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Abstract

Background: Aging is a pleiotropic process affecting many aspects of organismal and cellular1

physiology. Mammalian organisms are composed of a constellation of distinct cell type and state2

identities residing within different tissue environments. Due to technological limitations, the study3

of aging has traditionally focused on changes within individual cell types, or the aggregate changes4

across cell types within a tissue. The influence of cell identity and tissue environment on the trajectory5

of aging therefore remains unclear.6

Results: Here, we perform single cell RNA-seq on >50,000 individual cells across three tissues in7

young and aged mice. These molecular profiles allow for comparison of aging phenotypes across cell8

types and tissue environments. We find transcriptional features of aging common across many cell9

types, as well as features of aging unique to each type. Leveraging matrix factorization and optimal10

transport methods, we compute a trajectory and magnitude of aging for each cell type. We find that11

cell type exerts a larger influence on these measures than tissue environment.12

Conclusion: In this study, we use single cell RNA-seq to dissect the influence of cell identity and13

tissue environment on the aging process. Single cell analysis reveals that cell identities age in unique14

ways, with some common features of aging shared across identities. We find that both cell identities15

and tissue environments exert influence on the trajectory and magnitude of aging, with cell identity16

influence predominating. These results suggest that aging manifests with unique directionality and17

magnitude across the diverse cell identities in mammals.18

Introduction19

Aging is a gradual process of functional and homeostatic decline in living systems. This decline results in increased20

mortality risk and disease prevalence, eventually resulting in death. Aging appears to be a conserved feature of21

eukaryotic biology, affecting organisms as phylogenetically diverse as the single celled S. cerevisiea, the eutelic22

nematode C. elegans, mice, and humans [45, 63, 91]. Despite the near universal nature of the aging process, the23

underlying causes of aging are poorly understood. Aging phenotypes have been observed and hypotheses have been24

proposed for more than a hundred years [97, 50, 37, 64], but we do not yet know the cellular and molecular players25

that cause aging or how they differ between biological contexts. Both the fundamental nature of aging and its negative26

effects provide motivation to enumerate these players and establish causal relationships among aging phenotypes.27

Mammalian aging phenotypes manifest at the organismal, tissue, cellular, and molecular levels [100]. Extensive28

research has produced catalogs of aging phenotypes at the physiological level, providing functional and behavioral29
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hallmarks of age related decline. Likewise, molecular profiling of nucleic acids, proteins, and metabolites has provided30

a phenotypic description of aging in individual tissues [88, 42, 4, 56, 12].31

Additional lines of inquiry have worked to address a classical question of aging biology – do different tissues age32

in the same way? Transcriptomic analysis at the bulk tissue level have revealed common traits of aging, as well as33

tissue-specific features [82, 43, 12]. Proteomic analysis of brain and liver in young and old mice similarly suggests that34

most age related changes are tissue-specific [72]. However, the cellular origins of aging phenotypes within a tissue35

remain largely unknown [12, 70, 78].36

Our current understanding of aging phenotypes at the cellular level is less complete than at the tissue level. Mammals37

contain a multitude of distinct cell identities, each exhibiting specialized functions. In the mouse alone, recent cell atlas38

efforts have revealed more than 100 cell types [80, 39]. These surveys have catalogued diverse murine cell identities,39

but the plasticity of these identities and their contributions to tissue and organism level pathology remain unknown.40

At both the molecular and functional level, a host of aging phenotypes and associated mechanisms have been revealed in41

individual cell types [23, 18, 35, 46, 48, 84, 20, 62]. While some of these studies present unique features of aging within42

individual cell identities, it is difficult to compare them systematically due to differences in experimental conditions and43

assay methodology. Using traditional molecular biology assays, it is difficult to measure high-dimensional molecular44

phenotypes across multiple cell identities, making large scale comparisons of aging phenotypes across cell identities45

intractable. The recent development of single cell RNA-sequencing (scRNA-seq) has ameliorated this limitation,46

allowing for measurement of transcriptional features across all prevalent cell identities in a tissue in a single experiment.47

Although the technology has only recently matured, scRNA-seq experiments in individual tissues have already revealed48

novel aspects of the aging process. In a pioneering single cell RNA-sequencing study of hematopoietic progenitors,49

the axis of aging was shown to be opposite the axis of differentiation [53]. Multiple investigations have reported that50

cell-cell heterogeneity [34, 4] and gene expression variance [67] increase with age. However, the specific influence of51

cell identity and tissue environment on the trajectory and magnitude of aging has yet to be resolved.52

Here, we employ scRNA-seq to generate a set of molecular profiles in which we can compare aging phenotypes across53

cell identities. By profiling 50,000+ cells from three tissues in young and old mice, we identify common features54

of aging that span cell identities, as well as features unique to each identity. Using matrix factorization and optimal55

transport methods, we compute trajectories of aging for each cell identity and assess the influence of identity and56

environment on these trajectories.57

Results58

Single cell RNA-sequencing identifies a diversity of cell types and states in young and old mouse tissue59

We collected transcriptional profiles of young and old cells of many identities by isolating single cells from the kidney,60

lung, and spleen of n = 4 young (7 months) and n = 3 old (22-23 months) C57Bl/6 mice. All three tissues were61

collected from the same animals. Isolations were performed at the same time of day for each animal, limiting circadian62

variation which affects the expression of nearly half of all murine genes [101]. After single cell isolation, cells were63

immediately encapsulated and barcoded for library preparation using the 10X Genomics microfluidics system, followed64

by subsequent sequencing. Using standard techniques for the identification of cell containing microfluidic droplets, we65

recovered 55,293 individual cell transcriptomes (see Methods).66

We determined cell type and state identity by leveraging annotations provided in the Tabula Muris compendium [80].67

These annotations provide labels at the cell type level and follow the structured hierarchy of the “cell ontology” [8].68

Some age-related changes may be unique to individual states within a cell type. Similarly, some changes at the level of69

cell types may be mediated by differences in cell state proportions (i.e. CD4 vs. CD8 T cells). To ensure that we can70

explicitly detect these cell state level changes, we manually annotated cell states within each cell type in the Tabula71

Muris (see Methods, Supp. Fig. 1). We use the term “cell identity” to refer to the combination of cell type and state72

labels, such that CD4 T cells and CD8 T cells are different cell identities (Fig. 1).73

We trained deep neural networks to classify cell types based on these annotations, then used these networks to predict74

cell types in our data (Fig. 1A, B; see Methods). We found that the networks transfer labels with high fidelity. We75

validated classifications by inspecting marker gene expression post-hoc (Supp. Fig. 2, 3) and computing correlations76

between cell identities in our data and the Tabula Muris (Supp. Fig. 4). From these cell identity annotations, we identify77

19 unique cell types and 28 unique cell states across the three tissues. Comparing our cell types to the Tabula Muris, we78

recover all but one of the cell types identified (kidney loop of Henle epithelial cells, Supp. Fig. 3, 5). The cell type79

proportions we recover differ from the Tabula Muris – e.g. we recover comparatively more immune cells in the kidney80
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Figure 1: scRNA-seq reveals that non-immune cell type proportions are preserved with age. (A) Schematic
representation of the experimental design. Kidney, lung, and spleen tissue were isolated simultaneously from each
young and old mouse. After generating single cell suspensions, cells were prepared for scRNA-seq using the 10X
Chromium system. (B) UMAP embeddings of each tissue investigated in our data set. Colors represent cell type
annotations. Cell types are derived using a deep neural network classifier trained on the Tabula Muris data set. (C)
Matching UMAP embeddings depicting the age of each cell. (D) For each animal, we computed the proportion of
cells in each state. The mean proportion of each cell state for each age across animals is presented as a bar graph. The
underlying proportions observed in individual animals are overlaid as black dots.
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and lung – but are not outside expected range based on previous comparisons between single cell RNA-seq datasets81

[80, 74].82

Immune cells are more prevalent in old kidneys and lungs, while non-immune cell type proportions are preserved83

One prospective way in which aging may influence tissue function is by altering the proportion of each cellular identity84

within the tissue. This change in cell identity compositions may occur at either the level of cell types, or by shifting the85

distribution of cell states within a cell type. To investigate the former possibility, we quantified the proportion of each86

cell type within each tissue across ages.87

In both the kidney and lung, lymphocytes were significantly more abundant in old animals compared to young animals88

