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 25 

Abstract 26 

Perfusion-related information is reportedly embedded in the low-frequency component of a 27 

blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) 28 

signal. The blood-propagation pattern through the cerebral vascular tree is detected as an 29 

interregional lag variation of spontaneous low-frequency oscillations (sLFOs). Mapping of 30 

this lag, or phase, has been implicitly treated as a projection of the vascular tree structure 31 

onto real space. While accumulating evidence supports the biological significance of this 32 

signal component, the physiological basis of the “perfusion lag structure,” a requirement for 33 

an integrative resting-state fMRI-signal model, is lacking. In this study, we conducted 34 

analyses furthering the hypothesis that the sLFO is not only largely of systemic origin, but 35 

also essentially intrinsic to blood, and hence behaves as a virtual tracer. By summing the 36 

small fluctuations of instantaneous phase differences between adjacent vascular regions, a 37 

velocity response to respiratory challenges was detected. Regarding the relationship to 38 

neurovascular coupling, the removal of the whole lag structure, which can be considered as 39 

an optimized global-signal regression, resulted in a reduction of inter-individual variance 40 

while preserving the fMRI response. Examination of the T2* and S0, or non-BOLD, 41 

components of the fMRI signal revealed that the lag structure is deoxyhemoglobin 42 

dependent, while paradoxically presenting a signal-magnitude reduction in the venous side 43 

of the cerebral vasculature. These findings provide insight into the origin of BOLD sLFOs, 44 

suggesting that they are highly intrinsic to the circulating blood. 45 

 46 

1 Introduction 47 

In functional magnetic resonance imaging (fMRI), there are 2 established physiological 48 

bases of signal change: neurovascular coupling (NVC) and autoregulation. The former 49 

involves a local blood flow increase of 30–70% which gives rise to a 0.5–2% blood 50 
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oxygenation level-dependent (BOLD) signal increase with around a 5-s delay (Buxton, 51 

2013). This is the target phenomenon of fMRI as a tool for brain mapping, due to its limited 52 

spatial extent mainly involving local arterioles (Hillman, 2014). In contrast, autoregulatory 53 

responses in vessel diameter are found in a wide range of arteries including the internal 54 

carotid or middle cerebral arteries (Hoiland et al., 2016). Detection of a compromised 55 

response in vascular disorders has proven useful for clinical purposes (Murphy et al., 2011). 56 

Importantly, there is no clear physiological distinction between these 2 phenomena as each 57 

involves multiple pathways (Willie et al., 2014). Their traces in the fMRI signal are also 58 

uniformly postulated to reflect the increased cerebral blood flow and eventual dilution of 59 

deoxy-hemoglobin (Hb) in the postcapillary part of the vasculature, with the additional 60 

effect of a local blood volume increase (Kim & Ress, 2016). 61 

In efforts to improve the efficiency of fMRI, studies have revealed various systemic 62 

physiological components in BOLD signal fluctuations. Physiological parameters, such as 63 

cardiac pulsation (Chang et al., 2009), blood pressure, and end-tidal carbon dioxide (CO2) 64 

(Wise et al., 2004; Murphy et al., 2013), are considered artifact sources. The contamination 65 

is expected to be emphasized in resting-state fMRI (rs-fMRI), where signals are evaluated 66 

without trial averaging (Winder et al., 2017). However, discrimination between neuronal 67 

and non-neuronal components has been a major challenge due to the lack of validation 68 

techniques with spatial and temporal precision comparable to that of fMRI. Another source 69 

of difficulty is the fact that many neural and non-neural parameters are intercorrelated in 70 

this low-frequency range (Murphy et al., 2013). 71 

A focus of recent studies exploring this matter is the spontaneous BOLD low-72 

frequency oscillation (sLFO, < 0.1 Hz) possibly encompassing multiple artifact sources 73 

(Zhu et al., 2015; Tong et al., 2017). One well-known sLFO source is the respiratory 74 

volume fluctuation involving a chemoreflex loop (Birn et al., 2008). An sLFO in systemic 75 

blood pressure, known as the Traube–Hering–Mayer wave, has been shown to originate 76 

from another autonomic loop (Guyton & Harris, 1951; Julien, 2006). Moreover, associated 77 

sLFOs in blood flow and velocity have been found (Killip, 1962; Fagrell et al., 1977) and, 78 

later, transcranial Doppler ultrasonography and optical methods confirmed their traces 79 
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within the brain (Giller et al., 1999; Obrig et al., 2000). This optically detected sLFO was 80 

found in both oxy- and deoxy-Hb with an interesting phase difference exclusively observed 81 

in the brain (Rayshubskiy et al., 2014; Tgavalekos et al., 2016). Additionally, sLFOs were 82 

found in electroencephalographic recordings, for which arterial vasomotion was suggested 83 

as the origin (Nikulin et al., 2014), although it is unclear how the vasomotion accounts for 84 

the fMRI signal mainly from the capillary bed. 85 

As mentioned above, Hb-sLFOs are postulated to be of systemic origin (Katura et al., 86 

2006; Tian et al., 2011; Sassaroli et al., 2012). Hence, it was not surprising to find a 87 

correlation between the global fMRI signal and extra-cerebral signals (near-infrared 88 

spectroscopy [NIRS] or MRI), but the constant time shift across body/brain parts was 89 

unexpected (Anderson et al., 2011; Tong et al., 2012). The similarity between the low-90 

frequency phase map and perfusion MRI in healthy participants was a milestone in this 91 

direction, as it presented the perfusion time lag embedded in the BOLD signal (Tong et al., 92 

2017). The resilient nature of the lag map against the fMRI task condition was shown, 93 

further supporting its non-neuronal origin (Aso et al., 2017a). In parallel, a number of 94 

clinical studies have established the phase delays as a marker of cerebrovascular disorders 95 

(Amemiya et al., 2013; Lv et al., 2013; Christen et al., 2015; Ni et al., 2017; Nishida et al., 96 

2018; Khalil et al., 2018). Moreover, gross vascular anatomy has been detected consistently 97 

in these studies, replicating the results from respiratory challenges (Chang & Glover, 98 

2009a; Blockley et al., 2011), which importantly suggests an equivalence between the 99 

sLFO and manipulated circulatory turbulences. Apart from patient data, a recent study 100 

involving healthy participants revealed changes in venous drainage patterns with normal 101 

aging (Satow et al., 2017). A body of evidence thus empirically supports the biological 102 

significance of the low-frequency lag structure and its underlying principles. 103 

The current analytical model of the BOLD lag structure assumes the presence of this 104 

signal variation from the very early stages of cerebral perfusion (Tong et al., 2018) (Fig. 105 

1A). Such synchronized variation should naturally affect the global mean signal, and the 106 

model is hence related to the unresolved fMRI global signal problem (Liu et al., 2017; 107 

