	 useful	 for	 interrogating	 inter-individual	 variability	 in	 response	 to	64 
pathological	stimuli	(9)	(10)	(11).	Our	challenge	now	is	to	discern	the	underlying	essence	65 
of	these	complex	systems	(12,13)	so	that	we	may	then	make	rational	interventions	to	treat	66 
pathology	 that	 takes	 into	 account	 inter-individual	 variation.	 Specifically,	 are	 there	67 
underlying	principles	regulating	cardiac	electrical	activity	that	can	provide	insights	 into	68 
why	some	people	are	more	susceptible	to	sudden	cardiac	death	in	response	to	pathological	69 
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stimuli,	such	as	drug	block	of	the	rapid	delayed	rectifier	potassium	channel	(IKr)	which	is	70 
the	underlying	basis	of	drug-induced	long	QT	syndrome	(di-LQTS)	(14).	71 

A	 common	 approach	 to	 discern	 patterns	 in	multi-dimensional	 biological	 problems	 has	72 
been	to	look	for	co-expression	networks	(13)	(15).	Co-expression	networks	are	known	to	73 
encode	 functional	 information	 (16),	with	 co-expression	 reflecting	 co-regulation	and	 co-74 
functionality	(17)	(18).	To	help	identify	robust	co-expression	modules,	it	is	helpful	to	use	75 
meta-analytical	approaches,	as	the	aggregation	of	 large	numbers	of	 individual	networks	76 
across	 multiple	 independent	 experiments	 averages	 away	 noise	 and	 reinforces	 those	77 
correlations	that	reflect	real	signals	(19)	(20)	(21).		78 

Here,	 we	 have	 used	 meta-analytic	 co-expression	 analysis	 in	 large	 scale	 human	 gene	79 
expression	data	sets	to	 identify	modules	of	co-expressed	ion	channel	genes	which	were	80 
then	used	to	constrain	population	models	of	cardiac	electrical	activity.	These	models	were	81 
then	used	to	test	the	hypothesis	that	co-expression	of	repolarization	and	depolarization	82 
currents	 helps	 prevent	 irregular	 action	 potentials	 from	 emerging	when	 human	 cardiac	83 
myocytes	are	exposed	to	pro-arrhythmic	stimuli.	We	show	that	tight	coupling	of	current	84 
densities	 for	 the	 L-type	 calcium	 current	 (ICaL)	 and	 the	 rapid	 component	 of	 the	 delayed	85 
rectifier	 potassium	 current	 (IKr)	 reduced	 the	 emergence	 of	 pro-arrhythmic	 early	86 
afterdepolarizations	 (EADs)	 and	 this	 protection	 persisted	 in	 the	 face	 of	 highly	 variable	87 
expression	of	other	ion	channels,	as	well	as	in	the	presence	of	pharmacological	block	of	IKr,	88 
a	potent	pro-arrhythmic	 stimulus	 (22).	A	 very	 important	prediction	 to	 arise	out	 of	 our	89 
modelling	 studies	 is	 that	 in	 the	 context	 of	 drug	 block	 of	 IKr	 	 those	 patients	 with	 high	90 
expression	 of	 ICaL	 and	 IKr	 experience	 more	 EADs	 and	 are	 therefore	 more	 likely	 to	 be	91 
susceptible	to	ventricular	arrhythmias.		92 

	93 

Results	94 

The	shape	and	duration	of	action	potentials	 in	cardiac	myocytes	are	determined	by	 the	95 
orchestrated	activity	of	voltage-gated	sodium,	calcium	and	potassium	channels,	as	well	as	96 
a	 series	 of	 electrogenic	 transporters	 that	 regulate	 intracellular	 ion	 concentrations	 (See	97 
Supplementary	 data	Figure	 S1).	 These	 channels,	 transporters	 and	 related	 intracellular	98 
calcium	handling	proteins	are	encoded	by	a	few	dozen	genes,	sometimes	referred	to	as	the	99 
rhythmonome	(23)	(see	Supplementary	data,	Table	1).		100 

To	determine	whether	there	were	any	co-expression	patterns	among	the	rhythmonome	101 
genes	we	first	undertook	an	untargeted	screen	for	possible	expression	correlation	patterns	102 
in	publicly	available	RNA-seq	data	sets	(see	list	of	RNA-seq	experiments	in	supplementary	103 
data,	Table	2).	Ranked	correlation	coefficients	from	an	aggregate	co-expression	network	104 
that	contain	data	 from	3653	samples	are	 illustrated	 in	 the	heatmap	 in	Figure	1A.	High	105 
ranked	 correlations	 indicate	 similarity	 of	 transcriptional	 profiles	 between	 the	 genes.	 A	106 
clustering	analysis,	as	shown	by	the	dendrogram	in	Figure	1A,	groups	genes	according	to	107 
their	 correlation	 similarities,	 as	defined	by	 the	Spearman’s	 correlation	 coefficients	 (see	108 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 5, 2019. ; https://doi.org/10.1101/659821doi: bioRxiv preprint 

https://doi.org/10.1101/659821
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

color	code	in	Figure	1A).	There	is	a	large	cluster	of	yellow/green	squares	in	the	bottom	109 
left	corner	indicating	that	there	are	significant	levels	of	correlation	amongst	many	of	the	110 
genes.	 Furthermore,	within	 this	 large	 cluster	 there	 are	 two	 sub-clusters.	 The	 cluster	 of	111 
yellow-green	squares	corresponding	to	13	genes	in	the	bottom	left	corner	(red	dashed	box	112 
in	Figure	1A)	 encode	 for	proteins	 that	 regulate	 calcium	 fluxes	 as	well	 as	 the	 transient	113 
outward	K+	current	(KCND3),	which	helps	to	maintain	the	plateau	potential	at	a	level	that	114 
maximizes	calcium	influx	(24).	A	second	sub-cluster,	 in	 the	upper	right	quadrant	of	 the	115 
main	cluster,	encompasses	10	genes	(black	dashed	box	in	Figure	1A),	 including	KCNH2,	116 
SCN5a,	KCNJ12	and	KCNIP2,	that	encode	for	ion	channel	proteins	important	for	regulating	117 
action	potential	duration	(APD).	118 

