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Abstract 
 
We identify novel mechanisms of general intelligence involving activation patterns of large-
scale brain networks. During hard, cognitively demanding tasks, the fronto-parietal network 
differentially activates relative to the default mode network, creating greater “separation” 
between the networks, while during easy tasks, network separation is reduced. In 920 adults in 
the Human Connectome Project dataset, we demonstrate that these network separation 
patterns across hard and easy task conditions are strongly associated with general intelligence, 
accounting for 21% of the variance in intelligence scores across individuals. Moreover, we 
identify the presence of a crossover relationship in which FPN-DMN separation profiles that 
strongly predict higher intelligence in hard task conditions reverse direction and strongly 
predict lower intelligence in easy conditions, helping to resolve conflicting findings in the 
literature. We further clarify key properties of FPN-DMN separation: It is a mediator, and not 
just a marker, of general intelligence, and FPN-DMN separation profiles during the task state 
can be reliably predicted from connectivity patterns during rest. We demonstrate the 
robustness of our results by replicating them in a second task and in an independent large 
sample of youth. Overall, our results establish FPN-DMN separation as a major locus of 
individual differences in general intelligence, and raise intriguing new questions about how 
FPN-DMN separation is regulated in different cognitive tasks, across the lifespan, and in health 
and disease.   
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Introduction 
 
There is substantial evidence for an overarching general ability involved in performance across 
a diverse range of cognitive tasks.1–5 This ability, which we here refer to as “general 
intelligence”6,7, is a core element of individual differences in psychological functioning and a 
key contributor to a number of important academic, occupational, health, and well-being-
related outcomes.8–13 There has thus been longstanding interest in cognitive neuroscience in 
identifying the brain mechanisms that produce general intelligence.14–17  
 
Previous studies have mainly investigated relatively static, enduring features of the brain that 
correlate with general intelligence, for example brain size18, cortical thickness/gray matter 
volume19,20, and white matter structure21 (for reviews, see 14–17). A relatively small set of 
studies examined activation of brain regions during cognitive tasks, and they yielded a mixed 
picture. Some studies found higher activation in executive regions in subjects with higher 
intelligence (or better task performance)22–25, some found lower activation26–28 , and others 
found no relationship29.  
 
In the present study, we introduce a novel perspective on brain mechanisms of general 
intelligence, which in addition sheds light on the mixed findings in previous research. Our 
approach involves two major shifts from prior work. First, we focus not on neural activation at 
individual brain regions, but rather activation averaged over distributed large-scale brain 
networks30–33, focusing on mean activation in fronto-parietal network (FPN), associated with 
executive processing and top-down control34–38,  and default mode network (DMN), associated 
with spontaneous cognition39–42. These networks are known to exhibit antagonistic 
relationships during externally-focused cognitively demanding tasks43,44, with FPN activating in 
accordance with cognitive demands45–47 and DMN correspondingly deactivating48–50, which in 
turn produces greater “separation” in activation levels between the networks.  
 
Second, we examine network activation profiles not in a single task condition but rather 
comparatively across easy and hard task conditions. Taking this comparative approach allows us 
to identify a novel mechanism of general intelligence: generation of greater divergence in 
network activation profiles across task conditions. In particular, we demonstrate the presence 
of a crossover relationship: Individuals with higher intelligence exhibit smaller separation 
between FPN and DMN during easy task conditions and larger separation during hard task 
conditions. Commensurately, they exhibit greater change in network separation between these 
conditions.  
 
Behavioral and imaging data for our main analysis came from the Human Connectome Project 
(HCP) 1200 release51,52 which has 1206 subjects, of which 920 had usable, high quality data for 
the main analysis in the present study (age mean 28.6, sd 3.7; female 52.9%). We generated 
general intelligence scores for each subject by performing bifactor modeling on ten behavioral 
tasks from the HCP dataset, including seven tasks from the NIH Toolbox and three tasks from 
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the Penn Neurocognitive Battery, and established the model has very good fit to the data (see 
Methods for details on the factor loadings and fit statistics).  
 
The HCP dataset also includes activation data from a number of tasks performed during 
neuroimaging scanning, including the N-back task, a widely used probe of working memory. In 
prior work, working memory tasks were often used to investigate brain regions implicated in 
general intelligence22,24,29, due to extensive evidence that working memory and intelligence are 
closely related53–56. In other lines of research, a number of structural and functional imaging 
studies have highlighted the involvement of FPN and DMN in general intelligence14,57,58. Of 
particular relevance, we recently showed that cognitive tasks that produce greater separation 
between FPN and DMN activation are more effective for prediction of intelligence59. Building on 
this body of prior work, we aimed to investigate activation patterns during the N-back task that 
are associated with individual differences in general intelligence, focusing on the role of 
FPN/DMN separation. 
 