(t-test on additive log-ratio transformed proportions, q < 0.05)(Fig. 1D). In old kidneys, we found a roughly 2 fold89

increase in T cells, classical monocytes, and non-classical monocytes, and in old lungs a corresponding 2 fold increase90

in classical and non-classical monocytes and a roughly 1.3 fold increase in T cells. This may reveal increasing immune91

infiltration of the the non-lymphoid tissues with age, as suggested in previous studies of kidney, lung, and other92

non-lymphoid tissues [70, 78, 92, 6, 65]. However, we can not rule out that our recovery of specific cell types may be93

confounded by an interaction of aging with our isolation procedures.94

Considering only non-immune cells in the kidney and lung, cell type proportions were not substantially altered by aging95

(Supp. Fig. 6B). Likewise in the spleen, we found minimal change in the proportion of cell types between young and96

old animals (Fig. 1D). While changes in non-immune cell type proportions are subtle, we cannot rule out that even97

these subtle changes may influence the aging process.98

Shifting cell state proportions within a cell type may be an alternative mechanism by which aging phenotypes manifest.99

Examples of this phenomenon are present in the literature, such as the observed decrease in naive CD8 T cells relative100

to other T cell states [29, 38] and the shift from highly regenerative to less regenerative stem cell states in the blood and101

muscle [23, 14]. To address whether cell state proportions change with age, we quantify the proportion of cells in a102

given cell state for each cell type.103

Investigating spleen T cells, we recapitulate the finding that CD8 T cells are less abundant in old animals. We observed104

a shift in the population of kidney collecting duct epithelial cells – old animals exhibit a decreased frequency of Cald1+105

collecting duct cells relative to Slc12a3+ collecting duct cells (χ2 contingency table, q < 0.05). Aqp3+ and Slc12a3+106

cells are likely principle cells of the collecting duct based on expression of Scnn1a. Cald1+ cells are also marked107

by Phgdh, which has a reported mosaic expression pattern in the proximal tubule, and Cryab, which was similarly108

identified to mark a distinct subpopulation in the Mouse Microwell Atlas [39] (Supp. Fig. 6C). However, we are not109

aware of a defined role for this cell population, making it difficult to speculate on the impact of this shift in cell state110

proportions. Other cell types with notable cell state substructure do not show shifts with age, such as lung stromal cells111

(Supp. Fig. 6A).112

Cycling cells are similarly rare in young and old animals113

Previous reports have suggested that cell cycle activity changes with age in multiple cell populations. In blood114

progenitors, cell cycle kinetics are accelerated with age [53], while in muscle progenitors the frequency of cycling cells115

increases with age [23], and in the intestinal crypt cycling cells become less frequent [69]. To investigate the possibility116

of changes in cell cycle frequency in our data, we evaluated cell cycle activity by scoring the expression of S-phase117

associated genes and G2M-associated genes [90] (see Methods). We observe only subtle changes in either of these118

cell cycle module scores with age across cell identities. The proportion of putatively cycling cells is also very small119

across cell identities (Supp. Fig. 7). These results suggest that the cell cycle rate in cell identities we observe is not120

dramatically changed with age. However, we cannot discount the possibility that the cell cycle scoring method we use121

is insufficient to detect differences.122

The accumulation of non-cycling senescent cells in aging tissues has been reported in several previous studies [25]. The123

reported magnitude of senescent cell accumulation varies between tissues. In aging mouse kidney, the proportion of124

cells with senescence associated β-galactosidase activity increased from roughly 0.2% to 1.2%, whereas in epicardial125

cells the proportion increases from 2% to 10% (12 months to 18 months) [7]. Similar observations have been made126

using paired-end single cell RNA-seq in the human pancreas, where the proportion of cells expressing senescence127

marker gene CDKN2A increases from roughly 7% to 15+% between early- (21-22 years) and mid-adulthood (38-54128

years) [34]. To investigate whether senescent cells are more prevalent in the old tissues we observe, we similarly129

measured expression of Cdkn2a. We find that the Cdkn2a locus (p16-Ink4a and p19-Arf) is not significantly upregulated130

with age in any of the cell identities we observe (Supp. Fig. 8). Due to the overlapping nature of the p16-Ink4a and131

p19-Arf reading frames, we note that we cannot distinguish transcripts from these two proteins using 3′-end RNA-seq132
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alone [44]. We also scored the activity of a curated set of senescence-associated genes using the AUCell approach [1],133

but we do not find large differences in this score with age (Supp. Fig. 8).134

Changes in cell-cell variation with age depend on cell identity135

Single cell analysis allows us to measure not only the mean expression of each gene, but also the variation within a cell136

population. Previous work has suggested that both gene expression variance and cell-cell heterogeneity increase with137

age [67, 34, 5]. These two types of variation differ in subtle but important ways. Gene expression variance quantifies138

the mean dispersion across genes in the transcriptome, such that each gene contributes equally. Because genes are139

equally weighted, changes in gene expression variance are unlikely to be driven by a small number of genes. Likewise,140

multivariate differences in gene expression between cells are not resolved due to the focus on mean dispersion values.141

Increased gene expression variance may reflect a global change in transcriptional noise, perhaps due to loss of regulatory142

control, as suggested in previous aging studies [93].143

By contrast, cell-cell heterogeneity measures the average distance in transcriptional space between cells in a population.144

These distances capture multivariate differences in gene expression, capturing variation in cell state that manifests145

across genes. They also account for gene expression level, such that a small number of more highly expressed genes146

can drive changes in cell-cell heterogeneity. Increased levels of cell-cell heterogeneity may reflect a diversification of147

cellular states within a population (Fig. 2A).148

Both transcriptional variation and cell-cell heterogeneity have important implications for cell physiology and function149

of a cell population, as explored in seminal studies of transcriptional noise in cell fate selection [17, 89] and bet hedging150

[55, 2, 26, 85, 10]. To determine if age-related changes in variation and heterogeneity depend on cell identity and tissue151

environment, we evaluate both properties across the many combinations of cell identity and tissue environment we152

observe.153

We evaluate transcriptional variation using the difference from the median (DM) method [51] to estimate “overdisper-154

sion.” Overdispersion refers to the residual variation in gene expression observed for a given gene after accounting155

for the mean:variance relationship in gene expression data [67] (see Methods). Across the cell identity/environment156

combinations we observe, we find that transcriptional variation by this metric is largely unchanged (Fig. 2B). Individual157

cell identities can be identified that exhibit both an increase in variation with age (lung leukocytes) or a decrease in158

variance with age (kidney mesangial cells) (Fig. 2D).159

We quantified cell heterogeneity in each cell identity/environment combination using the distance to the centroid160

method as previously introduced [34, 5]. Cell-cell heterogeneity appears to increase for many cell identities (Wilcoxon161

Rank Sums, q < 0.05), including B cells across all three tissues, and lung stromal cells. We also observe decreased162

heterogeneity with age in some cell identities, such as lung type II pneumocytes and kidney CD8 T cells (Fig. 2C).163

Taken together, these results indicate that changes in gene expression variance and cell-cell heterogeneity with age are164

not universal and depend on cell identity. This suggests a more nuanced view of the notion that an increase in noise is a165

defining hallmark of aging at the single cell level [34, 93].166

Differential expression reveals aging phenotypes common across cell identities167

Prior studies have revealed differentially expressed genes within whole tissues or individual cell types in aging168

[27, 78, 70, 12, 47, 98, 88, 43]. However, it remains unclear to what degree age-related transcriptional changes are169

shared or unique across cell identities. To address this outstanding question, we performed differential expression170

analysis within each cell identity between young and old mice.171

We identified differentially expressed genes for each cell identity/tissue environment combination using the Rank Sums172

method (see Methods). For each differentially expressed gene, we counted how many cell identities differentially173

express that gene in the same direction. The majority of differentially expressed genes with age are specific to one or a174

few cell identities (Fig. 3A).175

However, a subset of 261 genes are differentially expressed across > 5 cell identities and show consistent changes176

across multiple cell identity/tissue environment combinations (Fig. 3B). Here, we chose 5 cell identities as a cutoff177

for common differentially expressed genes to reduce the number of genes identified due to common differential178

expression in highly similar cell identities (i.e. monocytes and macrophages). Thus, some aspects of transcriptional179

aging are common to many cell identities. Using gene ontology enrichment analysis for biological processes [54], we180

identify SRP-dependent protein localization and protein translocation to the ER as commonly downregulated across181

cell identities. This observation is consistent with the observed interaction of protein translocation systems with aging182