Overall,	the	connectivity	within	the	set	of	rhythmonome	genes	is	fairly	high	in	comparison	119 
to	their	connectivity	to	all	other	genes	in	the	co-expression	network	(node	degree	analysis,	120 
p~5.7e-14),	with	a	central	gene	being	CACNA1C,	the	gene	encoding	the	alpha	subunit	of	the	121 
L-type	calcium	channel	(see	Supplementary	data,	Figure	S2).	Although	CACNA1c	clusters	122 
in	the	group	of	calcium	handling	genes	in	the	bottom	left	quadrant	of	the	main	cluster	in	123 
Figure	1A,	it	also	shows	high	levels	of	correlation	with	the	cluster	of	ion	channel	genes	in	124 
the	top	right	quadrant	of	Figure	1A.	In	a	similar	fashion,	the	KCNH2	gene,	which	encodes	125 
for	IKr,	 is	 included	in	the	 ion	channel	cluster	but	also	shows	moderate-high	correlations	126 
with	 a	 portion	 of	 the	 calcium	 handling	 genes	 in	 the	 bottom	 left	 quadrant.	 The	 highest	127 
ranked	co-expression	partners	for	CACNA1C	and	KCNH2	are	highlighted	in	Figure	1B.		128 

The	vast	majority	of	the	public	RNA-Seq	datasets	included	in	our	analyses	were	not	heart	129 
specific.	 It	 is,	 however,	 noteworthy	 that	 there	 are	 no	 strong	 correlations	 between	 the	130 
expression	of	any	of	the	individual	ion	channel	or	calcium	handling	genes	and	the	cardiac-131 
specific	markers	included	in	our	analyses:	GATA-4,	NKX2-5,	MYL2	and	MYL7.	For	example,	132 
the	cardiac	marker	genes	are	towards	the	bottom	of	the	lists	in	Figure	1B.	This	suggests	133 
that	the	correlations	within	the	set	of	rhythmonome	genes	are	not	simply	a	reflection	of	134 
cardiac	specific	expression	but	rather	represent	intrinsic	correlations.	135 

Figure	S1:	In	silico	model	of	ventricular	Action	Potential	136 

	137 
A.	Schematic	diagram	of	the	ventricular	myocyte	model	used	in	this	study	(reproduced	138 
from	(25)	under	the	CC-BY	licence.	139 
B.		Scaling	factors	applied	to	the	original	model	were	taken	from	(26)		140 
	141 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 5, 2019. ; https://doi.org/10.1101/659821doi: bioRxiv preprint 

https://doi.org/10.1101/659821
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Figure	1:	 Cardiac	 ion	 channel	 and	 calcium	 handling	 protein	 co-expression	142 
connectivity	analysis	from	published	RNA-seq	datasets	143 

	144 
A.	Sub-network	of	co-expression	ranking	across	35	genes	encoding	for	cardiac	ion	channels	145 
or	 calcium	 homeostasis	 proteins	 (see	 Supplementary	 Table	 1).	 Blue:	 low	 ranked	146 
correlations,	yellow:	high	ranked	correlations.	The	dendrogram	illustrates	the	modules	of	147 
genes	with	high	levels	of	similarity	in	their	transcriptional	profiles.	Red	and	black	dashed	148 
boxes	 highlight	 subnetworks	 of	 correlated	 genes	 B.	 Connectivity	 of	 genes	 to	 KCNH2	149 
(encodes	for	IKr)	and	CACNA1C	(encodes	for	ICaL).		150 
	 	151 
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Figure	S2:	Network	connectivity	for	each	rhythmonome	gene	152 

	153 
The	 degree	 of	 network	 connectivity	 for	 each	 rhythmonome	 gene	 within	 the	 local	154 
rhythmonome	network	(y-axis)	versus	its	connectivity	within	the	whole	genome	(x-axis).	155 
All	the	rhythmonome	genes	are	more	highly	connected	within	the	local	network	(i.e.,	all	156 
the	 points	 lie	 above	 the	 line	 of	 identity,	 p~5.7e-14).	CACNA1C	 is	 highlighted	 in	 red	 and	157 
KCNH2	in	yellow.		158 

To	 investigate	whether	 the	meta-analytic	 co-expression	 patterns	 observed	 in	Figure	 1	159 
were	also	seen	in	human	heart	cells,	we	extracted	mRNA	from	human	induced	pluripotent	160 
stem	 cell-derived	 cardiomyocytes	 (hiPSC-CMs)	 (27)	 obtained	 from	10	patients	with	 no	161 
known	heart	disease.	All	samples	contained	high	 levels	of	cardiac	marker	genes	(MYL7,	162 
GATA4	and	NKX2.5)	(Figure	2A).	Furthermore,	the	levels	of	expression	of	the	housekeeper	163 
genes,	GPADH	and	HRPT1	were	similar	across	samples	(see	data	at	right	side	of	Figure	2A).	164 
The	 levels	 of	 expression	 of	 most	 rhythmonome	 genes	 showed	 variations	 between	 the	165 
samples	 that	 spanned	 approximately	 an	 order	 of	 magnitude.	 However,	 similar	 to	 the	166 
generic	 tissue	 RNA-Seq	 datasets,	 there	 were	 modules	 of	 co-expressed	 genes	 (e.g.,	 see	167 
dashed	box	in	bottom	left	quadrant	of	Figure	2B).		Most	of	the	13	genes	in	the	cluster	in	168 
Figure	2B	are	present	in	the	modules	highlighted	by	the	black	and	red	dashed	boxes	in	169 
Figure	 1A.	 Conversely,	 many	 of	 the	 ion	 channel	 genes	 contained	 in	 the	 modules	170 
highlighted	 in	Figure	 1	 are	not	present	 in	 the	module	 in	Figure	2	 (e.g.	KCNJ2/KCNJ12,	171 
which	encodes	for	IK1;	KCND3,	which	encodes	for	ITo;	and	SCN5a,	which	encodes	for	INa).	172 
These	genes	 are	 all	 known	 to	be	 expressed	at	 lower	 levels	 in	 embryonic	hearts	 and	 so	173 
unsurprisingly	they	are	not	well	expressed	in	the	hiPSC-CM	lines	(28).		174 