Power et al., 2017). This view is not only compatible with the occasional favorable effect 108 
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of global signal regression (GSR) in task fMRI (Aguirre et al., 1998) but has led some 109 

scientists to propose the removal of the lag structure as an approach for noise elimination 110 

(Erdoğan et al., 2016; Amemiya et al., 2016; Byrge & Kennedy, 2018). Under this model, 111 

the elimination of the lag structure can be viewed as an optimized GSR (of the low-112 

frequency component) for each voxel group. Conversely, with the presence of the BOLD 113 

lag structure, a simple GSR should retain a residual correlation between in-phase voxels 114 

that confounds fMRI analyses (Taylor Webb et al., 2013; Erdoğan et al., 2016).  115 

The fundamental and critical question remaining is the mechanism by which sLFOs 116 

(or respiratory maneuvers) create the BOLD lag structure. The BOLD response to neural 117 

activity via NVC is a well-documented passive process, involving the expansion of the 118 

intravascular compartment (Herman et al., 2009). A typical model of the BOLD signal 119 

change is described as follows (Hoge et al., 1999): 120 

∆ ����

�����
� � �� � � �����

�����|�
�
 � ���

����
� � ���

����
�
�             [1], 121 

where CMRO2 stands for the cerebral metabolic rate of oxygen in a voxel and CBV/CBF 122 

represents the cerebral blood volume and flow, respectively. Beta (β) is an exponent of the 123 

power-law describing the relationship between T2* and the deoxy-Hb amount that only 124 

depends on CMRO2 and CBF in a reciprocal manner, under the assumption of a negligible 125 

inflow of deoxy-Hb. M is the factor for the BOLD susceptibility effect, defined as: 126 

� 	 
� · � · ��� · ������‐ �����
              [2], 127 

where B0 is the main magnetic field strength and TE represents the echo time. Triggered by 128 

vasodilation of the arteriole, this effect is diminished by an inflow of fresh blood, which 129 

increases the MR signal. This baseline BOLD effect has been modeled in the formula for 130 

the off-resonance frequency shift (δω) as follows (Yablonskiy & Haacke, 1994; An & Lin, 131 

2002): 132 

�� � � · �
�

· � · ��� · � ! · "�# · �           [3], 133 

where γ is the gyromagnetic ratio (42.58 MHz/T), Δχ0 is the susceptibility difference 134 

between the fully oxygenated and fully deoxygenated blood, and Hct is the hematocrit 135 
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(volume fraction of erythrocytes to the blood volume, typically around 40%). The oxygen 136 

extraction fraction (OEF) represents the only source of deoxy-Hb under the assumption of 137 

100% oxygen saturation (SaO2) in the inflow.  138 

Variations of this base susceptibility can occur due to the local Hct and SaO2 changes 139 

and, in fact, have been shown to cause intersession variabilities (Cohen et al., 2002; 140 

Tuunanen & Kauppinen, 2006); however, within-session fluctuations have rarely been 141 

considered (Thomas et al., 2000). For example, even at a constant Hb density and oxygen 142 

partial pressure, CO2 fluctuation, a driving factor of vasomotion, alone can modify SaO2 143 

through pH changes (Collins et al., 2015a). Although the assumption of constant base 144 

deoxy-Hb concentration may be sufficient for modeling its dilution by NVC (Ogawa et al., 145 

1998), other effects might not be negligible in non-neuronal fluctuations (Fig. 1b).  146 

Fig. 1. A working model of BOLD lag 147 

mapping. (A) A schematic of the cerebral 148 

vascular tree presenting possible 149 

physiological models that account for the 150 

fMRI and NIRS observations. Each brain 151 

voxel has its lag (phase) of the 152 

spontaneous low frequency oscillation 153 

(sLFO) relative to the reference point, 154 

depicted in warm and cool colors. The 155 

inlet, center, and outlet parts of the gross 156 

vasculature are determined purely by the 157 

temporal relationship and not by vessel 158 

types; all signals should originate from the 159 

capillary bed. Another schematic is 160 

inserted to illustrate the effect of the 161 

reference point selection in relation to the 162 

vascular path length, which accounts for 163 

the disagreement with other blood-164 

tracking techniques. Below are 3 models 165 

with different physiological signal sources 166 
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that are moving along the vasculature. The current model with constant deoxy-Hb 167 

requires vasomotion to account for the sLFO (1). While the axial inhomogeneity of 168 

the deoxy-Hb density may be linked with vasomotion (2), it can persist without it (3). 169 

The moving axial inhomogeneity creates a similar temporal profile with varying 170 

phases across regions. (B) Dependence of the BOLD signal on inflow oxygen 171 

saturation (SaO2) at 3 T, TE = 30 ms. All other parameters were held constant at 172 

physiological values: oxygen extraction fraction = 45%, tissue blood volume fraction 173 

= 3%, and hematocrit = 40% (see Eqs. [1] and [2]).  174 

BOLD, blood oxygen level-dependent; fMRI, functional magnetic resonance 175 

imaging; NIRS, near-infrared spectroscopy; TE, echo time; Hb, hemoglobin  176 

 177 

In this exploratory study, we conducted 3 investigations to further advance our 178 

knowledge on the BOLD lag structure and its underlying physiology. We first evaluated if 179 

changes in blood transit velocity are embedded in the BOLD low-frequency phase to 180 

confirm its behavior as a virtual tracer [a preliminary analysis of these data was presented 181 

previously as a poster (Aso et al., 2017b)]. Next, we investigated the effect of eliminating 182 

the lag structure from task-based fMRI, which had not been tested previously. Finally, we 183 

used multi-echo imaging to assess the components of the BOLD signal that determine the 184 

lag structure. One of the recent approaches toward fMRI denoising has focused on S0 185 

fluctuations (signal at TE = 0, which is the baseline MR signal from the fluid 186 

compartments), as it is weakly associated with neural activity (Posse et al., 1999; Wu et al., 187 

2012; Kundu et al., 2012; Yen et al., 2017). In contrast, the total-Hb sLFO, detected by 188 

NIRS, is interpreted as a local CBV change under the assumption of a constant Hct, which 189 

should also affect the non-BOLD component via changes in plasma volume and inflow 190 

(Rostrup et al., 2005). Notably, the contributions of the T2* and S0 components may differ 191 

from NVC contributions to the BOLD lag structure; hence their impact may have been 192 

overlooked in studies based on trial averaging. From the influences of 3 different fMRI task 193 

paradigms, including a simple reaction-time visuomotor task, a short breath-holding task, 194 

and a hyperventilation task on the neural and non-neural components of the fMRI signal, 195 

we sought further validation of our hypothetical model of the BOLD lag structure. 196 
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2 Materials and methods 197 

2.1 Participants and experimental procedures 198 

Twenty-one healthy participants (8 women, 19–26 years of age) participated in Experiment 199 