[40, 87] (Fig. 3C, lower). Antigen processing and inflammatory pathways are significantly upregulated with age, a result183

that has likewise been observed across tissues [78, 70, 12, 72]. Performing hierarchical clustering on this common set184
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Figure 2: Changes in cell-cell heterogeneity with age depend on cell identity. (A) Diagram illustrating the difference
between gene expression variance (left) and cell-cell heterogeneity metrics (right). Gene expression variance measures
the variance of the average gene in a manner that controls for mean expression levels. Cell-cell heterogeneity measures
the average difference between cells across genes. Examples of data providing high and low values for each metric are
schematized. (B) Overdispersion values (computed using the difference from the median method) for each cell identity
conditioned on age. Each point in the underlying data represents a single gene. Many cell identities do not show a
substantial shift in the overdispersion distribution. Some identities show increases in the mean overdispersion with age,
while others show decreases. (C) Cell-cell heterogeneity measurements based on Euclidean distances to the population
centroid for each cell identity and age. Each point in the underlying data represents a single cell. Most cell identities
exhibit increased cell-cell heterogeneity in old cells (*: Wilcoxon Rank Sums, q < 0.05). However, some identities
show decreased heterogeneity with age as well (kidney::CD8 T cell, kidney::classical monocyte). (D) Difference in
overdispersion between old and young cells (∆Overdispersion) as a function of mean gene expression value in Vim+
kidney capillary endothelial cells (upper) and lung leukocytes (lower). Each point represents a single gene.
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Figure 3: Differential expression analysis identifies common age related changes across cell identities and tissue
environments. (A) The number of genes differentially expressed in at least k cell types, presented as a histogram. (B)
Heatmap of top 15 genes significantly changed in the each direction across >= 5 cell types. Fold changes between old
and young cells are presented for each cell type in each tissue. While no gene is universally changed across cell types,
each gene is changed across multiple tissues and developmental lineages. (C) Top 5 enriched gene ontology terms for
genes that are downregulated (negative values) and upregulated (positive values) with aging across >= 5 cell types.
Dotted lines represent the α = 0.05 significance threshold. Antigen processing and metabolic pathways appear to be
upregulated, while protein translation and translocation pathways appear to be downregulated with aging. (D) Violin
plot of genes that are uniquely changed between two cell states in the lung (Wilcoxon Rank Sums, q < 0.05) – Npnt
stromal cells and type II pneumocytes. Each gene presented is significantly upregulated or downregulated in one cell
type and does not change in the same direction (log2 (Old/Young) < 0.1) in the other cell type. Confidence intervals
are computed by bootstrapping. For each cell state, we show the top two specific downregulated genes and upregulated
genes. (E) Violin plot of genes that are uniquely changed between CD4 T cells isolated from the spleen and the lung.
Genes are selected as in (D).
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of differentially expressed genes, we find gene clusters enriched for specific inflammatory processes (type I interferon185

signaling, cytokine secretion), suggesting that more than one immunological pathway is changed with age (Supp. Fig.186

9).187

Increases in inflammation associated gene transcription have previously been reported in multiple tissues. However,188

previous investigations have relied on bulk transcriptional assays, making it difficult to determine if inflammatory genes189

signatures were upregulated in all cells within a tissue, or if more immune cells had infiltrated the tissue [78, 70, 12]. To190

investigate the possibility that immune pathways are upregulated across many non-immune cell identities, we identified191

a set of genes that are differentially expressed in at least 3 non-immune cell identities. Gene ontology enrichment192

analysis on this gene set reveals that inflammatory gene sets (T cell activation, B cell activation, viral entry, response to193

cytokines) are upregulated, even in these non-immune cell identities. However, the enrichment is much less significant194

than when immune cells are included (Supp. Fig. 10). At the gene level, we find Ikgc, Cd74, and B2m are commonly195

upregulated with aging. B2m has previously been reported to increase in the aging systemic milieu, and reports have196

indicated it may play a causal role in aging brain pathology [86].197

Many genes change expression uniquely in individual cell identities, even within the same tissue. For instance, Npnt198

lung stromal cells exhibit upregulated and downregulated genes that are unchanged in lung type II pneumocytes and199

vice-versa (Fig. 3D). Gene ontology enrichment analysis reveals that Npnt stromal cells downregulate fibrinolysis200

and muscle development gene sets, while upregulating responses to fluid shear stress that are unchanged in type II201

pneuomcytes. By contrast, type II pneumocytes downregulate degranulation associated gene sets that are unchanged in202

stromal cells (Supp. Fig. 10).203

We also observe genes that are differentially expressed in a tissue-specific manner. For example, CD4 T cells in the lung204

demonstrate downregulated and upregulated genes that are unchanged in CD4 T cells of the spleen and vice-versa (Fig.205

3E). Collectively, these results indicate that while most differentially expressed genes are specific to individual cell206

identities, a subset of changes appears to be common across many identities. This common subset includes previously207

reported increases in inflammatory gene expression, which we find in both immune and non-immune cells. Cell identity208

and tissue environment also influence the genes which are differentially expressed, as demonstrated in comparisons of209

different cell identities in the same tissue, or the same cell identity in different tissues.210

Aging manifests novel B cell states in the spleen211

Beyond shifting cell state proportions, aging could promote the formation of novel cell states unseen in young animals.212

Age-associated cell states may then contribute to aging phenotypes at the cell type and tissue scales. We observe an213

example of a cell state that arises with age in spleen B cells.214

Spleen B cells in our experiments exhibit three distinct clusters which do not map well to a canonical subtyping scheme215

(Fig. 4A). We observe that one of these clusters is dominated by cells from old animals (Fig. 4A, C; p < 0.05, χ2216

contingency table). We performed differential expression analysis on each of these clusters to identify marker genes,217

and note high levels of Apoe in the larger cluster and high levels of B2m in the other. It has been reported that C57Bl/6218

mice, like those in this study, die with an unusually high incidence of lymphoma [16, 21, 75]. To ask if these clusters219

dominated by old cells potentially represent lymphomas, we examined the expression of several genes associated with220

B cell lymphomas in a previous study [58]. We identify several lymphoma associated genes significantly upregulated221

in each of these clusters (Fig. 4B, rows 4-9)(q < 0.05, Wilcoxon Rank Sums test). Performing gene set enrichment222

analysis using the MSigDB Hallmark Gene Sets [61], we observe that Myc target genes and DNA repair pathways223

are upregulated, while p53 pathway genes are downregulated (Fig. 4D). This pattern of differential gene expression224

suggests that the Apoe high population is pre-neoplastic.225

At a finer level of detail, we find that the Apoe high cluster appears to have two distinct lobes. One of these two lobes226

seems to contain cells almost entirely derived from a single old animal (1 of 3) (Fig. 4E), while the other lobe contains227

cells found in all of the old animals observed. To determine what differentiates these lobes, we examined marker genes228

and identify differences in the expression of Zeb2, the B cell marker Cd72, Plac8, and Cd24a as discriminating features229

(Fig. 4F; q < 0.05, Wilcoxon Rank Sums test). Each of these genes has previously been associated with neoplasia230

[102, 49, 60].231

These emergent cell states support the notion that some aging phenotypes manifest not by shifting the distribution232

or location of youthful states, but by creating new states altogether. Neoplastic cells are an extreme case of such a233

phenomenon. The observation of a cell state that is generally ubiquitous in old mice and a related state that is present in234

only one animal also highlights the commonalities and the stochastic animal-animal heterogeneity that are associated235

with studies of the aging process.236
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Figure 4: Aging manifests novel B cell states in the spleen. (A) UMAP embeddings of the spleen B cell compartment.
Louvain clustering identifies three subpopulations within the B cell compartment of the spleen, named by their marker
genes (left). The distribution of young and old cells is shown for comparison (right). (B) Marker genes for each cluster
and a set of lymphoma specific genes presented as violin plots. All markers presented are significantly enriched in the
Apoe high or B2m high cluster. (C) Proportions of cells in each cluster as a function of age. The Apoe high and B2m
high states are occupied predominantly by aged cells (t-test on additive log ratio transformed proportions, q < 0.05).
(D) Enrichment of MSigDB Hallmark gene sets based on differentially expressed genes in the Apoe high cluster. Myc
targets, mTOR signaling, and DNA repair pathways are upregulated while p53 signaling is downregulated, suggestive
of neoplasia. Gray dotted lines represent the α = 0.05 significance threshold. (E) UMAP embedding of the Apoe cell
cluster. A second Louvain clustering iteration reveals two clusters within this Apoe high group (left). Visualizing the
animal of origin for each cell, it is apparent that Cluster 1 is dominated by a single old animal (right). (F) Marker genes
for each of the sub clusters within the Apoe high state presented as violin plots. Cluster 0 is enriched for lymphoma
associated gene Zeb2 while Cluster 1 is enriched for Plac8.