We	next	 looked	 to	 see	 if	 there	were	any	specific	 relationships	between	genes	encoding	175 
depolarization	 and	 repolarization	 currents,	within	 the	hiPSC-CM	expression	profiles.	 In	176 
Figure	2C,	we	have	plotted	the	expression	of	KCNH2	versus	the	genes	that	encode	for	the	177 
depolarization	currents	that	showed	the	highest	levels	of	correlation	with	expression	of	178 
KCNH2	in	the	generic	tissue	datasets	(see	Figure	1B,	i.e.,	CACNA1c,	CACNA1H	and	SCN5a).	179 
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The	most	notable	correlation	that	was	observed	in	the	hiPSC-CMs	was	that	between	KCNH2	180 
and	CACNA1c;	r2	=	0.89	(Figure	2C).		181 

As	the	only	robust	relationship	that	we	observed	in	both	the	generic	tissue	sets	and	the	182 
hiPSC-CM	lines	was	the	co-expression	of	KCNH2	and	CACNA1c,	we	focused	on	this	pair	for	183 
our	 subsequent	 studies.	 To	 investigate	 whether	 co-expression	modules	 of	 ion	 channel	184 
genes	might	influence	integrated	cardiac	electrical	function,	we	used	an	in	silico	approach.	185 
First,	we	simulated	a	population	of	1000	human	cardiac	action	potentials	where	random	186 
scalar	values,	chosen	from	a	log	normal	distribution	with	mean	1	and	standard	deviation	187 
of	0.5	(Figure	3A,	lower	panel),	was	applied	to	every	conductance	in	each	iteration	of	the	188 
action	potential	model	(see	Figure	3A	and	Supplementary	Data,	Movie	S1).	189 

	190 
Figure	2:	HiPSC-CM	mRNA	correlation	analysis	191 

	192 

	193 
A.	plot	of	all	mRNAs	(log	axis)	 for	10	hiPSC-CM	lines.	Note	 that	 there	are	high	 levels	of	194 
expression	of	cardiac	markers	(MYL7	as	well	as	NKX2-5	and	GATA4)	in	all	cell	lines.	Also	195 
there	 is	 less	 variability	 in	 the	 levels	 for	 the	 housekeeping	 genes	 (GAPDH	 and	HPRT1)	196 
compared	to	that	seen	for	the	ion	channels	and	calcium	handling	proteins.	B.	Correlation	197 
matrix	for	hiPSC-CM	mRNA.	The	red	dashed	box	highlights	the	module	with	the	highest	198 
correlations.	 C.	 Correlation	 plots	 for	 KCNH2	 versus	 genes	 that	 encode	 the	 major	199 
depolarizing	currents	(CACNA1c,	CACNA1H	and	SCN5a).	200 

The	baseline	action	potential	produced	by	this	model	(black	trace	in	right	hand	panel	of	201 
Figure	 3A)	 has	 a	 duration	 at	 the	 point	 of	 90%	 repolarization	 (APD90)	 of	 264	ms.	 The	202 
population	of	1000	cardiac	cells	generated	by	randomly	scaling	the	conductances	exhibited	203 
APD90	values	that	ranged	from	~120	ms	to	~500	ms	(Figure	3A,	right	panel,	and	Figure	204 
3B).	We	next	selected	those	cells	with	APD90	values	that	fell	within	20%	of	the	mean	value	205 
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(red	bars,	Figure	3B)	to	determine	if	there	were	any	patterns	of	ion	channel	co-expression	206 
that	 could	 contribute	 to	 keeping	 the	 APD90	 within	 this	 narrow	 selected	 range.	 The	207 
correlation	matrix	 of	 the	 conductance	 scaling	 factors	 for	 the	 selected	 cells	 (Figure	3C)	208 
reveals	 a	 positive	 correlation	 between	 GKr	 and	 GCaL	 (R=0.36)	 as	 well	 as	 an	 inverse	209 
correlation	for	GKr	and	GKs	(R=-0.46).	The	positive	correlation	between	the	conductance	210 
scalars	 GKr	 and	 GCaL	 in	 the	 in	 silico	 modelling	 dataset	 (Figure	 3)	 suggests	 that	 the	211 
correlation	seen	between	CACNA1c	and	KCNH2	mRNA	expression	in	both	the	public	RNA-212 
Seq	datasets	(Figure	1)	and	the	hiPSC-CM	dataset	(Figure	2)	would	contribute	to	reducing	213 
the	population	variability	in	APD90	values.			214 

We	 next	 repeated	 our	 previous	 simulation	 of	 1000	 action	 potentials	 but	 forced	 the	215 
conductance	 scaling	 factors	 for	 IKr	 and	 ICaL	 to	 be	 identical	 in	 each	 cell	 (denoted	 co-216 
expression	in	Figure	4,	also	see	Data	supplement,	Movie	S2).	The	scaling	factors	for	all	217 
other	 conductances	 remained	 independent.	 The	 distribution	 of	 APD90	 values	 for	 both	218 
independent	and	co-expression	cell	populations	becomes	broader	as	the	level	of	variability	219 
is	increased	(Figure	4A-C).	However,	the	spread	of	APD90	values	in	the	cells	with	identical	220 
GCaL-GKr	scalars	is	always	narrower	than	in	the	cell	populations	with	independent	GCaL-GKr	221 
scalar	values.	For	example,	in	the	case	of	Figure	4B,	the	variance	of	the	APD90	values	was	222 
0.026	 for	 the	 co-expression	 dataset	 but	 0.046	 for	 the	 independent	 dataset	 (see	223 
supplementary	data	Figure	S3-C).		Another	notable	feature	of	the	data	in	Figure	4C	is	that	224 
early	afterdepolarisations	(EADs)	begin	to	appear	in	the	cell	population	with	independent	225 
scalars	when	the	scalar	variability,	s2,	exceeds	0.20	(also	see	supplementary	data	Figure	226 
S4).	The	number	of	cells	with	an	EAD	are	indicated	in	parentheses	above	each	distribution	227 
in	Figure	4C.	228 