1; only 1 person was excluded from the analysis because of an abrupt head motion, which 200 

prevented BOLD lag mapping (see Data processing). The remaining 20 participants 201 

performed the sparse visuomotor and 10-s breath-holding tasks, but the hyperventilation 202 

task was only performed by 18 participants, as it was introduced after the first 2 individuals 203 

had concluded their participation. Another 21 participants were recruited for Experiment 2, 204 

involving multi-echo acquisition, all of whom performed the above 3 tasks but with an 18-s 205 

version of the breath-holding task. To avoid vigilance level fluctuations, all MRI sessions 206 

were scheduled in the morning and the participants were encouraged to sleep well the 207 

previous night. 208 

The protocol for this study was approved by the internal ethics review board of Kyoto 209 

university. The participants provided written informed consent in advance, according to the 210 

Declaration of Helsinki, for the analysis of anonymized MRI scans and simultaneously 211 

acquired physiological data. 212 

2.2 Image acquisition 213 

A Tim-Trio 3-Tesla scanner (Siemens, Erlangen, Germany) with a 32-channel phased-array 214 

head coil was used for MRI acquisition. For Experiment 1, T2*-weighted echo-planar 215 

images were acquired using multiband gradient-echo echo-planar imaging (EPI) (Feinberg 216 

et al., 2010) with the following parameters to cover the entire cerebrum: 64 × 64 pixels, 35-217 

slice interleave , 192-mm field of view (FOV), 3.5-mm slice thickness, repetition time 218 

(TR)/ TE = 500/35 ms, flip angle = 40°, and a multiband factor of 5. Three 9-min runs 219 

(1,080 volumes) were acquired for each of the 3 task conditions. The same pulse sequence 220 

program was used in Experiment 2 but with multi-echo settings: TE1 = 7.76 ms and TE2 = 221 

25.82 ms for the first 6 participants and TE1 = 11.2 ms and TE2 = 32.78 ms for the 222 

remaining 15 participants. A smaller multiband factor of 2 was selected to allow for the 223 
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short TE in combination with parallel imaging using GeneRalized Autocalibrating Partial 224 

Parallel Acquisition. Other acquisition parameters were: TR = 1,300 ms, flip angle = 65°; 225 

36-slice interleave, FOV = 256 × 192 mm2, 64 × 48 matrix, and 3.5-mm slice thickness. 226 

Three 7-min (323 TR) runs were acquired. Seven participants in Experiment 2 underwent 2 227 

additional runs with a shorter TR of 700 ms and a flip angle of 45° to examine the 228 

sensitivity of the respiration-related signal component to inflow modulation. At the end of 229 

every experimental session, a 3-dimensional (3D) magnetization-prepared rapid acquisition 230 

with gradient echo (MPRAGE) T1-weighted image was acquired for obtaining anatomical 231 

information (Aso et al., 2017a). A dual-echo gradient-echo dataset for B0 field mapping 232 

was also acquired after the BOLD scan in the same orientation. 233 

2.3 Task conditions 234 

Throughout the experimental session, task instructions were presented via a liquid crystal 235 

display (LCD) monitor inside the scanner room, viewed through a mirror. Beat-to-beat 236 

fluctuations in the mean arterial pressure and heart rate were obtained via a non-invasive 237 

MR-compatible device (Caretaker, BIOPAC Systems, Inc., Goleta, CA, USA). Careful 238 

instructions were provided to the participants on how to avoid motion, especially during the 239 

respiratory challenges. 240 

2.3.1 Sparse visuomotor task 241 

A simple visuomotor task with a varying intertrial interval of 6 to 24 s was performed 242 

during the first run. Participants were instructed to press a button with their right index 243 

finger as soon as the computer screen changed from “Please hold still” to “Press the button.” 244 

The screen returned to “Please hold still” at the button press or after 3 s, if the participant 245 

had not pressed the button. 246 

2.3.2 Breath-holding task 247 

To minimize head motion induced by the tasks, the 2 respiratory challenges were adapted 248 

to be less strenuous than in earlier studies. In Experiment 1, the breath-holding task was 249 

cued by a “Hold your breath” instruction on the screen, at which point the participants were 250 

asked to immediately hold their breath, irrespective of the respiration phase. The holding 251 
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periods lasted 10 s and were separated by 90-s intervals. This short duration was selected to 252 

minimize strain that can cause body movements, while evoking a detectable autoregulatory 253 

response (Murphy et al., 2011). In Experiment 2, a longer holding period of 18 s after a 254 

brief inhalation for 2 s was used to evoke a more pronounced vasodilation. 255 

2.3.3 Hyperventilation task 256 

The hyperventilation task involved paced breathing at 0.2 Hz for 25 s, separated by a 30-s 257 

rest. Each 5-s cycle began with the screen presenting “Please inhale” for 1.5 s, followed by 258 

“Please exhale slowly,” lasting 3.5 s. Participants were instructed to breathe as deeply as 259 

possible, while avoiding head movement. A short inspiration period was selected to 260 

suppress motion by minimizing movements in the thoracic cage and spine. 261 

2.4 Data processing 262 

For image processing, SPM12 (Wellcome Department of Cognitive Neurology, London, 263 

United Kingdom) and FSL5 (FMRIB Software Library, www.fmrib.ox.ac.uk/fsl) (Smith et 264 

al., 2004) were used in combination with in-house MATLAB scripts. Off-resonance 265 

geometric distortions in the EPI data were corrected using FUGUE/FSL with B0 field maps. 266 

After inter-scan slice-timing correction, head motion was compensated by 3D motion 267 

correction and data repair (Mazaika et al., 2009). The repairing procedure aimed to remove 268 

motion-related signal dropout and involved searching for time points satisfying 2 stringent 269 

criteria: (1) global signal changes between consecutive volumes exceeding 1% and (2) head 270 

displacement exceeding a Euclidian distance of ± 1 mm or ± 1° rotation per TR. The 271 

affected time points were replaced with linearly interpolated values, but this procedure was 272 

required in only 6 of the 41 participants.  273 

The data were further cleaned by regressing out 24 head motion-related parameters. 274 

Unlike in previous studies, the 6 rigid-body parameter time series were not directly used 275 

because of the possible contamination of the motion parameters with the global signal when 276 

the participants were immobile (Freire & Mangin, 2001). We used the first temporal 277 

derivatives of the motion parameters, their versions after being shifted by 1 TR, and the 278 

squares of those 12 time series (Satterthwaite et al., 2013). Images were spatially 279 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 22, 2019. ; https://doi.org/10.1101/658377doi: bioRxiv preprint 

https://doi.org/10.1101/658377


    

 

11 

normalized to the template space using the T1-weighted anatomical image and resliced to a 280 