9

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 6, 2019. ; https://doi.org/10.1101/657726doi: bioRxiv preprint 

https://doi.org/10.1101/657726
http://creativecommons.org/licenses/by-nc-nd/4.0/


PREPRINT

Cell identity determines the trajectory of aging237

Our differential expression and heterogeneity analyses suggest that cell identities age differently, and that the same cell238

identity ages differently across tissues. How much do cell identity and tissue environment influence the trajectory of239

aging? To answer this question quantitatively, we compute a trajectory of aging for each cell identity in each tissue240

based on their transcriptional profiles.241

We perform this analysis using an embedding space derived by non-negative matrix factorization (NMF). NMF242

embeddings of transcriptional data have been shown to recover relationships between genes, such that each component243

of the embedding may be interpreted as a gene expression program [52, 22, 83]. Likewise, values of each component in244

each cell can be interpreted as the activity of that program. By using an NMF embedding to compute trajectories of245

aging, we are able to make qualitative interpretations at a level of abstraction above individual genes.246

To compute aging trajectories, we first embedded all cells observed across tissues in a 20-dimensional NMF space247

(Fig. 5B; Supp. Fig. 11; see Methods, dimensionality chosen based on the trade-off between interpretability and248

explained variance). To assign semantic meaning to the embedding dimensions, we identified genes associated with249

each dimension by thresholding on the dimension loadings and analyzed gene set enrichment (Supp. Fig. 12). We250

computed the aging trajectory for each cell identity/tissue combination as the distance between the centroid of the251

young cells and the centroid of the old cells in this embedding (see Methods). This procedure yields a 20-dimensional252

vector representing the trajectory of age-related change observed in each cell identity.253

We compare these trajectories using the cosine similarity. The cosine similarity is 1 if trajectories are in the same254

direction, 0 if they are orthogonal, and −1 if they are in opposite directions. Clustering by these cosine similarities,255

we find that qualitatively similar cell identities have similar aging trajectories, while dissimilar cell identities have256

orthogonal to dissimilar trajectories (Fig. 5A).257

Examining the clustering partition, we find that cells segregate into roughly 4 clusters: endothelial and epithelial cells258

(blue), myeloid cells (purple), lymphocytes (green), and a remaining cluster with both myeloid and epithelial cell types259

(red). Cell identities from the kidney and lung are intermixed within the endothelial/epithelial cell cluster. Likewise,260

within the lymphocyte cluster B cells and T cells cluster more tightly by cell identity across tissues than by tissue of261

origin. This suggests that cell identity has a larger influence on aging trajectories than tissue environment.262

To quantify the influence of both cell identity and tissue environment, we focused on the aging trajectories of immune263

cell types observed in all tissues (B cells, T cells, natural killer cells). For these cell types, we construct linear models264

and perform an analysis of variance (ANOVA) to determine the proportion of variation explained by cell identity and265

the proportion explained by tissue environment [77]. Consistent with qualitative observations, we find that cell identity266

explains a markedly larger fraction of variation than tissue environment (Fig. 5C). We also perform this analysis using a267

PCA embedding with the same result, indicating that this result is robust to our choice of embedding space (Supp. Fig.268

13).269

Endothelial cells and lymphocytes exhibit distinct aging trajectories270

We next asked how endothelial/epithelial and lymphocyte aging trajectories differed. Using the clustering assignments271

from (Fig. 5A), we compared aging trajectories for each cell identity in the endothelial and lymphocyte clusters. We272

find that the two clusters show consistent differences in the magnitude of change within multiple NMF dimensions (Fig.273

5D). Based on gene ontology enrichment within these dimensions, we find that endothelial/epithelial cell types show an274

increase in thyroid hormone and type I interferon signaling (Dimension 2, Fig. 5E) and oxidative/fatty acid metabolic275

processes (Dimension 16) relative to lymphocyte cell types. By contrast, lymphocytes show a larger increase in NF-κB276

signaling and related immune response pathways (Dimension 13). We note that B cell activating associated pathways277

are increased with age in a B cell specific manner (Dimension 19). Both clusters show increases in NAD metabolism278

and B cell signaling pathways (Dimension 18), as well as T cell signaling and activation (Dimension 6). These results279

are consistent with literature observing changes in type I interferon activity [59] and thyroid hormone signaling with280

aging [36, 15, 94].281

Optimal transport analysis indicates that cell identity determines the magnitude of aging282

Do some cell identities or tissue environments age more dramatically than others? To answer these questions, we283

estimated the magnitude of aging using optimal transport distances in an NMF embedding, as described above. Here,284

we utilize an embedding with 500 latent dimensions to capture more variation within the data (Supp. Fig. 11). Optimal285

transport is a technique for measuring distances between equally sized samples, such as probability distributions or286

discrete samples with the same number of elements. It was originally designed to calculate the minimal amount of287
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Figure 5: Cell identity and tissue environment influence aging trajectories. Aging trajectories were computed as
the distance between young and old cell centroids in a non-negative low-rank embedding for each cell state. (A) Cosine
similarities between the aging trajectories of each cell state in each tissue are compared in a heatmap. (B) A UMAP
visualization derived from the 20-dimensional NMF embedding with cell types overlaid as colors. (C) Variation in the
aging vectors of immune cell types found in all three tissues explained by cell type and tissue environment (ANOVA).
(D) Heatmap visualization of the aging vectors for cell types. Endothelial cell types and lymphoid cell types identified
by unbiased clustering presented in (A) are shown. Semantic descriptions of each embedding dimension derived from
gene enrichment analysis are presented as column labels. Some expression programs show common changes with age
across both groups of cell types, while others appear to be different between groups. (E) Gene enrichment analysis
results for select dimensions of the NMF embedding.
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Figure 6: Optimal transport (OT) estimates the magnitude of aging across cell identities. To estimate a magnitude
of age-related change in each cell population, we compute an OT distance between random samples of young and old
cells in each cell identity. (A) Young and old spleen B cells are presented in a UMAP projection of the NMF embedding.
Dashed lines overlaid indicate the globally optimal partners for each young and old cell, collectively representing the OT
solution. The sum of distances along each dashed line is the OT distance. OT distances were computed independently
for each cell identity across 300 random samples. (B) OT distances for each cell type in each tissue are presented.
For each cell identity, we compute distances for heterochronic samples of cells (Old-Young) and isochronic samples
of cells (Young-Young, Old-Old). The latter isochronic comparisons reflect negative controls. Distributions across
n = 300 random samples each are presented for each of these comparisons. (C) Variance in normalized OT distances
explained by cell identity and tissue environment (ANOVA). (D) Heterochronic OT distances for each cell identity.
Each dot represents the normalized OT distance for a single sample. Values are normalized to the largest mean value
of the isochronic negative controls. The grey dotted line marks a normalized distance of 1, which indicates that a
heterochronic comparison shows similar distances to an isochronic comparison in that cell identity.
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earth that needed to be moved to convert a pile of earth into a fortification. Optimal transport distances have since been288

applied to a wide variety of tasks, including the analysis of single cell RNA-sequencing data [81].289

The discrete optimal transport distance we apply here measures the minimum amount of change needed to make290

one group of cells match another. This metric capture differences in the covariance structure and modality of a cell291

population, in addition to differences in the population means (Supp. Fig. 14). We compare the distance between292

two cell populations by sampling n cells from each of them a number of times, and averaging the distance across293

the samples (see Methods). This bootstrap sampling scheme allows us to meet the equal sample size requirement for294

optimal transport distances, even when we observe different numbers of young and old cells.295

Here, we compare the distance between young and old cells from each cell identity and tissue environment in the NMF296

embedding. For each cell identity, we make three distinct comparisons. We make a heterochronic comparison between297

young to old cells to estimate the magnitude of aging. This process is schematized in spleen B cells to provide intuition298

(Fig. 6A). We also make two isochronic comparisons, comparing young cells to young cells, and old cells to old cells299

(Fig. 6B). These isochronic comparisons serve as a null distribution, estimating the distance we would expect to see300

between random samples of cells in the absence of age-related change. In each comparison, we draw 300 samples,301

each containing n = 300 random cells (see Methods for sampling scheme used for low abundance cell identities). We302

normalize the heterochronic (Young-Old) comparison values for each cell identity by dividing by the mean of the larger303

isochronic distance.304

We interpret these normalized optimal transport distances as an estimate of the magnitude of age related change. We305

find a large diversity in aging magnitudes across the cell identities we observe. Some cell identities exhibit little more306

distance between young and old cells than between two isochronic groups of cells (normalized distance of ≈ 1), while307

others show 3 to 4 fold larger differences in heterochronic comparisons. Lung and kidney natural killer (NK) cells308

exhibit some of the highest optimal transport distances, while kidney and lung B cells and kidney capillary endothelial309

cells show some of the smallest distances.310

To quantify the relative contributions of cell identity and tissue environment to aging magnitude, we use the same linear311

modeling and ANOVA approach as above. These models reveal that cell identity explains the majority of variation in312

aging magnitudes while tissue environment explains little variation (Fig. 6C). To confirm that these results are robust to313

the non-deterministic NMF embedding procedure, we compute these distances across 10 separate optimization runs of314

the NMF embedding and find that relative distances are preserved. We likewise compute Old-Young distances with a315

range of random sampling sizes and find distances are highly correlated across settings of this parameter (Supp. Fig.316