	229 
Figure	3:	 In	silico	predictions	of	conductance	scalars	that	give	APD90	values	in	the	230 

normal	range		231 

	232 
A.	Baseline	AP	model	and	frequency	histogram	of	scalars	(log	normal	distribution	with	a	233 
mean	of	1	and	SD	of	0.5)	used	to	generate	the	population	of	1000	APs	with	the	baseline	AP	234 
(all	scalars	set	to	1.0)	shown	in	black.	B.	Frequency	histogram	of	APD90	values	for	the	1000	235 
simulations	with	those	falling	within	±20%	of	the	mean	value	shown	in	red.	C.	correlation	236 
matrix	for	sets	of	conductance	scalars	that	gave	APD90	values	within	±20%	of	the	mean	237 
value	 	238 
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Figure	 4:	 Impact	 of	 IKr-ICaL	 co-expression	 and	 conductance	 scalar	 variability	 on	239 
APD90	variability		240 

	241 

	242 
Raw APs for independent (blue) and co-expression of GKr-GCaL (red) for A. low scalar 243 
variability (s2=0.05) and B. high scalar variability (s2=0.25). Note the presence of EADs in 6 244 
of the APs in the independent group with s2 = 0.25. C. Histograms of log(APD90/mean APD90) 245 
distributions for co-expressed (red) or independent (blue) GKr-GCaL simulations with s2 = 0.05, 246 
0.1, 0.15, 0.2, 0.25. The numbers in parentheses above the 0.2 and 0.25 groups indicate the 247 
number of EADs in each independent scalars group. 248 
	249 
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Figure	S3:	 Population	 models	 of	 ventricular	 APs	 with	 different	 levels	 of	 scalar	254 
variance	255 

 256 
A-B.	Population	of	models	with	variance	systematically	increased	from	s2	=	0.05	to	0.40	257 
for	independent	conductance	scalars	for	GKr	and	GCaL	(A),	or	co-expression	conductance	258 
scalars	 for	GKr	and	GCaL	 (B).	As	 the	variance	 increases,	 the	number	of	cells	 that	develop	259 
EADs	increases	in	the	independent	series.	Conversely,	for	the	co-expression	models,	there	260 
are	no	EADs	even	at	variances	up	to	0.4.	C.	Variance	of	the	APD90	distributions	for	each	set	261 
of	conductance	scalar	inputs	for	independent	(blue)	and	co-expression	(red)	of	IKr	and	ICaL.	262 
Note	that	the	variance	of	the	APD90	distribution	was	always	greater	for	the	independent	263 
simulations	(p<0.008	between	groups,	paired	t-test)	264 

We	 next	 investigated	 whether	 coupling	 of	 the	 conductance	 scalars	 for	 GKr	 and	 GCaL	265 
influenced	the	generation	of	EADs	in	response	to	a	pathological	stimulus.		Specifically,	how	266 
cells	 respond	 to	 drug	 block	 of	 IKr,	 the	 underlying	 cause	 of	 di-LQTS	 (22).	 Example	267 
populations	of	action	potentials	obtained	for	independent	and	co-expression		populations	268 
with	IKr	block	of	0%,	50%	and	80%	are	illustrated	in	Figure	5.	As	the	extent	of	IKr	block	is	269 
increased	 (from	A	 to	 C),	 the	 proportion	 of	 simulated	 action	potentials	 producing	EADs	270 
increases.	It	is	also	clear	that	at	lower	levels	of	IKr	block,	EADs	were	more	frequent	when	271 
GCaL	and	GKr	scalars	were	modulated	independently	(see	Figure	5B	and	inset	to	Figure	5D).	272 
However,	the	proportion	of	simulations	developing	EADs	in	both	the	independent	and	co-273 
expression	populations	becomes	similar	when	the	extent	of	IKr	block	exceeds	80%	(Figure	274 
5D).		275 
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It	is	well	established	that	only	a	subset	of	patients	exposed	to	drugs	that	block	IKr	(29),	or	276 
with	 a	 mutation	 causing	 50%	 loss	 of	 IKr	 function	 (30),	 will	 develop	 life	 threatening	277 
arrhythmias.	 This	 is	 consistent	with	 the	 prediction	made	 by	 our	 simulated	 drug	 block	278 
experiments	 shown	 in	 Figure	 5.	 We	 therefore	 asked	 whether	 the	 data	 from	 the	 co-279 
expression	 datasets	 could	 tell	 us	 anything	 about	what	 factors	might	 predispose	 to	 the	280 
development	of	EADs	in	the	presence	of	a	drug	that	blocks	IKr.	Analysis	of	the	subset	of	281 
scalars	within	the	co-expression	dataset	that	produced	the	50	longest	APs	without	EADs,	282 
compared	to	the	subset	of	scalars	that	resulted	in	APs	with	EADs,	is	illustrated	in	Figure	283 
6A	and	6B	respectively.	Notably,	the	longest	APs	without	EADs	had	low	GCaL	scalars	(and	284 
hence	low	GKr	scalars)	before	addition	of	drug	block.	Conversely,	the	APs	that	developed	285 
EADs	had	higher	GCaL	and	GKr	scalars.	In	Figure	6C,	we	have	plotted	the	APD90	values	for	286 
cells	in	the	highest	(red)	and	lowest	(blue)	quartiles	of	GCal	-	GKr	scalars.	As	expected,	the	287 
low	GCaL	group	showed	longer	APD90	values	on	average	compared	to	the	high	GCaL	group		288 
(see	the	continuous	lines	in	Figure	6C).		Furthermore,	for	the	70%	IKr	block	scenario,	44%	289 
of	the	high	GCaL	group	have	developed	EADs	whereas	only	7%	of	the	low	GCaL	group	have	290 
developed	EADs	(compare	red	and	blue	bars	at	70%	drug	block	in	Figure	6C).	Thus,	higher	291 
GCaL	is	associated	with	a	greater	risk	of	developing	EADs	in	response	to	moderate	levels	of	292 
IKr	block.	A	similar	pattern	of	results	was	observed	when	GCaL	and	GKr	were	allowed	to	vary	293 
independently,	except	that	in	this	scenario	the	difference	between	the	high	GCaL	and	low	294 
GCaL	groups	was	even	more	dramatic	at	lower	levels	of	IKr	block	(see	supplementary	data	295 
Figure		S4).	296 
	297 
Figure	5:	Impact	of	GKr-GCaL	co-expression	on	response	to	drug	block	of	IKr	298 