Results 
1. FPN/DMN separation in the N-back task is strongly 
associated with general intelligence

 
Figure 1:  Mean Network Activation for FPN And DMN in the 0-Back And 2-Back Conditions of 
the N-Back Task. We extracted activation in FPN and DMN during 0-back and 2-back conditions 
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of an N-back task. Separation between FPN and DMN (i.e., the difference in activation between 
the two networks, shown as dashed lines) roughly doubles from 24.1 in the 0-back to 46.4 in the 
2-back. Note: Mean brain network activation is measured in arbitrary units.  
 
All participants performed an 9.72 minute N-back task in which they are shown a series of 
pictures, one every 2.5 seconds. In the harder 2-back condition, they respond when the picture 
shown on the screen is the same as the one two trials back. In the easier 0-back condition, they 
respond when the picture is the same as the one shown at the start of the block. 
 
Figure 1 shows mean activation for FPN and DMN in the 0-back and 2-back conditions of the N-
back task. The figure highlights that the magnitude of the separation between FPN and DMN 
(i.e., the difference in activation between the two networks) roughly doubles in the 2-back 
condition (mean separation = 46.4) compared to the 0-back condition (mean separation = 24.1), 
a highly statistically significant difference (paired t(919) = 65.2, p < 1x1016).  
 
To assess the relationship between FPN/DMN separation and individual differences in general 
intelligence, we constructed a multiple regression model with general intelligence as the 
outcome and FPN/DMN separation for the 0-back and 2-back conditions as the predictors. 
Results showed that the overall model was highly statistically significant (F(2,917)=60.5, p < 1 x 
10-16) and explained 20.8% of the variance in general intelligence scores (correlation between 
model predictions and actual intelligence is 0.46; see Figure  2). Importantly, this effect size is 
notably large relative to effect sizes typically reported in the “neural correlates of intelligence” 
field. For comparison, the effect size of brain volume, one of the most studied predictors of 
intelligence, is typically measured to be roughly a quarter to half this size.17,18  
 
We additionally examined whether FPN activation alone, rather than FPN/DMN separation, 
might be an effective predictor of general intelligence. This possibility is motivated by Figure 1, 
which shows that mean FPN activation increases substantially in the 2-back relative to the 0-
back (thick red line), whereas DMN activation remains largely unchanged (thick blue line; note 
that DMN remains unchanged only when averaging over all the subjects, and there is still 
substantial variability from subject to subject). We compared an FPN-only model with the 
FPN/DMN separation model with a likelihood ratio test for non-nested models. Results showed 
that the FPN-only model was substantially less effective (z=6.2, p < 10-8, r-squared = 8.2%), with 
r-squared in the prediction of general intelligence decreasing by more than half. This suggests 
that it is FPN/DMN separation, rather than FPN activation alone, that appears to be most 
closely linked to general intelligence.  
 

2. The relationship between FPN/DMN separation and general 
intelligence is moderated by task load 
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Figure 2: Relationship Between FPN/DMN Separation and General Intelligence in the N-Back 
Task. (Left Panel) A multiple regression model with FPN/DMN separation values for the 2-back 
and 0-back conditions as predictors and general intelligence as the outcome explained 20.8% of 
the variance in general intelligence scores. (Middle and Right Panels) The betas in this 
regression were both highly statistically significant and opposite in sign, indicating that larger 
FPN-DMN separation predicts higher general intelligence in the 2-back while lower FPN-DMN 
separation predicts higher general intelligence in the 0-back. Note: Mean brain network 
activation is measured in arbitrary units. 
 
In the preceding regression model with general intelligence as the outcome and FPN/DMN 
separation for the 0-back and 2-back conditions as the predictors, beta weights were highly 
statistically significant for both predictors (FPN/DMN separation 2-back standardized beta = 
0.41; t(917)=11.2, p < 1 x 10-16; FPN/DMN separation 0-back standardized beta = -0.55; 
t(917)=15.2, p < 1 x 10-16). This result indicates the 0-back condition is not simply playing the 
role of a control condition in this task with respect to intelligence prediction, but rather it 
contributes independent information of its own. Additionally, the beta weights for FPN/DMN 
separation in each condition have opposing signs, as shown in Figure 2, middle and right panels, 
and are significantly different from each other (test of linear contrast: t(917)=14.8, p < 1 x 10-
16). In short then, there is clear evidence of a crossover relationship in which larger FPN-DMN 
separation predicts higher intelligence in the 2-back while lower FPN-DMN separation predicts 
higher intelligence in the 0-back. 
 