15).317

Perhaps surprisingly, we find that different cell states within the same cell type can have notable differences in aging318

magnitude. For instance, spleen CD8 macrophages exhibit a larger aging magnitude than spleen CD4 macrophages.319

Similarly, lung Dcn stromal cells exhibit a larger aging magnitude than other stromal cell counterparts. Across all three320

tissues, CD8 T cells exhibit a larger aging magnitude than CD4 T cells. These observations collectively indicate that321

cellular identity can have a notable impact on the magnitude of age-related change, such that even different cell states322

within the same cell type exhibit differences in aging magnitude. Tissue environments by contrast appear to have less323

influence on aging magnitude, suggesting that most difference in the magnitude of aging between tissues is driven by324

differences in cell identity composition.325

Discussion326

Aging occurs across varied mammalian species, each composed of diverse cell types and states. While aging phenotypes327

are well catalogued at the organismal and tissue level, the cell identities that they comprise have been less explored.328

To understand the causes of aging, we wish to construct a causal network of molecular players and their relationships.329

If these players and relationships are dependent on cell identity, as evidence suggests for tissues [82, 43, 12, 72], an330

accurate representation of the causal network requires resolution of the organismal building blocks – individual cells.331

Here, we use single cell RNA-seq to investigate aging across a diverse set of murine cell identities in three tissues.332

Tissues were collected in synchrony from each animal, allowing for direct comparisons between cell identities within333

and across tissues. Few synchronized cross-tissue data sets investigating aging phenotypes are available, and we believe334

these data will be informative to the aging research community.335

We find that cell identities exhibit unique differentially expressed genes with aging, consistent with previous reports of336

cell identity specific aging phenotypes [4]. Similar cell types (e.g. kidney capillary endothelial cells & lung endothelial337

cells) exhibit broadly similar aging trajectories across tissues, while distinct cell types from the same tissue (e.g. B cells338

& type II pneumocytes in the lung) have dissimilar trajectories. This suggests that cell identity and aging trajectory339

are coupled, and distinct cell types may be undergoing independent aging processes. Consistent with this notion, cell340
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identity explains the majority of variation in these aging trajectories. Tissue environment explains a lesser amount341

variation, but its influence is also present in our data in small sets of unique differentially expressed genes in the same342

cell identity across tissues. Collectively, our results indicate that the molecular manifestations of aging differ between343

cell identities and tissue environments. A causal network for aging phenotypes must therefore be conditioned on both344

cell identity and environment to accurately reflect biology.345

Although most changes are unique to tissues or cell types, we did identify a shared core of differentially expressed genes346

with age. This core is characterized by decreased expression of genes involved in SRP-dependent protein translation and347

protein targeting to the ER and increased expression of genes involved in inflammation. Decreased protein translation348

and targeting to the ER has previously been associated with replicative age in S. cerevisiea [40] and is consistent with349

associations between global protein translation and aging [87]. Likewise, increased inflammatory pathway expression350

has been broadly observed in studies of aging tissues [12, 70, 78, 3]. Observation of these changes across many cell351

identities and tissue environments suggests they are consistent molecular players in the causal network of aging, less352

dependent on context than others. We caution that consistency and causality are not intertwined, and functional studies353

modulating these pathways in multiple cell identities are necessary to establish causal links to other aging phenotypes.354

We present an optimal transport metric to estimate the magnitude of age-related change between two cell populations.355

Using this approach, cell identities exhibit multi-fold differences in aging magnitude, and cell identity again explains356

the majority of variation in aging magnitudes. Our results are conceptually consistent with previous reports of dramatic357

transcriptional changes with age in some cell identities and more subtle changes in others [46, 47, 53, 28]. Directly358

comparing the magnitude of aging in this manner suggests that some cell identities may exhibit more dramatic functional359

decline with aging than others. However, the magnitude of transcriptional change with aging may not necessarily reflect360

the degree of functional decline in all cases. Future comparison between identities with high and low aging magnitudes361

may reveal some cellular “strategies” that moderate age-related change.362

Tissue level profiling of aging tissues has suggested that cell type composition may change with age [12, 70, 78].363

Increased immune gene expression in multiple old tissues has specifically suggested increased infiltration of immune364

cells. Our data are consistent with this notion, as we observe an increased frequency of immune cell types in both the365

kidney and lung. However, these changes are difficult to confirm using only cell type counts produced after single cell366

isolation. Age-related changes in a tissue (i.e. altered extracellular matrix composition [4]) may lead to preferential367

isolation of one cell type relative to another, even if the underlying cell type proportions do not change. To confirm this368

phenotype, immunohistology studies quantifying the number of immune cells in these aging tissues are necessary. We369

also observed that inflammatory pathways are commonly upregulated, even in non-immune cell identities, suggesting370

that changes in immune cell proportions alone do not entirely explain the increased inflammatory pathway activity in371

aging tissues.372

Previous studies reported that multiple metrics of transcriptional variability increase with aging [67, 34]. Two measures373

have predominated in the literature – (1) gene expression variance measures which focus on the mean “over-dispersion”374

across genes and (2) cell-cell heterogeneity measures which focus on the mean distance of individual cells to the center375

of the cell population. While ostensibly similar, each measure provides insight into a different aspect of biology.376

Gene expression variance does not weight genes by expression level, such that changes are most likely when many377

genes increase or decrease variance. Biologically, changes in this measure may therefore reflect global changes in378

transcriptional noise [33, 76], which has been reported to influence cell fate decisions [96, 24, 41, 9]. By contrast,379

cell-cell heterogeneity measures consider the absolute distance of each cell from the population center, such that380

changes in heterogeneity can be driven by a handful of moderate- or high-expression genes. These measures may better381

reflect the phenotypic variance across cells in a population, as associated with the classical bet-hedging phenomenon382

[26, 85, 10]. We find that changes in each of these measures depend on cell identity, such that neither increased or383

decreased variability was observed universally across identities. These results are consistent with previous reports of384

aging altering gene expression variance and cell-cell heterogeneity in a cell identity dependent manner [4].385

Conclusions386

Single cell RNA-seq of young and old cells from three separate mouse tissues has revealed common and cell identity387

specific aspects of aging. We find that multiple metrics of transcriptional variation change with age, and that these388

changes are cell identity dependent. Cell identities exhibit unique gene expression changes with age, but we also identify389

a common set of protein translation and inflammatory pathway changes across many cell identities. Leveraging matrix390

factorization techniques, we define trajectories of aging and attribute the majority of variation in these trajectories to391

cell identity. Using optimal transport, we compute a magnitude of aging and find that observe multi-fold differences392

in this magnitude between cell identities. We again find that cell identity rather than tissue environment explains the393
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majority this variation in magnitude. Collectively, these results highlight the influence of cell identity on the aging394

process and the importance of measuring aging phenotypes with cellular resolution.395

Methods396

Animals397

Young (29-34 weeks old) and old (88-93 weeks old) male C57Bl/6 mice were used for all experiments. Mice398

were housed communally with a standard 12 hour dark cycle and fed ad libitum. Euthanization was performed by399

administration of carbon dioxide at a controlled flow rate. Animals were euthanized at the same time each day to400

minimize circadian variation, shortly after the beginning of the light cycle. Kidneys, lungs, and spleen were collected401

from each experimental animal and weighed. Downstream cell isolation for each tissue proceeded immediately.402

Cell Isolation403

We removed each tissue and washed each in HBSS then dissected the tissue into small pieces using a razor blade.404

Kidney and Lung405

We incubated dissected kidney tissue in 1.48 U/mL Liberase DL enzyme mixture (Roche) in a total volume of 7 mL406

DMEM at 37◦C for 20 minutes in a 50 mL conical tube shaking at 200 rpm. We incubated dissected lung tissue in 1.48407

U/mL Liberase TM (Roche) and 200 U/mL DNase I (Roche) in a total volume of 7 mL DMEM at 37◦C for 30 minutes408

in a 50 mL conical tube shaking at 200 rpm. Tissue was further mixed using a 10 mL pipette tip and 40 mL of DMEM409