	299 
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Raw	APs	for	co-expressed	GKr-GCaL	(red)	and	independent	(blue)	GKr-GCaL	populations,	300 
with	scalar	variance	s2	=	0.25,	for	A.	control,	B.	50%	IKr	block	and	C.	80%	IKr	block.	D.	plot	301 
of	%	of	AP	simulations	with	EADs	versus	%	IKr	block	(co-expression,	red	and	302 
independent,	blue).	The	inset	in	panel	D	shows	an	expanded	view	of	the	%	EADs	at	small	303 
levels	of	IKr	block.	304 
 305 
Figure	6:	High	GCaL	increases	risk	of	EAD	formation	at	moderate	IKr	block	306 
 307 

 308 
Scalars (box and whisker plots) for the population of cells with GKr-GCaL co-expression. A. 50 309 
cells with the longest APD90 values and no EAD  with increasing % IKr block. B. scalars (box 310 
and whisker plots) for cells with EADs with increasing % IKr block. The GCaL and GKr scalars 311 
are highlighted in yellow. C. APD90 values (left axis) for the highest (red) and lowest (blue) 312 
quartile of cells according to baseline GCaL scalar. The continuous lines show the mean value 313 
and shaded area shows ±1 SD). The percentage of EADs in each quartile is shown as columns 314 
(see axis on right side of graph). The corresponding plots for the population of cells with 315 
independent GKr-GCaL scalars are show in the Supplementary data (Figure S4) 316 
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Figure	S4:		 High	GCaL	 increases	 risk	 of	 EAD	 formation	 at	moderate	 IKr	 block	 even	317 
when	GCaL	and	GKr	are	varied	independently	318 

	319 
	320 

	321 
Conductance	scalars	(box	and	whisker	plots)	that	give	A.	The	50	most	extreme	APD	values	322 
or	B.	EADs	for	the	population	of	cells	with	independent	regulation	of	GKr	and	GCaL.		323 
C.	Plot	of	APD90	values	for	the	highest	quartile	of	GCaL	(red)	and	lowest	quartile	of	GCaL	(blue)	324 
versus	%	drug	block	of	IKr.	The	continuous	line	shows	mean	and	shaded	regions	show	±	1	325 
standard	deviation.	The	column	graph	shows	the	%	of	cells	that	develop	EADs	at	each	level	326 
of	drug	block.	327 

 	328 
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A	corollary	of	our	prediction	 that	patients	with	high	GCaL	are	more	susceptible	 to	EADs	329 
when	exposed	to	a	drug	that	blocks	IKr,	is	that	co-administration	of	a	drug	that	blocks	ICaL	330 
would	reduce	the	incidence	of	EADs.	Magnesium,	which	is	used	in	the	acute	management	331 
of	di-LQTS	(14),	is	a	weak	calcium	channel	blocker.	Raising	plasma	[Mg2+]	from	1.5	to	2.5	332 
mM	would	be	expected	to	inhibit	ICaL	by	~20%	(31),	conversely	reducing	[Mg2+]	from	1.5	333 
to	0.5	mM	would	be	expected	to	increase	ICaL	by	~20%.		When	we	increased	ICaL	by	20%,	334 
the	incidence	of	EADs	in	the	high	GCaL	group	increased	from	10%	to	16%	for	the	60%	IKr	335 
block	simulation	and	from	44%	to	58%	for	the	70%	IKr	block	simulations	(see	Figure	7).	A	336 
drug	that	inhibited	ICaL	by	20%	caused	a	modest	decrease	in	the	percentage	of	cells	with	337 
EADs	 and	 reduction	 of	 ICaL	 by	 50%	 had	 a	 correspondingly	 larger	 effect,	 for	 example,	338 
reducing	EADs	from	44%	to	12%	in	the	70%	IKr	block	scenario	(Figure	7).	339 
	340 
Figure	7:	Effect	of	modifying	ICaL	on	incidence	of	EADs	in	response	to	IKr	drug	block.	341 

	342 
ICaL	was	increased	20%	to	mimic	hypomagnesaemia,	reduced	20%	to	mimic	343 
hypermagnesaemia	(see	text	for	details),	or	reduced	50%	to	mimic	administration	of	a	344 
calcium	channel	blocker.	In	both	the	quartile	of	cells	with	the	lowest	GCaL	scalars	(blue,	A)	345 
and	the	quartile	of	cells	with	the	highest	GCaL	scalars	(red,	B)	the	incidence	of	EADs	346 
increased	when	GCaL	was	enhanced	and	decreased	when	GCaL	was	decreased.	The	347 
observed	differences	were	most	pronounced	with	moderate	(60-70%)	IKr	drug	block.	348 

	349 

Discussion	350 

Cardiac	electrical	activity	is	regulated	by	the	interdependent	activity	of	a	plethora	of	ion	351 
channels,	 transporters	 and	 calcium	 handling	 proteins	 (4).	 Understanding	 the	 precise	352 
details	of	how	these	conductances	interact	to	control	the	rhythm	of	the	heart	has	been	an	353 
enduring	source	of	fascination.	In	this	study,	we	have	used	meta-analytical	techniques	to	354 
interrogate	 the	 large	 numbers	 of	 RNASeq	 datasets	 that	 have	 been	 deposited	 in	 public	355 
access	databases,	to	look	for	patterns	of	co-expressed	genes	that	might	help	decipher	the	356 
control	 of	 cardiac	 electrical	 activity.	 The	 most	 important	 pair	 of	 co-expressed	 genes,	357 
identified	both	in	the	public	RNA	Seq	datasets	(Figure	1)	and	in	heart	cells	derived	from	358 