4-mm isotropic voxel size to achieve a high voxel temporal signal-to-noise ratio. 281 

2.4.1 Lag mapping 282 

A recursive technique was used (Aso et al., 2017a) after temporal bandpass filtering at 283 

0.008–0.07 Hz to ensure that the phase was uniquely determined within the cross-284 

correlation range. Whereas lag was tracked up to 7 s for most analyses, it was limited to 4 s 285 

in both directions, upstream and downstream, for the calculation of the relative BOLD 286 

transit time (rBTT, see below). This shorter tracking range allowed a higher cutoff 287 

frequency (0.12 Hz) to preserve the high-frequency component in the velocity change 288 

profiles.  289 

The global mean signal was used to select the initial seed that defined the reference 290 

phase (lag = 0). First, voxels presenting a cross-correlogram peak at 0 with the global signal 291 

were determined. The time course averaged over this set of voxels served as the initial 292 

reference. In each step of the recursive procedure toward up- and downstream, a cross-293 

correlogram was calculated between the time series obtained from the previous seed voxels 294 

and every undetermined voxel to find a set of voxels with a peak at ± 0.5 s, which then 295 

served as the new seed. This tracking part retained some voxels without any lag values 296 

because cross-correlogram peaks < 0.3 were not used following earlier works (Tong et al., 297 

2017). These voxels were later filled 1 by 1 with average phases from voxels with similar 298 

time courses and correlation coefficients > 0.3. There were single isolated holes even after 299 

this procedure, which were filled by linear interpolation, using the 6 neighbors. There is a 300 

concern that this correlation coefficient threshold is too low to accurately claim a 301 

significant correlation. However, recursive tracking involves finding the cross-correlogram 302 

peak precisely at ± 0.5 s, which conveys different information from its height. Besides, 303 

most earlier works empirically supporting the biological significance of this phenomenon 304 

involved no thresholding. When the threshold correlation coefficient was increased to 0.6, 305 

most brain voxels required the hole-filling procedure, but we still obtained lag maps (by 306 

between-voxel intra-class correlation (2,1) > 0.4) in 16 out of 20 participants during resting 307 

state and 17 during 10-s breath holding.  308 
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2.4.2 fMRI analysis on “cleaned” BOLD datasets 309 

Individual BOLD data from Experiment 1, after the above pre-processing steps including 310 

the motion parameter regression, served as the reference or “raw” dataset. GSR with a low-311 

pass filtered global signal, a normal GSR, global scaling implemented in SPM12, and 312 

without the perfusion lag structure (“deperfusioned”) were compared with the raw dataset.  313 

The GSR involves regression by the global signal and extracting the residuals in each 314 

voxel. In deperfusioning, instead of the uniform regressor, a corresponding time series was 315 

used for each voxel group by the lag value (“dynamic” GSR) (Erdoğan et al., 2016). For 316 

global scaling, the raw dataset was entered into the same SPM pipeline, except for the 317 

option of internally dividing each volume by its global mean signal instead of the constant 318 

session mean. The normal GSR and global scaling thus affected all frequency ranges, 319 

whereas the GSR and deperfusioning removed only the low-frequency components. 320 

Random effects analysis (Friston et al., 2002) was used to evaluate the effect of these 321 

procedures on the fMRI results from the standard analysis framework. For the visuomotor 322 

task, the neural response to each trial was modeled as an event of 0.5 s in duration. For the 323 

hyperventilation condition, a boxcar with a 25-s duration modeled the activation related to 324 

volitional respiratory control. Similarly, both the onset and offset timing of breath holding 325 

were used to model the time-locked neural activity. The canonical hemodynamic response 326 

function was convolved to the model time series to create the regressors of interest. The 327 

threshold for all activation maps was p = 0.05 after correcting for multiple comparisons, 328 

using family-wise error across the whole brain (Poline et al., 1997). 329 

2.4.3 Relative BOLD transit time 330 

Fig. 3A illustrates the method. This analysis was performed on data from Experiment 1, 331 

acquired at a short TR of 0.5 s. The lag structure consisted of a lag map and the set of time 332 

series averaged over the voxels with the same phase. This structure represents the 333 

propagation of the sLFO phase along the vessels. The phase is expected to move across 334 

adjacent regions of the vascular tree every 0.5 s, the lag tracking step, on average. However, 335 

if there is variation in propagation velocity, there would be a deviation of the instantaneous 336 
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phase difference from 0.5. Here, the phase difference is supposed to reflect the time the 337 

blood requires to cross the boundary between the neighboring voxel groups. 338 

Based on this supposition, the phase difference fluctuation was calculated from each 339 

of the 16 pairs of seeds corresponding to lags of -4 to +4 s at 0.5-s intervals. Due to the 340 

broad frequency range of the fluctuations of interest, we chose a smooth sliding window 341 

algorithm (window length = 30 s, Kaiser window with a β value of 4) instead of using 342 

analytic methods (e.g., Hilbert transform). The region time series were resampled to a 0.02-343 

s resolution to capture minute phase difference fluctuations (4%) from 0.5 s. Instantaneous 344 

phase differences from each pair of seeds were averaged over respiratory task events and 345 

divided by 0.5 to obtain the time course of the rBTT. The rBTTs from the 16 pairs of 346 

neighboring regions were then averaged to obtain the regional or global rBTT. According 347 

to this model, the inverse of the rBTT corresponded to the instantaneous velocity (relative 348 

to the baseline average velocity), as the rBTT should reflect the average time required to 349 

traverse fixed distances. 350 

2.4.4 Multi-echo combination 351 

For Experiment 2, involving multi-echo acquisition, S0 and T2* datasets were created by a 352 

simple estimation used in earlier works (Posse et al., 1999; Yen et al., 2017). We assumed 353 

a single compartment monoexponential decay of the MR signal as follows: 354 

 355 

$%
�& � $�  ��'%�
�/
�
�&  [4], 356 

 357 

where T2* and S0 were calculated for each TR as follows (Kundu et al., 2012; Posse et al., 358 

1999): 359 

 360 


)� � %
�) � 
��&/*+ %$�/$�&  [5], and 361 

 362 
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$� � $����/��������/$����/�������� [6], 363 

 364 

where S1 and S2 are the acquired signals at TE1 and TE2, respectively. Negative or T2* 365 

values exceeding 100 ms were considered as noise and were ignored. All four datasets (S0, 366 

S1, S2 or BOLD, and T2*) were entered into the same analysis pipeline used for Experiment 367 

1 while accounting for the different TR value of 1.3 s. The following analyses were 368 

performed on a resampled time course with a TR of 0.5 s.  369 

The interaction between the signal component and vascular anatomy was examined 370 

by extracting the signal time series from the inlet, center, and outlet parts of the vascular 371 

tree, based on the individual lag map created from the BOLD (i.e., at TE2) dataset. By 372 

exploiting the longer lag tracking range (± 7 s) than the one used in the rBTT analysis in 373 