(2% FBS) was added to stop digestion. We sequentially pipetted cells through 100 µm, 70 µm, and 40 µm filters then410

peletted cell suspensions by centrifugation at 500 x g for 10 minutes.411

After centrifugation, we treated cells with ACK Lysing Buffer (ThermoFischer) for 5 minutes at room temperature.412

We centrifuged ACK treated cells, discared the supernatant, and repeated ACK treatment. We subsequently washed413

cells in DMEM (2% FBS) and peletted by centrifugation. We removed debris from samples using the Miltenyi Debris414

Removal Solution. We added 6.2 mL cold PBS and 1.8 mL Debris Removal Solution to cell pelettes and resuspended415

by pipetting. We added 4 mL cold PBS to the top of the mixed solution and centrifuged samples at 4◦C , 3000 x g for416

10 minutes. We washed samples in 10 mL cold PBS and centrifuged at 4◦C , 1000 x g for 10 minutes, then resuspended417

in PBS with 2% FBS. We counted cells using a TC20 Cell Counter (Bio-Rad) and diluted cells to a concentration of418

106 cells/mL. We then proceeded to single cell library preparation.419

Spleen420

We used a syringe plunger to further fragment the spleen tissue after razor blade dissection. We mechanically dissociated421

tissue fragments by pipetting in RPMI cell culture media (2% FBS). We subsequently forced tissue fragments through422

100 and 40µm filters. After centrifugation at 500 x g for 10 minutes, we treated cells with ACK Lysing Buffer423

(ThermoFischer) for 5 minutes at room temperature. We washed cells in RPMI (2% FBS) and pelleted by centrifugation.424

We counted cells using a TC20 Cell Counter (Bio-Rad) and diluted cells to a concentration of 106 cells/mL then425

proceeded to single cell library preparation.426

Single Cell RNA Sequencing Experiments427

We prepared libraries (individual lanes on the 10X Chromium) with the 10X Single Cell 3’ v2 kit using 6,000 cells per428

lane on the 10X Chromium microfluidics device. We sequenced libraries at a target depth of 50 million reads/sample on429

an Illumina HiSeq 4000. For each sample, we performed two technical replicates by preparing two separate libraries430

from the same cell suspension across two channels of the Chromium microfluidic device.431

Read Alignment and Gene Expression Quantification432

We aligned reads to the mm10 reference genome obtained from ENSEMBL. We used gene annotations from the433

GENCODE vM20 release with slight modification. We have replaced annotations for lincRNAs Gm42418 and434

AY036118 with a single contiguous gene annotation for the rRNA element Rn45s. This locus harbors an Rn45s repeat435

as reflected in RefSeq, such that contaminating 18S rRNA in our library preparations may lead to inflated expression436

counts for these lincRNAs.437
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We performed alignment to this amended reference using 10X cellranger 3.0.2, which employs the STAR sequence438

aligner [30]. We determined gene expression counts using unique molecular identifiers (UMIs) for each cell barcode-439

gene combination. Following alignment, we filtered cell barcodes to identify those which contain cells using the440

approach implemented in cellranger 3.0.2, and only these barcodes were considered for downstream analysis. The441

output of this analysis is a Cells× Genes matrix, where each element i, j represents the number of UMIs mapping to442

gene j in cell i.443

Quality Control444

We removed libraries which contained a low sequencing depth (< 10 million reads) or very few cells detected (< 500445

cells) from subsequent analyses as likely experimental errors. Based on this metric, only one technical replicate failed446

QC, so all tissues from all animals in the experimental design are represented in our downstream analysis. We leveraged447

the scanpy toolkit [99] in subsequent analyses. We quantified the total number of UMIs, total number of genes detected,448

fraction of UMIs mapping to the mitochondrial genome, and fraction of reads mapping to the Rn45s repeat annotation449

for each cell. We filtered cells with fewer than 1000 UMIs or fewer than 500 unique genes detected, as described for450

the Tabula Muris [80]. Additionally, we filtered out cells with a high fraction of reads mapping to the mitochondrial451

genome (> 10%) or the Rn45s repeat (> 0.5%) as likely dead cells.452

Dimensionality Reduction and Embedding453

We normalized the Cells× Genes matrix by the total number of UMIs in each cell and scaled by 106 to yield Counts454

Per Million (CPM). We natural log transformed this matrix after the addition of a pseudocount of 1 to avoid undefined455

values.456

To enable unsupervised clustering and cell type identification, we perform dimensionality reduction with principal457

component analysis (PCA) to the combined set of samples for each tissue. First, we identify a set of highly variable458

genes within the tissue based on overdispersion as described previously [79]. Briefly, we computed a “normalized459

dispersion” score for each gene by binning genes with similar mean expression levels, and subtracting the mean460

dispersion (variance/mean) within a bin from the dispersion score for each gene in the bin. The residual values represent461

the dispersion after accounting for the mean:variance relationship using this binning scheme. We set the following462

minimum criteria for the selection of genes as highly variable: minimum overdispersion of 0.5, minimum mean463

expression of 0.5 ln(CPM + 1), maximum mean expression of 7 ln(CPM + 1). After subsetting to this set of highly464

variable genes, we centered expression values to a mean of 0 and unit variance. We used these scaled genes as input465

features for PCA. Once embedded in this PCA space, we construct a nearest neighbor graph identifying the k = 15466

nearest neighbors for each cell. We derived UMAP embeddings presented for visualization from this nearest neighbor467

graph using a minimum distance of 0.5 and a spread of 1.0 [11].468

Clustering and Cell Type Identification469

Louvain community detection [79, 19] was applied to the nearest neighbor graph constructed in PCA space to define a470

cluster partition. To infer cell types, we trained a neural network classifier to predict cell ontology classes given single471

cell RNA-seq expression information.472

This classifier is a fully connected neural network with four hidden layers each paired to a rectified linear unit activation,473

dropout layer, and batch normalization. Each hidden layer has 1024 units and the dropout probability on each layer is474

set to p = 0.3. We apply a softmax activation to the final layer and utilize cross entropy as an objective function for475

training. During training, we perform class balancing with a mixture of over- and under-sampling. Classes (cell types)476

with fewer than 128 examples are oversampled, while classes with more examples are undersampled. Optimization is477

performed using the Adagrad optimizer [31].478

As a training set, we utilized the recently published Tabula Muris compendium which provides expert cell type479

annotations in the mouse [80]. In addition to these annotations, we manually added cell state annotations to the480

Tabula Muris data to provide a level of granularity below cell ontology classes (Supp. Fig. 1). Example cell states481

include categorizing T cells into CD4 T cell and CD8 T cell subgroups, as well as the addition of subgroup labels to482

heterogeneous cell types such as lung stromal cells in the Tabula Muris. We name these cell states which do not have483

canonical names based on the expression of a prominent marker gene. For instance, we refer to a Gucy1a3+ subset of484

lung stromal cells as Gucy1a3 lung stromal cells.485

We first trained a classifier for each tissue individually, yielding a set of tissue-specific classifiers that have no knowledge486

of cell types outside the training tissue. We also trained a tissue independent classifier by training on all cell types487

present in the Tabula Muris simultaneously.488
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We first inferred cell types for the lung and spleen using a tissue-specific classification model trained to predict cell489

ontology classes. We classified kidney cells with a tissue independent model to provide further resolution of immune490

cell types not annotated in kidney cells of the training set. We subsequently inferred subtypes using a model trained491

to predict our added subtype annotations. We chose subtypes as the most likely subtype allowed within our defined492

hierarchy. For instance, we chose the subtype of a T cell as the most likely subtype among the “CD4”, “CD8”, and493

“memory” subtypes. We used subtype classification models trained on the spleen to predict T cell and macrophage494

subtypes in all tissues, as the training set contained insufficient cell numbers to perform subtype annotation in other495

tissues. After direct inference of types and subtypes, we refined cell type information by using a k-nearest neighbors496

smoothing approach. Here, we chose k ∈ [30, 100] empirically depending on the tissue context.497

Differential Cell Type Proportion Analysis498

To determine if cell type proportions differed between old and young animals, we performed an additive log ratio (ALR)499

transform on the observed cell type frequencies and assessed significant changes for each cell type using a t-test. Within500

a given cell type, we performed a χ2-test of the Age× Cell State contingency table to determine if the proportions of501

cell states change with age.502

Differential Variability Analysis503

We measured differences in transcriptional variation between young and old animals in two distinct ways.504

(1) The first method evaluates changes in the variability of each gene between young and old animals, and attempts505

to identify a shift in the distribution of gene-wise variation. We assessed gene-specific variability by measuring the506