A Low GCaL Expression B High GCaL Expression
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hiPSC	 lines	 (Figure	 2),	 was	 that	 of	 CACNA1c	 (ICaL)	 and	KCNH2	 (IKr).	 Using	 an	 in	 silico	359 
approach	we	 demonstrated	 that	 tight	 co-expression	 of	CACNA1c	 and	KCNH2,	 against	 a	360 
background	 of	 variability	 of	 all	 other	 ion	 channels,	 helps	 to	 control	 the	 duration	 of	361 
repolarization	 (Figure	4).	More	 importantly,	 the	 co-expression	of	CACNA1c	 and	KCNH2	362 
helps	to	protect	the	heart	from	early	after	depolarizations	when	they	are	exposed	to	drugs	363 
that	block	IKr	(Figure	5).	Our	simulations	also	suggest	that	inter-individual	differences	in	364 
pro-arrhythmic	responses	to	IKr	drug	block	can	be	explained	by	inter-individual	differences	365 
in	levels	of	CACNA1c	expression	(Figure	6).		366 

Over	 the	 last	 few	 years,	 numerous	 groups	 have	 shown	 that	 there	 is	 considerable	367 
heterogeneity	of	 ion	channel	expression	amongst	excitable	cells,	 including	neurons	(32)	368 
and	cardiac	myocytes	(7,19).	Furthermore,	since	the	pioneering	work	of	Eva	Marder	and	369 
colleagues,	the	presence	of	modules	of	co-expressed	ion	channel	genes	has	also	been	well	370 
appreciated(15).	 These	 previous	 studies,	 however,	 relied	 on	 patch	 clamp	 analysis	 of	371 
isolated	cells	(15,33)	and	qPCR	analysis	(15)	of	individual	ion	channel	mRNA,	which	are	372 
highly	laborious	and	so	have	been	restricted	to	only	a	few	important	ion	channel	genes.	373 
The	 advent	 of	 high	 throughput	 transcriptomic	 analyses	 has	 greatly	 facilitated	 the	374 
identification	of	conserved	networks	of	co-expressed	gene	modules	amongst	the	entire	set	375 
of	 expressed	 genes	 (21).	 By	 applying	 meta-analytic	 approaches	 to	 a	 large	 number	 of	376 
independent	datasets	one	can	more	 readily	discern	genuine	co-expression	signals	 from	377 
noise,	 as	 well	 as	 explore	 smaller	 gene	 modules	 (21).	 In	 our	 analysis	 of	 a	 subset	 of	378 
rhythmonome	genes	 (35	members,	Table	 S1)	within	 a	 large	 library	of	 public	RNA	Seq	379 
datasets,	 (see	 Table	 S2)	 we	 identified	 two	 clusters	 of	 genes:	 a	 first	 subset	 that	380 
predominantly	affects	calcium	handling	and	a	second	subset	 that	predominantly	affects	381 
membrane	potential	(see	Figure	1).	The	nodes	within	each	of	these	clusters	that	are	most	382 
closely	 connected	within	 the	 rhythmonome	 relative	 to	 all	 other	 genes	 are	KCNH2	 and	383 
CACNA1c	(Figure	S2).	This	is	analogous	to	a	network	of	networks	(34),	where	the	KCNH2-384 
CACNA1c	link	provides	an	interconnection	of	the	two	networks.	Independent	evidence	to	385 
corroborate	an	important	link	between	calcium	handling	and	regulation	of	cardiac	action	386 
potential	duration	comes	from	the	large	genome-wide	association	studies	(GWAS)	of	QT	387 
interval	duration	which	identified	SNPs	in	a	number	of	calcium	handling	genes	as	well	as	388 
KCNH2	as	being	important	determinants	of	QT	interval	in	the	population	(35).		389 

Due	to	the	large	number	of	associations	we	were	testing	for	in	our	network	analyses,	it	is	390 
possible	that	some	would	occur	by	chance.	That	we	were	able	to	confirm	the	presence	of	391 
at	least	some	of	the	co-expression	modules	in	an	independent	dataset,	 i.e.	the	hiPSC-CM	392 
(see	 Figure	 2)	 provides	 important	 corroborative	 evidence	 that	 these	 co-expression	393 
patterns	are	real	and	therefore	 likely	to	have	physiological	relevance.	 	 It	should	also	be	394 
noted	 that	many	 ion	channels	 important	 for	 function	 in	adult	 cardiac	myocytes	are	not	395 
expressed	at	significant	levels	in	immature	cardiac	myocytes,	such	as	those	derived	from	396 
hiPSC	 (e.g.	 SCN5a,	 KCNQ1,	 KCNJ12,	 KCND3,	 (28)).	 It	 is	 therefore	 possible	 that	we	 have	397 
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underestimated	the	number	of	genes	within	the	modules	of	co-expressed	genes	in	adult	398 
cardiac	myocytes.	399 

The	patterns	of	co-expressed	genes	we	observed	show	some	important	similarities,	as	well	400 
as	 differences	 to	 previous	 studies.	 Banyasz	 et	 al.	 	 (33)	 and	 Rees	 et	 al.	 (18)	 have	 both	401 
demonstrated	 that	 the	 expression	 of	 ICaL	 is	 correlated	 with	 the	 sum	 of	 the	 major	402 
repolarizing	ion	currents	in	guinea-pig	and	mouse	respectively.	However,	the	molecular	403 
players	involved	in	cardiac	electrical	activity	in	rodents	are	quite	distinct	to	humans	(36).	404 
In	humans,	 the	most	 important	determinant	of	repolarization	duration	at	baseline	 is	 IKr	405 
(37),	whereas	in	guinea-pig	IKs	and	IKr	play	equally	important	roles	(33)	and	in	mice	the	406 
fast	component	of	the	transient	outward	current	(Ito,f)	and	the	ultra-rapid	delayed	rectifier	407 
(IKur)	are	the	major	repolarization	currents	(18).	Thus,	there	is	a	common	factor	between	408 
our	 study	 showing	 co-expression	 of	 KCNH2	 and	 CACNA1c	 in	 human	 and	 the	 previous	409 
rodent	studies,	i.e.,	all	studies	show	a	correlation	between	ICaL	and	the	major	repolarizing	410 
currents	 present	 in	 that	 species.	 Our	 study,	 however,	 is	 the	 first	 to	 demonstrate	 the	411 
important	co-expressed	genes	in	human	heart	tissue.		412 