Experiment 1, the center region in this analysis covered a wider range (± 2.5 s). Using the 374 

JMP12 software (SAS Institute, Cary, NC), the magnitude and phase of the regional signals 375 

were analyzed by repeated-measures ANOVA followed by post hoc analyses, using 376 

Tukey's honestly significant difference (HSD) test. Statistical significance was set at p < 377 

0.05. Additional analyses were performed to examine the origins of the signal components, 378 

including a region-of-interest analysis and an SPM analysis of respiration phase-related 379 

small S0 fluctuations.  380 

3 Results 381 

The average root mean square of the head motion was measured as the framewise 382 

displacement (i.e., the shift in the position of the brain in 1 volume compared to the 383 

previous volume), was 0.039 ± 0.007 mm (mean ± standard deviation (SD) over 384 

participants) for Experiment 1, with a maximum displacement of 0.37 ± 0.18 mm, and 385 

0.034 ± 0.015 mm for Experiment 2, with a maximum of 0.24 ± 0.12 mm (Van Dijk et al., 386 

2012). 387 
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 388 

Fig. 2. Representative spatial and temporal profiles of the BOLD lag structure. (A) A 389 

lag map created by tracking the BOLD sLFO phase up to 7 s toward both up- and 390 

downstream is shown. The group average map shows the gross vascular anatomy 391 

with the early phase (positive values) distributed in the middle cerebral artery 392 

territories. The individual map provides more detailed information. (B) Seed time 393 

courses updated at each step (0.5 s) of the recursive lag tracking procedure, 394 

representing the temporal aspect of the lag structure, are shown. The warm-colored 395 

traces with advanced phases originate from the voxels with the same colors in the lag 396 

map, corresponding to the inlet or arterial side of the vasculature. A gradual change 397 

in the temporal profile is noted on top of the slow component, which is stable across 398 

regions. The white vertical lines indicate the timing of the visuomotor task, whose 399 

NVC was modeled by the hemodynamic response function (dark gray trace). The 400 

detected LFO was poorly correlated with the task-related fluctuation of neuronal 401 

origin (see main text). 402 

BOLD, blood oxygen level-dependent; NVC, neurovascular coupling 403 
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 404 

Fig. 2A shows an individual and the average BOLD lag maps during the sparse visuomotor 405 

task. Warm colors indicate a positive travel time from those voxels to the phase of the 406 

global LFO, signifying that the voxels are considered “upstream.” Most brain voxels fell 407 

into the -4 to +4 s range (mean ± SD, 93.8 ± 2.9%). The recursively defined seed time 408 

courses are shown in Fig. 2B with warm colors indicating averaged time series from the 409 

upstream voxels. This time course of the lag structure was poorly correlated with the 410 

visuomotor task (white vertical lines) or the evoked NVC response (trace in dark gray), 411 

supporting a non-neuronal origin of the sLFO. This was confirmed by the correlation 412 

coefficient between the global mean signal and the modeled response that was not 413 

significantly different from 0 (0.0265 ± 0.140, mean and SD over 20 participants), although 414 

still slightly positive in some participants and its regression affected the activation maps 415 

(see section 3.2). In addition to the constant phase shift across regions, the lag structure 416 

time courses presented minute fluctuations of the phase difference (i.e., the temporal 417 

relationship between the lines) over time. 418 

3.1 Flow velocity information in the instantaneous phase  419 

A transient change in the propagation velocity of the low-frequency phase, obtained as the 420 

inverse of the global rBTT, was found in response to the respiratory challenges. Fig. 3B 421 

shows the stacked histograms of the distribution of the instantaneous phase difference 422 

measured by the moving window analysis. This instantaneous phase difference is 423 

interpreted as the time the blood takes to move over a unit distance that requires 0.5 s on 424 

average. The time courses are presented in Fig. 3C. After approximately 10 s of delay, an 425 

increase and a decrease of the BOLD signal was found during breath holding and 426 

hyperventilation, respectively (arrows).  427 
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 428 

Fig. 3. Measurements of the relative BOLD transit time (rBTT). (A) A schematic 429 

illustration of the analysis is presented. For each pair of voxel groups representing 430 

neighboring regions of the vascular tree, the 2 average time series were fed into a 431 

moving window analysis of instantaneous phase difference. (B) Time point histograms 432 

of the instantaneous phase difference averaged over 16 pairs of neighboring regions in 433 

the lag structure are shown. Twenty participants are stacked. Deviation of the phase 434 

difference from 0.5 s reflects a fluctuation of the flow velocity, although the slight shift 435 

of the peak is observed in the breath hold data presumably due to windowing. (C) 436 

Responses to the respiratory challenges of the physiological recordings, raw BOLD 437 

signal, and inverse of the rBTT that can be interpreted as relative velocity are shown. 438 

Thin arrows indicate the autoregulatory response of the raw BOLD signal. The 5 439 
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cycles of volitional breathing for hyperventilation are indicated with yellow bands 440 

representing the inspiration phase. Shaded areas indicate the 95% confidence interval 441 

of the mean across participants.  442 

BOLD, blood oxygen level-dependent 443 

 444 

The temporal profile of the instantaneous velocity (green curves) was roughly in 445 

phase with the global BOLD response but had different onset and peak timings, indicating 446 

different physiological bases. To evaluate the relationship of this phenomenon with the 447 

vascular structure, the inlet, center, and outlet regions were separately analyzed (Fig. 4). In 448 

both respiratory challenges, there was a clear asymmetry over the vasculature, with 449 

pronounced velocity responses in the inlet region. Despite similar BOLD response profiles, 450 

the velocity response was not clearly found in the outlet region. 451 

 452 

Fig. 4. Autoregulatory responses to respiratory challenges in the 3 vascular regions, 453 

using the same conventions as in Fig. 3. The inlet (arterial side), center, and outlet 454 

(venous side) of the parenchymal vasculature were defined for each participant, using 455 

the lag map created from the session data. The relative changes in propagation velocity 456 
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were detected as the inverse of the instantaneous transit time deviation from 0.5 s 457 