“overdispersion” of each gene. We defined overdispersion as the residual between a gene’s observed dispersion and507

the expected dispersion based on the gene’s mean expression value. We computed overdispersion values using the508

“difference from the median” (DM) method, as introduced previously [53]. We restricted DM calculation to genes with509

a mean expression value greater than 35 CPM to reduce the influence of poorly measured genes. To determine if the510

distribution of overdispersion values is significantly changed across ages, we employ the Wilcoxon Rank Sums test511

for a difference in means. We controlled the False Discovery Rate (FDR) to α = 0.05 with the Benjamini-Hochberg512

procedure. We performed DM analysis for each cell state in each tissue in our data set separately.513

(2) The second method we employ evaluates cell-cell heterogeneity based on the Euclidean distance between cells514

in expression space, as introduced previously [34]. For each cell state in each tissue, we compute the centroid of515

the cell state in gene expression space. We computed the distance from each cell to this centroid as a metric of516

cell-cell heterogeneity within each cell state. We employed the Wilcoxon Rank Sums test with the Benjamini-Hochberg517

procedure [13] as before to determine if this cell-cell heterogeneity metric is significantly different across ages.518

Differential Expression Analysis519

We computed differentially expressed genes between two groups of cells A and B using the Wilcoxon Rank Sums test520

with the Benjamini-Hochberg procedure for FDR control. We performed differential expression between young and old521

cells within each cell state in each tissue independently. In addition to comparing mean expression values with the Rank522

Sums test, we also computed the proportion of cells expressing each gene in each group. Cells with >= 1 UMIs for a523

given gene are considered to be expressing the gene, whereas cells with 0 UMIs are considered to not be expressing the524

gene.525

Identification of Common and Unique Differentially Expressed Genes526

To identify common differentially expressed genes with age across cell identities, we computed for each gene the527

number of cell identities in which that gene is significantly differentially expressed in the same direction. Note that we528

counted each cell identity as a single entry in this score, regardless of how many tissues it appears in. We then selected529

genes that are differentially expressed in the same direction in k >= 5 cell identities and consider this gene set to be530

“commonly differentially expressed” with age.531

To identify genes which are uniquely differentially expressed between two cell identities A and B, we computed genes532

which are significantly differentially expressed in A and are (1) not-significantly differentially expressed in B and (2)533

have a log2 fold-change < 0.1 in B.534

17

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 6, 2019. ; https://doi.org/10.1101/657726doi: bioRxiv preprint 

https://doi.org/10.1101/657726
http://creativecommons.org/licenses/by-nc-nd/4.0/


PREPRINT

Gene Ontology Enrichment Analysis535

We used Enrichr [54] to perform gene set enrichment analysis against the Gene Ontology Biological Process (2018)536

gene set collection. We also used the MSigDB Hallmark Gene Sets [61], for which we computed enrichment scores537

using Fisher’s exact test. In both cases, we corrected for multiple hypothesis testing using the Benjamini-Hochberg538

procedure.539

Cell Cycle Scoring540

Cell cycle activity was estimated by scoring the expression of a set of S phase associated and G2/M phase associated541

genes, as shown previously [90] and as implement in Seurat [79]. Briefly, a set of genes associated with each of542

these phases was derived from single cell RNA-sequencing in 293T and 3T3 cell lines. For each cell, the sum of543

the expression of these phase-associated genes is computed. As a null distribution, a set of genes are selected from544

the set difference of the observed genes and the phase-associated genes. These null genes are selected by binning545

the sample genes into 24 equally sized bins by mean expression, then randomly sampling 100 null genes per bin per546

phase-associated gene with replacement. The difference between the mean of the phase-associated genes and the547

selected null genes is considered the module score.548

Analysis of Variance in Transcriptional Space549

To determine the proportion of variance in transcriptional space (gene-wise UMI counts, NMF embedding dimensions)550

explained by experimental factors in our data, we use the linear modeling approach of Robinson et. al. [77]. Briefly, we551

fit a linear model for each dimension of the relevant transcriptional space (i.e. gene, NMF dimension) of the form552

Y = βXT + E

where Y is a Feature× Cell matrix of observed transcriptional features, X is a Samples× Parameters design matrix553

containing p experimental parameters, β is a Feature× Parameters coefficients matrix, and E is a Feature×Cell matrix554

of residuals. We calculated the proportion of variance explained by each experimental parameter for each gene by555

ANOVA. To determine the total proportion of variance explained by a factor, we simply sum the sum of squares for556

each parameter p across features for each parameter and divide by the summed total sum of squares:557

P (p)
var =

F∑
f

SS(p)
f

TSSf

where f is a feature in the set of features F .558

Non-negative Matrix Factorization Embedding559

We perform non-negative matrix factorization using a standard multiplicative update optimization and random initial-560

ization [57], as implemented in the nimfa package [103]. We performed NMF optimization using all cells observed561

across all three tissues after ln(CPM + 1) normalization. The NMF embedding was fit to a set of highly variable genes,562

identified as described above. We chose a rank k = 20 for aging vector by selecting the “knee” in a plot of Rank vs.563

Explained Variance. We also utilize an NMF embedding of rank k = 500 for optimal transport distance calculation to564

capture more variation in the data, also chosen based on a later “knee‘ in the Rank vs. Explained Variance curve.565

NMF Embedding Interpretation566

To assign semantic meaning to each dimension of the embedding, we first identify genes associated with each dimension567

by performing Otsu thresholding [73] on log-transformed gene loadings. From the set of associated genes (loadings568

above the threshold), we perform gene ontology enrichment analysis with the Biological Process Gene Ontology569

database. We empirically name a consensus “program” for each dimension based on the enriched gene sets.570

Aging Trajectory Calculation571

We compute aging trajectories for each cell identity/tissue environment combination individually. For each cell identity,572

we compute the centroid c of the young cells and old cells in the NMF embedding and compute the vector from the573

young cells to the old cells (~v = cold − cyoung).574
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Optimal Transport Estimation of Aging Magnitude575

We use a discrete optimal transport (OT) distance to estimate the magnitude of difference between two cell populations576

A and B. Due to the conservation of mass assumption in the optimal transport formulation, we take random samples of577

the same size n from each population for comparison. We compute the OT distance as minimum cost solution to the578

linear sum assignment problem, solved using the Munkres algorithm [68]. For each comparison of populations A and579

B, we perform 300 random samples of size n = 300 cells and compute the average to reduce the variability inherent in580

this stochastic sampling approach. In the data set examined here, multiple populations have < 300 cells for sampling.581

In this circumstance, we set n = 0.8 min(||A||, ||B||) and use the same repeated sampling approach as above.582

To estimate the “magnitude of aging,” we compute OT distances for three distinct comparisons. We make a heterochronic583

comparison of young cells to old cells as a measure of the difference between these populations (Old-Young comparison).584

As negative controls, we compute both isochronic comparisons, measuring distances between random samples from585

pool of young cells (Young-Young comparison), and measuring distances between samples from the pool of old cells586

(Old-Old comparison). The isochronic comparisons serve as an estimate of the distance we would expect between587

random samples simply due to heterogeneity within the population.588

We normalize the heterochronic Old-Young comparison by dividing these measurements by the mean of the largest589

isochronic distance (i.e. if Young-Young distance is larger than Old-Old, we divide by the Young-Young mean, and590

vice-versa). This normalization scheme is conservative, using the upper bound estimate of differences caused by591

cell-cell heterogeneity as our baseline for noting an effect due to aging. Following normalization, we therefore interpret592