Identifying	modules	of	co-expressed	genes	are	the	first	step	in	seeking	to	understand	the	413 
logic	of	complex	systems	(6).	Understanding	how	such	modules	impact	function	in	health	414 
and	disease	is	the	next	challenge.	In	neuronal	cells,	Marder	and	colleagues	have	shown	that	415 
modules	of	co-expressed	ion	channels	play	an	important	role	in	regulating	action	potential	416 
firing	patterns	(38).	Rees	and	colleagues,	have	demonstrated	that	modules	of	co-expressed	417 
depolarization	and	repolarization	currents	can	help	to	ensure	normal	amplitude	calcium	418 
transients,	a	critical	determinant	of	overall	heart	function	(18).	We	have	extended	these	419 
studies	to	show	that	 in	normal	heart	cells,	co-expression	of	KCNH2	 (repolarization)	and	420 
CACNA1c	 (depolarization)	 channels	 help	 to	maintain	 the	plateau	duration	 of	 the	 action	421 
potential,	which	in	turn	likely	contributes	to	regulating	the	duration	and	amplitude	of	the	422 
calcium	 transient.	 More	 importantly,	 our	 studies	 provide	 the	 first	 insights	 into	 how	423 
patterns	of	co-expressed	ion	channel	genes	influence	the	hearts	response	to	pathological	424 
stimuli.	425 

Sudden	 death	 due	 to	 abnormalities	 of	 cardiac	 electrical	 signaling	 is	 a	 major	 cause	 of	426 
mortality	 (1).	 Predicting	 in	 advance	who	 is	more	 or	 less	 susceptible	 to	 sudden	 cardiac	427 
death	and	 therefore	warrants	prophylactic	 treatment	 remains	 challenging	 (2).	A	key	 to	428 
being	able	to	predict	who	is	at	greatest	risk	is	understanding	why	different	people	respond	429 
differently	 to	 the	 same	 pro-arrhythmic	 stimulus.	 Based	 on	 the	 results	 of	 our	 in	 silico	430 
studies,	we	have	provided	two	important	insights	into	the	nature	of	interindividual	risk	for	431 
developing	 arrhythmias	 in	 response	 to	 drugs	 that	 block	 IKr,	 the	 major	 cause	 of	 drug-432 
induced	cardiac	arrhythmias	(14).	First,	cells	with	low	GCaL	(and	hence	low	GKr	at	baseline)	433 
exhibited	the	greatest	prolongation	of	AP	duration	when	exposed	to	IKr	drug	block.	Second,	434 
cells	 with	 high	 GCaL	 (and	 hence	 high	 GKr	 at	 baseline)	 showed	 greater	 propensity	 for	435 
development	 of	 EADs	 at	 moderate	 levels	 of	 IKr	 drug-block	 (Figure	 6).	 An	 important	436 
implication	 of	 the	 observation	 that	 a	 high	 GCaL	 increases	 the	 susceptibility	 to	 EADs	 in	437 
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response	to	drug	block	of	IKr	is	that	the	co-administration	of	an	ICaL	blocker	should	reduce	438 
the	risk	of	EADs	(as	shown	in	Figure	7).	This	is	consistent	with	the	observation	that	the	439 
administration	of	magnesium,	which	is	a	mild	calcium	channel	blocker	(31),	is	helpful	in	440 
the	 acute	 management	 of	 patients	 with	 drug-induced	 torsades	 de	 pointes	 (14),	 and	441 
conversely	that	hypomagnesaemia,	which	would	stimulate	ICaL,	can	exacerbate	torsades	de	442 
pointes	(39).	It	is	also	consistent	with	the	observation	that	drugs	that	block	ICaL	and	IKr	(e.g.,	443 
verapamil)	 are	 not	 associated	with	 drug-induced	 arrhythmias	 (40)	 and	 that	 verapamil	444 
prevented	the		development	of	torsades	de	pointes	in	rabbit	hearts	exposed	to	an	IKr	blocker	445 
(41).	 However,	 given	 that	 calcium	 channel	 blockers	 are	 contra-indicated	 in	 some	446 
ventricular	 arrhythmias	 (42),	 and	 the	 likelihood	 that	 patients	 who	 have	 drug-induced	447 
LQTS	may	have	other	underlying	cardiac	conditions	(14),	one	should	be	cautious	about	448 
prescribing	calcium	channel	blockers.	Conversely,	it	would	be	reasonable	to	consider	using	449 
calcium	channel	blockers	to	treat	patients	with	LQTS	type	2	(i.e.	patients	with	an	isolated	450 
loss	of	IKr	function)	who	continue	to	have	cardiac	events	despite	treatment	with	ß-blockers	451 
(43).		452 

In	summary,	we	have	demonstrated	that	meta-analysis	of	large-scale	gene	expression	data	453 
sets	 is	a	powerful	 technique	 for	discerning	underlying	patterns	 in	gene	expression,	and	454 
that	this	can	provide	insights	into	disease	causation	at	an	individual	level.	Specifically,	we	455 
have	 demonstrated	 that	 the	 co-expression	 of	KCNH2	 (IKr)	 and	 CACNA1c	 (ICaL)	 plays	 an	456 
important	role	in	regulating	cardiac	repolarization	both	in	health	and	in	disease.		457 