(rBTT), since the lag mapping was performed in 0.5-s increments. The BOLD signal 458 

time courses present different peak latencies for the 3 regions (broken lines are aligned 459 

to the center region peak), directly reflecting the lag structure, but with similar profiles, 460 

ruling out its effects on the rBTT measurement. Shaded regions represent the 95% 461 

confidence intervals (N = 20). 462 

BOLD, blood oxygen level-dependent 463 

 464 

3.2 Effect of deperfusioning on the detection of neurovascular coupling 465 

Removal of the whole lag structure exhibited unique effects on the fMRI analysis. While 466 

the mean and SD images from the individual activation maps showed similar spatial 467 

distributions, all procedures reduced the sensitivity compared to the raw dataset where only 468 

the motion-related variances were removed (Fig. 5). However, after the deperfusioning 469 

procedure, primary motor cortex activation was successfully detected by decreased 470 

interindividual variances (black circles). The effect of these procedures was not uniform 471 

between the respiratory challenges (Fig. 6), but some interpretable clusters were selectively 472 

captured by the "deperfusioned” signals despite the reduced cluster number. For example, 473 

the laryngeal motor cortices were detected at the onset and offset of the 10-s breath-holding 474 

sessions (Kumar et al., 2016). In the hyperventilation condition, bilateral recruitment of the 475 

putamen was noted. Additionally, a premotor peak was found at coordinates [+56, 0, 40]. 476 
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 477 

Fig. 5. The effects of the denoising procedures on the detection of neurovascular 478 

coupling during the visuomotor task. Mean and standard deviation maps from 20 479 

individual activation maps (contrast images) illustrate the spurious negative responses 480 

by the global-signal based methods (white circle) and the reduced between-participant 481 

variation by the lag structure removal or deperfusioning (black circle). The threshold 482 

for the activation maps was p = 0.05, corrected for FWE of multiple comparisons over 483 

the entire brain, and zoomed in to show the “hand-knob” of the left primary 484 

sensorimotor cortex.  485 

FWE, family-wise error corrected; GSR, global signal regression; GS, global scaling; 486 

SPM, SPM12 software 487 
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 488 

Fig. 6. SPM results of the respiratory challenges. Color panels show un-thresholded t 489 

map slices at the height of the laryngeal motor cortex (z = 35), revealing spurious 490 

negative responses (cool colors) after global signal removal but not after the 491 

deperfusioning procedure. In the hyperventilation condition, the “deperfusioned” data 492 

revealed clusters in the bilateral putamen and premotor cortex (white circle), 493 

consistently with the findings of earlier reports. 494 

FWE, family-wise error corrected; GSR, global signal regression; GS, global scaling; 495 

SPM, SPM12 software 496 
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 497 

 Voxel histograms from the group SPM analyses showed clear leftward shifts by the 498 

global signal removal, indicating spurious deactivations (Fig. 7). The correlation of the 499 

neuronal response with the global signal (or the extracted sLFO) was near 0, as described 500 

above, but it varied across participants and tended to be positive. This trace of NVC may 501 

have created the spurious deactivation after regression. Notably, this effect was very weak 502 

after deperfusioning across all 3 conditions (green plots), despite a large amount of variance 503 

removed by the procedure.  504 

 505 

Fig. 7. The effects of preprocessing on group SPM analyses. Removal of the lag 506 

structure or deperfusioning resulted in the greatest reduction of the signal variance 507 

under all 3 tasks (left panels). Nevertheless, the spurious negative task responses were 508 

attenuated in comparison to the removal of global fluctuation (middle and right panels). 509 
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Error bars indicate the standard deviation. The vertical broken line in the histogram 510 

indicates the statistical height threshold of p = 0.05, corrected for multiple comparisons 511 

by the family-wise error (FWE) rate.  512 

GSR, global signal regression; SPM, SPM12 software 513 

 514 

3.3 Magnetic resonance signal components of the lag structure 515 

As depicted in Fig. 8, the percent signal change of the sLFO, or the lag structure amplitude, 516 

revealed a clear T2*-dependence with a significant reduction of amplitude in the outlet (i.e., 517 

the venous side of the gross vasculature [post hoc Tukey’s HSD between T2* signals from 518 

the inlet and outlet regions, following a repeated-measures ANOVA]).  519 

 520 

Fig. 8. The standard deviation of the percent signal change as a measure of sLFO 521 

magnitude. No main effect of vascular region was observed by repeated-measures 522 

ANOVA, but the T2* magnitude was significantly different between the inlet and 523 

outlet sides (p < 0.05, Tukey HSD). The short-TE image was not included in the 524 

ANOVA to avoid data redundancy. Each error bar is constructed using a 95% 525 

confidence interval of the mean. 526 
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sLFO, spontaneous low-frequency oscillation; ANOVA, analysis of variance; TE, echo 527 

time; In, inlet; C, center; Out, outlet 528 

 529 

In lag maps from the 3 T2*-weighted images, there were some effects of the 530 

respiratory challenges, but the gross cerebral vascular structure was preserved across tasks; 531 

the periventricular regions and major venous sinuses were uniformly found downstream 532 

(i.e., with negative arrival time) of the global signal phase, while the cortical territory of the 533 

middle cerebral arteries exhibited earlier arrival (Fig. 9A). Only the S0 image presented a 534 

different lag structure, according to the image similarity (Fig. 9A, right panels). 535 

Temporal analysis of the signal components revealed significant main effects of both 536 

region [F (2,532) = 16.877, p < 10-6] and T2* weighting [F (2,532) = 280.786, p < 10-6] 537 

(Supp. Fig. 1A). The S0 time series failed to show a correlation with the T2*-weighted 538 

signals, but the z-value in the inlet (i.e., the arterial side) differed significantly from that in 539 

other regions (p < 0.05, Tukey’s HSD). A region effect was also found for phase 540 

relationships (Supp. Fig. 1B). Similarly, the main effects for both region [F (2,532) = 541 

27.548, p < 10-6] and T2* weighting [F (2,532) = 44.679, p < 10-6], as well as their 542 

interaction [F (4,532) = 24.902, p < 10-6], were significant. The phase of the TE1 signal, 543 

which is less T2*-weighted than that of the BOLD signal, gradually advanced, finally 544 

showing a phase lead in the outlet region, further supporting an interaction between the 545 

signal components and vascular regions. These signal phase dissociations within regions 546 

are displayed in Supp. Fig. 1C. Significant differences among the 3 T2*-weighted signals 547 

were also found after the post-hoc test (p < 0.05). The signal-region interaction was evident 548 

in the signal response to the respiratory challenges shown in Fig. 9B. Note that the traces 549 

contain higher frequency components that were eliminated prior to lag mapping. In contrast 550 

to the changes in T2* responses for both phase and magnitude, the S0 component was 551 

stable across vascular regions. 552 
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 553 

Fig. 9. Analysis of the signal components and the lag structure. (A) S0 and T2* signals 554 

were interpolated based on multi-echo acquisitions at short and typical TEs for BOLD 555 

fMRI. The lag map created from the S0 image shows a unique structure but fails to 556 

reflect the arterial and venous structures that are consistently found in the BOLD lag 557 

map. Using the T2*-weighted signals, the lag map changes upon respiratory challenges, 558 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 22, 2019. ; https://doi.org/10.1101/658377doi: bioRxiv preprint 

https://doi.org/10.1101/658377


 