Old-Young OT distances > 1 as indicative of differences caused by aging and interpret a larger value of this normalized593

distance as reflecting a larger magnitude of age-related change. To ensure these distance estimates are robust to different594

optimizations of the NMF embedding, we perform NMF optimization using 10 distinct random initializations and595

compute OT distances in each of these embedding spaces.596

Software Tools597

We leveraged GNU parallel [66], the scipy computing environment [71], and the Seaborn plotting package for several598

analyses [95].599
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Figure S1: Manual annotation of cell states in the Tabula Muris. (A) UMAP projections of the Tabula Muris data
with our manual cell state annotations overlaid as colors. We annotate cell states where there are known canonical
states within a cell type (i.e. CD4 and CD8 T cells) and where we observe substructure within a cell type in the Tabula
Muris data (as in the lung stromal cells). (B) UMAP projections of each cell type where we provide manual cell
state annotations. The expression of marker genes that guided our cell state annotations is shown below each UMAP
projection.
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Figure S2: Cell state annotations in our data derived from neural networks. We trained deep neural networks to
classify cell states within individual cell types using our manual annotations of the Tabula Muris (Supp. Fig. 1). UMAP
projections of each cell type are presented with cell state annotations overlaid as color labels. Cell states are enriched
for corresponding marker genes, as in the Tabula Muris, presented as violins below each UMAP projection.
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Figure S3: Comparison of our cell state proportions and markers to the Tabula Muris. (A) Cell state proportions
from our dataset (green) compared to proportions observed in the Tabula Muris (blue). Notable differences include
a higher proportion of immune cells in our data set and the absence of kidney loop of Henle epithelial cells. These
differences may be the result of intentional experimental differences (perfusion vs. no perfusion), animal ages (Tabula
Muris animals are younger than our young animals), and laboratory-to-laboratory differences in isolation technique.
(B) Expression of marker genes across cell states we identify in our data. Marker genes are either taken directly from
those suggested by the Tabula Muris, or from marker genes we identify in their data using our differential expression
procedure.
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Figure S4: Correlation of cell identities between our data and the Tabula Muris. (A) Mean expression vectors for
each cell identity were computed in our data and the Tabula Muris as the mean expression of each gene across cells in a
given identity. We computed correlations between these mean expression vectors for all identities between the two data
sets. Visualizing these correlations as a heatmap, we find that identities in our data are most similar to corresponding
identities in the Tabula Muris.
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Figure S5: Visualization of kidney loop of Henle epithelial cell markers from the Tabula Muris indicates these
cells are not present in our data. (A) UMAP projections of our kidney data and kidney 10X kidney data from the
Tabula Muris. Note the absence of kidney loop of Henle epithelial cells in our data set. (B) Expression of marker genes
for kidney loop of Henle epithelial cells in our dataset and the Tabula Muris. We find no coherent group of kidney loop
of Henle cells in our data based on these markers.
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Figure S6: Cell state proportions shift with age. (A) Cell subtype proportions with age for individual cell types.
Kidney collecting duct epithelial cells (left) show a significant shift in the subtype distribution with age (Chi-squared
contingency table, p < 0.05). By contrast, lung stromal cells with a similarly complex cell type composition do not
change with age (center). In the spleen, we detect a well known shift in the T cell subtypes with age. Old animals
exhibit a lower proportion of CD8 T cells (Chi-squared contingency table, p < 0.05). (B) Cell subtype proportions
with age for all non-immune cell types in the kidney and lung. When immune cells are removed, we find that most
cell types in both tissues have similar proportions between young and old animals. (C) Aqp3 and Slc12a3 kidney
collecting duct epithelilial cells co-express Scnn1a (epi. sodium channel ENaC) suggesting they are principal cells of
the collecting duct. Cald1 duct epithelial cells also express Phgdh and Cryab, consistent with reports of a subpopulation
in the literature with unknown function.
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Figure S7: Cell cycle activity is largely unchanged with age. (A) S-phase gene module and G2/M-phase gene module
scores each cell type in each tissue. We find little difference in CC module scores across cell types. (B) Representative
cell cycle phase plots based on gene module scoring for S-phage and G2M-phase genes. Here we show individual cell
states from the lung. We find very few distinctly cycling cells across all those observed. (C) Proportion of variance
explained by cell cycle module scores based on linear models.
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Figure S8: Neither Cdkn2a (p16-Ink4a) nor senescence-associated gene activity is significantly upregulated in
old cells. (A) We quantify the percentage of cells in each identity that express Cdkn2a for each animal. No cell identity
shows a significantly increased proportion of Cdkn2a+ cells. (B) We scored the activity of a manually curated set of
senescence-associated secretory phenotype (SASP) genes using the AUCell approach for each cell identity at each each.
Higher AUCell score indicate high activity of the gene program. We do not find higher activity of the SASP genes in
old cells.
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Figure S9: Differential expression identifies a set of genes changed with age across many cell identities. (A) We
identify a set of 275 genes change with age in at least k = 5 cell identities. Performing hierarchical clustering on the
fold-changes within each cell identity, we identify subsets of these genes with similar behavior (color column labels).
We used cosine similarity as an affinity metric for clustering. (B) Gene ontology enrichment terms for genes within
each gene cluster identified above.
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Figure S10: Differential expression analysis identifies age-related changes unique to cell identity and tissue
environment. (A) Heatmap of common differentially expressed genes found in k > 3 non-immune cell states. We note
that B2m, Ikgc, and Cd74 are commonly upregulated with aging, even in these non-immune cells. (B) Gene ontology
enrichment terms for common differentially expressed genes in non-immune cell states. Dashed grey lines demarcate
the α = 0.05 significance threshold for enrichment. We find that immunological activation pathways are upregulated
even in these non-immune cell states, though we note that the gene ontology enrichments are modest. SRP-dependent
protein localization and ER targeting are again downregulated. (C) Gene ontology enrichment analysis for genes up-
and downregulated with age in type II pneumocytes, but not Npnt stromal cells and vice-versa. Dashed grey lines
demarcate the α = 0.05 significance threshold for enrichment. Genes downregulated with age reflect the mesenchymal
nature of lung stroma and unique fluid shear stresses in type II pneumocytes. (D) Gene ontology enrichment analysis
for genes up- and downregulated with age in natural killer cells from the lung, but not natural killer cells from the
spleen and vice-versa.
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Figure S11: Non-negative matrix factorization of all observed cell types. (A) UMAP projection of our NMF
embedding with rank k = 20. (B) Proportion of variation in count data explained by NMF embeddings as a function of
rank and initialization procedure. We find that a rank of k = 20 sits at the elbow of this relationship, capturing ≈ 42%
of the variation. (C) We visualize the activity level of each gene expression program captured by the NMF embedding
across cell types in a UMAP projection. Note that the NMF dimensions are not explicitly ordered.
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Figure S12: Gene ontology enrichment in non-negative matrix factorization embedding dimensions. Top 10
enriched Gene Ontology Terms for each dimension of the NMF embedding. We performed Gene Ontology enrichment
analysis on the genes with loadings above a threshold value for each dimension.
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Figure S13: Cell identity and tissue environment influence on aging trajectories in a PCA embedding. (A) We
computed aging trajectories between young and aged cell centroids in a PCA embedding. We compare these trajectories
using cosine similarities. Cosine similarities between the aging trajectories of each cell state in each tissue are presented
as values in the heatmap. (C) Variation in the aging vectors (computed in the PCA embedding) of immune cell types
found in all three tissues explained by cell type and tissue environment (ANOVA).
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Figure S14: Simulation experiments demonstrate that optimal transport distances capture differences between
cell populations. (A) Two “cell populations” (blue, orange) were simulated as 2-dimensional Gaussian distributions.
We computed the centroid distance and optimal transport (OT) distance between populations for a range of possible
differences that may arise between cell populations (text insets). As a baseline, we simulate unit Gaussians with
different means. When the difference in means is increased (Mean Shift), both the centroid distance and OT distance
reflect the magnitude of change. However, when we shift the covariance matrix of one population or simulate a bimodal
population with the same mean as the baseline unimodal population, only the OT distance reflects these differences. (B)
Comparison of centroid distance and OT distance metrics for comparing simulated cell populations. Each simulated
population contains n = 5000 cells. Each simulation was performed 50 times to estimate confidence intervals. For
each iteration of the simulation, we compute the OT distance as the mean OT distance across 30 random samples of
n = 100 cells from each simulated population. (*: p-value < 0.05, t-test to baseline).
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Figure S15: Optimal transport estimates the magnitude of aging across cell identities. (A) Optimal transport
distances were computed for each cell identity tissue combination. We normalize our heterochronic comparison
(Young-Old cells) by the larger mean of two null isochronic comparisons (Young-Young, Old-Old). We computed this
normalized distance for 10 separate NMF optimizations. The mean normalized distance for a single NMF optimization
is represented as a point, with violins outlining the distribution across 10 iterations. We find that the relative distances
between cell identity/tissue combinations are not changed across NMF optimization runs. (B) Optimal transport
distances were computed for a range of random sampling sizes. We present the normalized Old-Young distance values
(normalized as in (A)) for each sample size. (C) Heatmap of Spearman correlations between the normalized Old-Young
distances computed using different sample sizes. Old-Young distances have high correlation (Spearman’s ρ > 0.9)
across the range of sample sizes, suggesting the metric is robust to changes in sample size. (D) UMAP projection of the
NMF (rank 500) embedding used for optimal transport distance calculation. Cell types are overlaid as colors.
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PREPRINT

Supplemental Tables901

Table S1: Total cell counts for each tissue, stratified by age.

Age Tissue Cell Count
Old Kidney 3,042

Lung 10,460
Spleen 13,815

Young Kidney 4,653
Lung 10,295
Spleen 13,028

42
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