3. FPN/DMN separation values are highly correlated across N-
back conditions  
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Figure 3: Correlation Between FPN/DMN Separation in the 0-back and 2-back Conditions of 
the N-Back Task. We observed strong correlation between FPN/DMN separation in the 0-back 
and 2-back conditions (dashed line). Individuals with higher intelligence (darker red hues) are 
more concentrated in the upper left quadrant. This quadrant reflects relatively lower FPN/DMN 
separation in the 0-back and relatively higher FPN/DMN separation in the 2-back compared to 
expectations implied by the correlation trend line. Note: Shading of quadrants reflects mean 
general intelligence scores for individuals in that quadrant; FPN/DMN separation is measured in 
arbitrary units. 
 
We found that FPN/DMN separation values were highly correlated across the 2-back and 0-back 
conditions (r=0.584; p < 1 x 1016). This perhaps reflects a relatively stable property of the 
individual to exhibit a characteristic FPN/DMN separation value during the N-back task. Despite 
being highly correlated with each other, FPN/DMN separation values in the 2-back and 0-back 
conditions exhibit strongly opposing relationships with general intelligence across these two 
conditions.  
 
Figure 3 helps clarify these somewhat complex relationships. The dashed line reflects the high 
correlation between FPN/DMN separation in the 0-back condition and 2-back condition. 
Individuals with higher intelligence disproportionately reside in the top left “quadrant”. 
However, because of the strong intercorrelation between 0-back and 2-back FPN/DMN 
separation values, individuals towards the top on the y-axis tend to be towards the right on the 
x-axis, and individuals towards the left on the x-axis tend to towards the bottom on the y-axis. 
Those in the upper left quadrant thus have, compared to expectations implied by the 
correlation trend line, relatively lower FPN/DMN separation in the 0-back and relatively higher 
FPN/DMN separation in the 2-back. This pattern, of course, implies greater change in FPN/DMN 
separation across the two conditions, which we next directly examine and quantify. 
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 4. Higher general intelligence is associated with greater 
change in separation across the 0-back and 2-back conditions 
 
 

 
Figure 4: FPN/DMN Separation For 0-back and 2-back by General Intelligence Bin. Participants 
were placed into 10 bins ordered by general intelligence, and mean FPN/DMN separation values 
for the 0-back and 2-back conditions for each bin were calculated. The figure shows that those 
with higher intelligence exhibit two critical properties: (i) They have relatively lower FPN/DMN 
separation in the 0-back condition; and (ii) They increase their FPN/DMN separation relatively 
more from the 0-back to 2-back, which is represented in the figure by the lengths of the gray 
lines. Note: FPN/DMN separation is measured in arbitrary units. 
 
 
Figure 4 shows differences in FPN/DMN separation across the 0-back and 2-back among 
participants placed into 10 bins ordered by general intelligence. The figure highlights two 
interconnected features that characterize those with higher intelligence. First, these individuals 
tend to have lower FPN/DMN separation in the 0-back condition. Second, these individuals 
increase their FPN/DMN separation relatively more from the 0-back to 2-back, which is 
represented in the figure by the lengths of the gray lines. As a result, they have FPN/DMN 
separation values in the 2-back that are similar to, or slightly higher than, individuals with lower 
intelligence. Put another way, those with higher general intelligence appear to have a greater 
ability to change FPN/DMN separation values across task conditions.  
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This point can be further illustrated quantitatively. We constructed a multiple regression model 
in which change in FPN/DMN separation across the 0-back and 2-back was the sole predictor 
and general intelligence was the outcome. The model’s r-squared was 19.6%, which is very 
similar to the variance explained by a model with FPN/DMN separation for each condition 
separately (20.8%). In short then, the change in FPN/DMN separation between the two task 
conditions, which we hereafter refer to as “delta FPN/DMN separation”, serves as an efficient 
single-number summary statistic for predicting general intelligence. 
 