26 

which should primarily reflect the modification of the perfusion pattern; however, an 559 

interaction with the signal component is not excluded. The right panels show intraclass 560 

correlation coefficients as a quantitative measure of within-participant image similarity 561 

with the BOLD lag map, with error bars indicating 95% confidence intervals. (B) 562 

Temporal profiles from the 3 vascular regions indicate an absence of region effects in 563 

the S0 signal, suggesting a globally uniform mechanism underlying the S0 response. 564 

BOLD, blood oxygen level-dependent; ICC, interclass coefficient; TE, echo time; 565 

fMRI, functional magnetic resonance imaging; sLFO, spontaneous low-frequency 566 

oscillation 567 

 568 

To further investigate the signal origin, we extracted the response in the 569 

motor/premotor area activation peak, where NVC was expected to dominate (Supp. Fig. 570 

2A). For this analysis, the group activation map from Experiment 1 was used to define the 571 

regions-of-interest in order to avoid bias. We found high-frequency components 572 

dominating the S0 responses in comparison to the responses from larger regions shown in 573 

Figure 9B. During hyperventilation, respiratory phase-related fluctuations were observed 574 

with a signal decrease initiated by inhalation and followed by a positive deflection during 575 

exhalation. The T2* signal also exhibited small fluctuations but with a different phase, 576 

possibly dominated by the NVC component. 577 

We conducted an additional analysis for the fast respiration-related non-BOLD 578 

components. The spatial distribution of this response is shown in Supp. Fig. 2B. 579 

Interestingly, there was a clear anterior-posterior segmentation of response polarity, with 580 

the posterior regions presenting the opposite phase of the fast S0 deflection by respiratory 581 

maneuvers. Some additional symmetrical structures were found in deep-brain regions, near 582 

the deep middle cerebral and inferior ventricular veins, implying a unique vascular 583 

involvement. Importantly, this spatial pattern was not that of typical motion artifacts that 584 

can accompany volitional respiration in spite of the careful instruction.  585 

Finally, Supp. Fig. 2C shows the data from a subset of participants, obtained using a 586 

different TR/flip-angle setting to manipulate the inflow effect. The T2* response was 587 
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smaller than that shown in Fig. 2A, presumably due to the short TR. The different TR also 588 

contributed to the rich high-frequency components by the fast sampling rate. The slow S0 589 

change was also diminished, but the respiration-related fast component was relatively 590 

preserved suggesting the absence of a strong inflow effect. 591 

4 Discussion 592 

The principal findings of this study are summarized as follows. First, based on the 593 

instantaneous phase difference within the BOLD lag structure, we observed a small blood 594 

flow velocity change selectively in the inlet region of the vasculature. Next, the complete 595 

elimination of the lag structure reduced interindividual variance and spurious deactivation, 596 

supporting our hypothesis that NVC could be observed more specifically by this 597 

deperfusioning procedure. This finding is in agreement with the results of earlier work on 598 

resting-state fMRI (Erdoğan et al., 2016). Finally, the lag structures in the S0 (or non-599 

BOLD) component did not correlate with that from T2*, either spatially or temporally. We 600 

also found a vascular region-dependent change in the T2* sLFO, with a decreased 601 

amplitude in the outlet part close to major veins, in contrast to the S0 response that 602 

remained constant; this finding replicates a previous observation in the raw BOLD signal 603 

(Aso et al., 2017a). The S0 component exhibited a unique brain region-dependent response 604 

to the respiratory phase, suggesting that certain perfusion parameters specifically contribute 605 

to this component, but not the perfusion lag. Overall, the BOLD low-frequency phase 606 

behaved as a deoxy-Hb-based virtual contrast agent in the present data, leaving a global 607 

noise component for the fMRI analysis. 608 

The observation that the velocity on the arterial side exhibits changes alongside 609 

respiratory variations is consistent with the findings of previous reports using transcranial 610 

Doppler ultrasonography (Malatino et al., 1992; Poulin et al., 1996). This information was 611 

extracted from the BOLD lag structure, which itself presented autoregulatory response 612 

consistent with earlier work (Murphy et al., 2011). During the initial whole-brain CBV 613 

increase in response to autoregulatory vasodilation, a sole increase in the inflow should first 614 

occur to meet the volume demand. It is therefore reasonable that this effect is absent in the 615 
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outlet (i.e., the venous side of the gross vasculature). This observation seems to support the 616 

model in which the BOLD lag structure is derived from an axial non-uniformity in the 617 

vessels, already present in the inflow (Tong et al., 2018). A distinct mechanism of the lag 618 

structure was also suggested by the diminished magnitude observed in the outlet side of the 619 

vasculature, since a CBF increase should evoke larger response in the downstream (Krings 620 

et al., 1999).  621 

It is unclear what proportion of this axial variation is systemic, i.e., originates from 622 

the autonomic loops, mediated by peripheral baro- or chemoreceptors. However, even when 623 

the neural activity is contributing to the sLFO time course as demonstrated previously (Aso 624 

et al, 2017), the resulting lag structure largely reflects the vasculature. In this work, we 625 

focused on non-neuronal mechanisms to account for the BOLD lag structure as much as 626 

possible, in the hope that it may ultimately help achieve a better understanding and provide 627 

improved modeling approaches of the fMRI signal. 628 

4.1 Source of BOLD low-frequency oscillation signals 629 

Previous studies on sLFOs have reported that both Hb species fluctuate, but with varying 630 

phase differences that are selectively found in the brain (Obrig et al., 2000; Rayshubskiy et 631 

al., 2014; Tgavalekos et al., 2016). The observed fluctuations of total Hb density have been 632 

linked to CBV changes (Boas & Dale, 2005; Kennerley et al., 2005; Kim & Ogawa, 2012), 633 

but interpretations for that of deoxy-Hb have rarely been provided. Only 1 series of studies 634 

by Fantini and colleagues directly addressed the possible axial variation of blood content 635 

such as oxygen saturation (Fantini, 2014). In support of the conventional theory, 636 

Rayshubskiy and colleagues reported, in their human intraoperative study, that slow Hb 637 

oscillations correlated with vasomotion in the superficial arteries (Rayshubskiy et al., 2014). 638 

However, it remains unclear whether an equivalent vasomotion exists in the non-arterial 639 

vessels to fully account for the observed lag structure. Hence, it is worth considering other 640 

sources of deoxy-Hb variation.  641 

The concept of vasomotion stems from an active diameter change in the precapillary 642 

vessels, driving local velocity fluctuations, termed “flowmotion” (Intaglietta, 1990). This 643 
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flowmotion can reportedly accompany the fluctuation of local Hct that should affect deoxy-644 

Hb density (Fagrell et al., 1980; Hudetz et al., 1999). Another possible source for the 645 

deoxy-Hb fluctuations is a change in SaO2 that ranges from 94–98% in the artery 646 