	458 

Methods	459 

Analysis	of	public	RNASeq	datasets	460 

An	 aggregate	 co-expression	 gene	 network	 was	 built	 from	 public	 data,	 similar	 to	 that	461 
described	previously(44).	Briefly,	 	75	human	RNA-seq	expression	experiments	(listed	in	462 
Supp	Table	S2)	that	passed	quality	control	and	had	a	least	10	samples	(3653	samples	in	463 
total)	were	downloaded	from	the	Gemma	database	(45).	Approximately	thirty	thousand	464 
genes	were	used	for	the	network,	limited	only	to	those	with	Entrez	gene	identifiers.	A	co-465 
expression	 network	 was	 generated	 for	 each	 experiment	 by	 calculating	 Spearman’s	466 
correlation	coefficients	between	every	gene	pair	and	then	ranking	these	values	(44).	An	467 
aggregate	 gene	 co-expression	 network	was	 then	 generated	 by	 averaging	 across	 all	 the	468 
individual	networks,	and	re-ranking	the	final	network.	This	final	aggregate	network	was	469 
then	used	to	determine	the	co-expression	ranking	between	genes	that	encode	for	the	set	470 
of	ion	channels	and	calcium	handling	proteins	that	determine	the	shape	and	duration	of	471 
the	human	ventricular	AP,	the	so-called	rhythmonome	gene	subset	(see	Supp	Table	S1).	472 
Network	connectivity	of	the	gene	set	was	measured	by	comparing	the	weighted	local	node	473 
degree	to	the	global	node	degree(46).		Node	degrees	are	the	sum	of	the	total	connections	a	474 
node	(here	gene)	has	within	a	network.	Local	node	degree	refers	to	the	sum	of	connections	475 
(here	the	ranked	correlation)	within	the	rhythmonome	gene	set,	while	global	node	degree	476 
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is	 the	sum	of	connections	to	that	gene	across	all	 the	genes	 in	the	network.	Code	for	the	477 
analysis	is	available	at	https://github.com/sarbal/hERG-cal		478 

Human	induced	pluripotent	stem	cell	derived	cardiac	myoctes.	479 

Human	iPSC	lines,	generated	from	healthy	patients	by	Stanford	Cardiovascular	Institute	480 
Biobank,	 as	 previously	 described	 (47),	 were	 a	 generous	 donation	 from	 Joseph	 Wu	481 
(Standford	 Cardiovascular	 Institute).	 HiPSC	 colonies	 were	 maintained	 on	 Matrigel®	482 
(Corning)	coated	plates	in	chemically	defined	medium	(mTeSR1™,	StemCell	technologies),	483 
and	 passaged	 using	 Dispase	 (StemCell	 technologies).	 For	 differentiation,	 hiPSCs	 were	484 
dissociated	by	incubating	at	37°C	for	7	minutes	with	TrypLE™	Express	(ThermoFisher)	and	485 
seeded	at	125000	cells/cm2	on	a	Matrigel®	coated	12	well	plate,	 in	mTeSR™1	medium	486 
supplemented	with	StemMACS™	Y27632	(Miltenyi	Biotec).	Once	the	cells	reached	greater	487 
than	95%	confluency,	differentiation	was	initiated	using	STEMdiff™	Cardiomyocyte	(CM)	488 
differentiation	 and	 Maintenance	 Kit	 (StemCell	 technologies).	 At	 day	 15,	 CMs	 were	489 
dissociated	by	incubation	in	Collagenase	Type	I	(ThermoFisher)	for	45	minutes	at	37°C	to	490 
break	up	the	matrix	and	then	incubated	in	0.25%	Trypsin	with	EDTA	for	7	minutes	at	room	491 
temperature	followed	by	filtering	through	a	40	µm	cell	strainer	(48).	The	CMs	were	seeded	492 
on	 a	 Fibronectin	 coated	 96-well	 plate	 (Greiner	 Bio-One)	 and	 maintained	 in	 CM	493 
maintenance	medium	 for	10-15	days	before	 they	were	harvested	 for	mRNA	expression	494 
analysis.	Total	RNA	was	obtained	from	40,000	hiPSC-CMs	lysed	using	QIAzol	Lysis	reagent	495 
(Qiagen).	The	RNA	was	purified	using	miRNeasy®	Mini	Kit	(Qiagen),	and	all	samples	had	496 
RIN	values	>7.5,	and	were	analysed	using	Agilent	Bioanalyzer	pico-chip.	RNA	samples	were	497 
hybridised	with	probes	designed	to	detect	35	known	rhythmonome	genes	using	nCounter	498 
(NanoString	 Technologies,	 see	 Supplementary	Table	 S1),	 which	was	 performed	 at	 the	499 
Ramaciotti	Centre	for	Genomics	(UNSW).		500 

Computer	modelling		501 

Human	 cardiac	APs	were	 simulated	 using	 the	 endocardial	 configuration	 of	 the	O’Hara-502 
Rudy	(ORD11)	model	(25)	with	key	conductances	modified	as	described	by	Krogh-Madsen	503 
et	al.	(26)	(See	Supp	Figure	S1).	The	original	ORD11	code	was	adapted	to	run	in	the	Brain	504 
Dynamics	Toolbox	 for	Matlab	(49).	To	 incorporate	population	variability	 in	 ion	channel	505 
expression	 levels	 the	 maximum	 conductance	 for	 each	 current	 was	 multiplied	 by	506 
conductance	scalar	(Gx),	that	was	drawn	from	a	random	log-normal	distribution	(37),	with	507 
unit	mean	and	variance	that	was	systematically	manipulated	from	0.05	to	0.5.	All	models	508 
were	 paced	 at	 1Hz	 with	 a	 stimulus	 of	 -40	 mV	 and	 duration	 of	 1	 ms	 and	 allowed	 to	509 
equilibrate	for	300	beats.	We	then	analysed	the	next	four	beats	(to	allow	for	the	possibility	510 
of	development	of	alternans)	after	the	equilibration	stage.	The	peaks	in	those	APs	were	511 
identified	using	the	Matlab	findpeaks	function.	Individual	beats	were	classified	as	ectopic	512 
if	they	had	secondary	peaks	that	were	separated	by	more	than	100	ms.	The	set	of	four	beats	513 
were	further	classified	as	alternans	if	the	profile	of	any	of	the	APs	deviated	from	each	other	514 
by	more	than	1	mV	at	any	time	point.	In	a	second	set	of	simulations,	we	repeated	the	same	515 
method	 as	 above	 except	 that	 the	 random	multipliers	 applied	 to	 both	 ICaL	 and	 IKr	 were	516 
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identical.	 This	 case	 we	 denote	 co-expression	 whereas	 the	 former	 case	 we	 denote	517 
independent	expression.	518 
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