5. Mediation analysis provides evidence that delta FPN/DMN 
separation represents a causal mechanism of intelligence 
 
 

 
Figure 5: Mediation Model Assessing Causal Role of Delta FPN/DMN Separation in Task 
Performance. We assessed whether change in FPN/DMN separation from the 0-back to 2-back 
task (“delta FPN/DMN separation”) serves only as a marker of general intelligence, or whether it 
mediates the relationship between intelligence and task performance. Results from the 
mediation analysis showed that 37% of the total effect of general intelligence on N-back task 
performance is mediated by delta FPN/DMN separation. 
 
We next examined whether FPN/DMN separation is only a marker of general intelligence, or 
whether it plays a mediating role in producing task performance. We constructed a mediation 
model with general intelligence as the predictor and N-back overall task performance as the 
outcome variable. We placed delta FPN/DMN separation as a mediator of this relationship, and 
assessed mediation with the bootstrapping-based method in the mediation package in R60. 
Results showed that the mediation pathway was highly statistically significant (p < 1 x 10-8), and 
accounts for 37% (95% CI: lower 31%, upper 44%) of the relationship between general 
intelligence and task performance.  
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Of note, previous neuroimaging studies22,29 examining similar mediation relationships faced a 
key challenge: they used whole-brain search to identify activation correlates of general 
intelligence, making mediation statistics involving the regions identified harder to interpret. Our 
results thus present unusually clear evidence that brain activation patterns mediate the 
relationship between general intelligence and task performance. 
 

6. Delta FPN/DMN separation exhibits high test-retest 
reliability 
 

 
Figure 6: Test-Retest Reliability of Delta FPN/DMN Separation. General intelligence is 
relatively stable across testing sessions. We found that delta FPN/DMN separation, a proposed 
brain network mechanism of general intelligence, also exhibits relatively high test-retest 
reliability. Note: FPN/DMN separation is measured in arbitrary units. 
 
A hallmark of general intelligence is that it is exhibits high temporally stability across testing 
sessions.61 In the HCP dataset specifically, using all 46 subjects with available retest data, we 
found general intelligence scores have a test-retest reliability of 0.78 (ICC type (3,1) in the 
scheme of Shrout and Fleiss62). If FPN/DMN separation is a core mechanism of general 
intelligence, it too should have similar temporal stability. This is indeed what we observed. In 33 
subjects with usable retest data for the N-back task, we found delta FPN-DMN separation has a 
test-retest reliability of 0.71 (Figure 6). 
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7. Functional connectivity patterns involving FPN during the 
resting state are implicated in individual differences in 
FPN/DMN separation during the task state 
 

 
Figure 7: Connections During Resting State That Are Predictive of Delta FPN/DMN Separation 
During the N-Back Task. Using fully independent train and test samples, we found a predictive 
model trained on resting state data predicted change in FPN/DMN separation between the 0-
back and 2-back conditions (“delta FPN/DMN separation”) with a correlation of 0.40, a highly 
statistically significant result. (Left Panel) Consensus connectome showing connections 
weighted heavily in the predictive model. (Right Panel) Table showing predictive success in 
follow-up analyses that dropped all networks except two. Several network pairs, all involving 
FPN, showed strong predictive success, including, FPN-VAN, FPN-DAN, and FPN-DMN. 
 
FPN and DMN are large-scale intrinsic connectivity networks that are known to exhibit 
distinctive patterns of intra- and inter-network functional connectivity during the resting state 
36,63,64. FPN in particular has widespread connectivity with other networks65 and these 
interconnections are thought to be the source of adaptive control signals that regulate activity 
in the targeted networks34,65–68. We thus hypothesized that individual differences in resting 
state connectivity patterns, particularly connections involving FPN and DMN, would be 
predictive of individual-differences in FPN/DMN separation values during the N-back task.  
 
To test this hypothesis, we applied brain basis set (BBS), a validated multivariate predictive 
modeling approach59,69,70 (see Supplement for details) to resting state connectomes from HCP 
subjects to predict their delta FPN/DMN separation during the N-back task. We identified 834 
HCP subjects with both usable N-back data and resting state data, and this set was further 
partitioned into a train dataset with 744 subjects and an independent test dataset of 90 
subjects unrelated to the train subjects and to each other.  
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Results showed that in the independent held out sample, the correlation between predicted 
delta FPN/DMN separation scores and actual delta FPN/DMN separation scores was 0.40, a 
highly statistically significant result (t=4.1, p < 0.0001). We then visualized the consensus 
connectome from this predictive model to identify connections within the connectome that 
account for the model’s success (see Methods for details on how the consensus connectome is 
created). We found connections involving FPN and DMN were overrepresented: FPN and DMN 
make up 12.9% percent of connections in the connectome but constitute 36.3% of the 
suprathreshold connections.  
 