(Intaglietta et al., 1996; Collins et al., 2015). For example, the respiration-related BOLD 647 

signal component is supposed to be mediated by the blood CO2 level and pH, which can 648 

shift the oxygen dissociation curve (Birn et al., 2006; Chang & Glover, 2009a). These 649 

parameters are considered to fluctuate in the blood as part of the autonomic loop, possibly 650 

driving local vasomotion, which persists after denervation (Morita et al., 1995). As 651 

mentioned above, the phase difference between the 2 Hb species remains to be elucidated 652 

(Sassaroli et al., 2012), but those observations do substantiate an unstable deoxy-Hb supply 653 

in brain tissues. Besides, such a signal component would have escaped detection in NVC 654 

studies using trial averaging. 655 

A signal origin intrinsic to the flowing blood may, as suggested by Tong and 656 

colleagues, thus explain the constant phase difference among signals from different body 657 

parts (Tong et al., 2012, 2017). In the literature, an axial variation of the Hct in the brain 658 

has indeed been suggested, in relation to both NVC (Kleinschmidt et al., 1996; Siegel et al., 659 

2003; Chen & Pike, 2009) and sLFOs (Fagrell et al., 1980; Mayhew et al., 1996). 660 

Furthermore, the reduction in T2* LFO amplitude in the outlet side can be explained by the 661 

high tissue deoxy-Hb density, which likely diminishes the proportional effect of intrinsic 662 

deoxy-Hb fluctuations, unless the OEF is completely coupled to this variation. Importantly, 663 

temporal dispersion alone would not fully account for the amplitude reduction, as it was 664 

only found in the venous side, despite the fact that the lag structure was tracked both up- 665 

and downstream from the global phase. These results provide good contrast with the stable 666 

S0 response, reflecting its insensitivity to oxygen saturation. Although it would be too 667 

challenging to incorporate complex rheological parameters, a reconsideration of the 668 

constant deoxy-Hb assumption may help improve BOLD signal modelling. 669 

In the hyperventilation condition, we observed a fast response to each ventilation 670 

cycle, accompanying blood pressure changes. This is consistent with reports using 671 

optimized acquisition techniques (Dresel et al., 2005; Pattinson et al., 2009), supported by 672 
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anatomical (Simonyan & Jürgens, 2003), as well as electrophysiological (Radna & 673 

MacLean, 1981) studies. The premotor peak at coordinates [+56, 0, 40] was also very close 674 

to the reported activation site for volitional respiration (McKay et al., 2008). Although the 675 

effect of respiratory movement cannot be fully excluded, the spatial pattern in Supp. Fig. 676 

2B is not that of a typical motion artifact centered on the brain surface (Krings et al., 2001). 677 

In healthy participants, inhalation increases systemic venous return through decreased 678 

intrathoracic pressure, causing an elevation of cardiac output with some delay. In contrast, 679 

exhalation is considered to cause CBV increases through elevated cerebral venous pressure. 680 

To our knowledge, the timing order of these events has not been studied at the precision of 681 

the current data; further studies are needed to determine the source of this S0 fluctuation 682 

(Yen et al., 2017). The only available clue in our results is the spatial distribution, such as 683 

the interesting anterior-posterior segmentation (resembling the unique “S0 lag structure” in 684 

Fig. 9a) or the symmetrical pattern in the deep brain structures. Nonetheless, some 685 

mechanical effects of the respiratory act on the fluid dynamics likely exist, causing this 686 

spatially heterogeneous S0 deflection. 687 

4.2 Lag structure as noise 688 

Based on the assumption that the global signal fluctuation is the sum of all variations by 689 

NVC, its elimination by GSR has been considered to negatively bias the results (Caballero-690 

Gaudes & Reynolds, 2017). However, as noted by Aguirre and others, there are cases 691 

where GSR yields interpretable results even in the absence of global motion artifacts 692 

(Aguirre et al., 1998). The rise in popularity of rs-fMRI since 2005 has led to this issue 693 

resurfacing in a different form. A variation in GSR, in which the time series extracted from 694 

a set of regions-of-interest (whole brain, white matter, and cerebrospinal fluid) are removed, 695 

has become a de facto standard. It is indeed computationally closer to our deperfusioning in 696 

that the regional phase difference is somehow tolerated. However, because this practice 697 

lacks a strong theoretical background (Chang et al., 2009; Liu et al., 2017), currently, the 698 

identification and elimination of bodily movements and physiological noise are more 699 

widely recommended. There are various approaches to this end, such as simultaneous 700 

physiological measurements (Chang & Glover, 2009b), as well as data-driven methods that 701 
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only use fMRI data (Smith et al., 2013). To date, however, objective criteria for 702 

distinguishing neural activity from noise components remains an issue (Salimi-Khorshidi et 703 

al., 2014). 704 

In the present study, the lag structure was treated as a broadly distributed, structured 705 

noise for fMRI. Indeed, it can be partly eliminated by sophisticated denoising techniques 706 

(Aso et al., 2017a). However, the specificity of lag mapping in isolating information on a 707 

purely vascular origin remains unclear. For example, measurements of velocity changes 708 

critically depend on a recursive lag-tracking method that incorporates the gradual change in 709 

LFO over regions (Tong & Frederick, 2014). Adaptation for changes in the waveform that 710 

may arise from different paths of the blood was demonstrated to increase the 711 

reproducibility of the lag map (Aso et al., 2017a). However, as the changes in waveform 712 

can also reflect NVC, removing the whole lag structure may lead to type II errors in the 713 

fMRI results. Hence, the favorable impacts of the deperfusioning procedure that we 714 

observed on the fMRI results are clearly insufficient to prove the advantage of this 715 

technique and require further confirmation. 716 

Importantly, the detection of the lag structure itself largely depends on the data 717 

quality, especially in terms of head movement. When a head movement results in a 718 

synchronized deflection that exceeds the LFO amplitude, it would obscure the phase 719 

variation. However, it can be also questioned if the correlational structure of neural activity 720 

is reliably detected from such motion-contaminated data. In general, NVC should have a 721 

limited spatial extent and signal magnitude without time-locked averaging (Power et al., 722 

2012). In turn, successful tracking of a lag structure may even be considered as evidence of 723 

“clean” data. The elimination of this identified lag structure can be a relatively 724 

straightforward approach to reduce structured physiological noise (Caballero-Gaudes & 725 

Reynolds, 2017). 726 

In conclusion, by investigating various aspects of the BOLD sLFO, we compiled 727 

supporting evidence for a component intrinsic to flowing blood that has been a focus of 728 

interest in earlier works (Tong et al., 2017). To establish a framework by which the fMRI 729 
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signal can be fully modeled, more detailed characterization of the lag structure as part of 730 

the “global noise” is needed (Glasser et al., 2018). 731 
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