Next, we assessed the importance of specific networks for predicting delta FPN/DMN 
separation by repeating the BBS analysis using just two networks at a time for all possible pairs 
of unique networks. Results showed that prediction accuracy actually improved with just two 
networks for several network pairs (see Figure 7, right panel), all involving FPN, including: FPN-
VAN (r=0.50), FPN-DAN (r=0.47), and FPN-DMN (r=0.45; all p’s < 0.0001). These results 
demonstrate a clear link between connectivity patterns during the resting state and FPN/DMN 
separation profiles during the task state, and they implicate resting state connectivity patterns 
of FPN in particular as playing a central role. 
 

8. Key elements of the preceding analyses replicate in a 
second HCP task as well as in an independent large youth 
sample. 
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Figure 8: Key Results from the HCP Relational Task. To assess the robustness of our results in a 
different task, we repeated the preceding analyses on a second HCP task, the Relational task, 
and we found a highly similar pattern of results. (A, top panel) FPN-DMN separation in the 
relational and match conditions were highly predictive of general intelligence scores. (A, bottom 
panel) There was a clear reversal of the relationship between FPN/DMN separation and general 
intelligence in the relational versus match conditions.  (B) Greater change in FPN/DMN 
separation across the 0-back and 2-back (indicated by the lengths of the gray lines) was 
associated with higher general intelligence. (C) Delta FPN/DMN separation was found to be 
highly statistically significant mediator of the relationship between general intelligence and 
Relational task performance, with the mediation pathway accounting for 15% of the total effect. 
(D) Separation between FPN and DMN increases from 40.1 in the match condition to 49.0 in the 
relational condition, less than half the increase seen in the HCP N-back task. Note: Mean brain 
network activation and FPN/DMN separation are measured in arbitrary units. mat = match 
condition; rel = relational condition 
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Figure 9: Key Results from 1,240 Youth in the ABCD Dataset. To assess the robustness of our 
results across different samples, we repeated the preceding analyses performed on the HCP 
adult dataset in 1,240 9- and 10-year-olds in the ABCD youth dataset, finding a highly similar 
pattern of results. (A, top panel) FPN-DMN separation in the 2-back and 0-back were highly 
predictive of general intelligence scores. (A, bottom panel) There was a clear reversal of the 
relationship between FPN/DMN separation and general intelligence in the 2-back versus 0-back 
conditions. (B) Greater change in FPN/DMN separation across the 0-back and 2-back (indicated 
by the lengths of the gray lines) was associated with higher general intelligence. (C) Delta 
FPN/DMN separation was found to be highly statistically significant mediator of the relationship 
between general intelligence and N-back task performance, with the mediation pathway 
accounting for 16% of the total effect. (D) Separation between FPN and DMN (indicated by the 
dashed lines) roughly doubles from 0.10 in 0-back to 0.22 in 2-back, similar to change in the HCP 
N-back task. However, the variability of the increase is much higher in the ABCD youth dataset. 
Note: Mean brain network activation and FPN/DMN separation are measured in arbitrary units. 
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To assess the robustness of our findings, we repeated the preceding analyses on a second HCP 
task that involves matched easy and hard conditions, as well as 1,240 subjects in the ABCD 
youth dataset. In the Relational task (n=917; age mean 28.7, sd 3.7; female 52.6%), participants 
are shown a pair of cue objects. In the “relational” condition, they identify the dimension along 
which the pair differ (e.g. shape or color), and then determine if a target pair of objects differs 
along that dimension. In the easier “match” condition, they are given a single cue object and 
are asked if a member of a target pair of objects matches the cue along a given dimension. 
Subjects completed 54 total trials over the course of two 2.6 minute runs.  
 
The ABCD sample consists of 9- and 10-year-olds in Release 1.1, which after exclusions has 
1,240 usable subjects (age mean 10.1, min 9.0, max 10.9; female 47.5%). All subjects received 
an extensive neurocognitive battery that included the NIH toolbox measures used in HCP as 
well as additional measures (e.g., Rey’s learning task, Little Man task). Similar to our approach 
in the HCP dataset, we fit a bifactor model to these neurocognitive tasks, established there was 
very good fit with the data, and calculated general intelligence scores for each subject. These 
subjects also all performed an 9.87-minute N-back task during fMRI scanning, similar to the task 
used in HCP, and in addition they all received 20-minutes of resting state scanning. Additional 
details about the ABCD sample demographics, neurocognitive tasks, bifactor modeling and fit 
statistics, scanning protocols, and methods for constructing imaging maps are described in 
detail in Methods, as well as in our previous publication.70  
 
Figures 8 and 9 and Table 1 show that many of the key results from the HCP N-back dataset 
were also observed in the two replication datasets, i.e., the HCP Relational task dataset and the 
ABCD dataset. As shown in Figure 8A and 9A, in both replication datasets we found FPN-DMN 
separation in the hard and easy conditions were highly predictive of general intelligence scores 
(Table 1, row 1). In both replication datasets, betas for each predictor were each highly 
statistically significant and oppositely signed, with higher FPN/DMN separation predicting 
higher intelligence in the hard condition and lower FPN/DMN separation predicting higher 
intelligence in the easy condition (Table 1, rows 2 and 3). As shown in Figure 8B and 9B, in both 
replication datasets, change in FPN/DMN separation across the easy condition and hard 
condition (indicated by the length of the gray lines) increased with higher intelligence. This is 
confirmed quantitatively: In both replication datasets, a regression model with general 
intelligence predicted by delta FPN/DMN separation had an r-squared similar to (or identical to) 
an analogous model with FPN-DMN separation from each task condition (Table 1, row 4). 
Additionally, as shown in Figure 8C and 9C, in both replication datasets, delta FPN/DMN 
separation was found to be highly statistically significant mediator of the relationship between 
general intelligence and task performance (Table 1, row 5). Finally, in both replication datasets, 
resting state connectivity patterns were found to be statistically significant predictors of 
FPN/DMN separation during task (Figures S1 and S2 in the Supplement).  
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 HCP Relational Task ABCD N-back Task 

Analysis Element 
Effect 
Size statistic p 

Effect 
Size statistic p 

1. general intelligence 
predicted by FPN-DMN 
separation in hard and 
easy conditions 

R2=9.5% F(2,914)=49.1 < 1 x 10-16 R2=8.4% F(2,1237)=57.2 < 1 x 10-16 

2.   beta for hard 0.40 t(914)=8.4 < 1 x 10-16 0.31 t(1237)=9.5 < 1 x 10-16 
3.   beta for easy -0.46 t(914)=-9.8 < 1 x 10-16 -0.30 t(1237)=-9.3  
4. general intelligence 
predicted by delta FPN-
DMN separation  

R2=9.5% F(1,915)=95.7 < 1 x 10-16 R2=8.3% F(1,1238)=10.6 < 1 x 10-16 

5. mediation pathway 15% of 
total effect 

non-
parametric < 2 x 10-16 16% of 

total effect 
non-

parametric < 2 x 10-16 

Table 1: Summary of Key Results from Two Replication Samples. To assess the robustness of 
our findings, we repeated our analyses on two replication datasets. The first column shows 
results from the Relational task from the HCP dataset, an abstract reasoning task that also has 
matched easy and hard conditions. The second column shows results from 1,240 9- and 10-year 
old participants in the ABCD youth dataset. 
 
 
The preceding results demonstrate the generality of the link between FPN/DMN separation and 
general intelligence, as this link is observed in another quite different type of task (an abstract 
reasoning task) and in a second, quite different subject population (9- to 10-year olds). But 
there are also notable differences that bear mentioning. Perhaps the most important is that the 
effect size of the increase in FPN/DMN separation in the HCP N-back task is substantially larger 
than in the HCP Relational task as well as the ABCD N-back task, but for different reasons.  
 
In the HCP N-back task, FPN/DMN separation roughly doubles from the 0-back condition to the 
2-back condition (Figure 1). In the Relational task, however, FPN/DMN separation increases by 
only 22% (Figure 8D). This represents a 1.1 standard deviation increase in the Relational task, 
compared to a 2.1 standard deviation increase in the HCP N-back task. The key difference is 
that the match condition has an FPN/DMN separation value that is already quite high (Figure 
8D), so the overall change in FPN/DMN separation for the Relational task remains quite small. 
In the ABCD N-back task, on the other hand, FPN/DMN separation roughly doubles (Figure 9D), 
just as it does in the HCP N-back task. But importantly, due to much greater variability in 
FPN/DMN separation values in the ABCD dataset, this change between the 0-back and 2-back 
represents only a 1.2 standard deviation increase in ABCD, i.e., the HCP N-back effect size is 
nearly twice as large. This difference in effect size is unlikely to be due to differences in tasks: 
The HCP and ABCD N-back tasks are both block designs with similar stimuli and durations. In the 
Discussion, we consider other factors that might explain increased FPN/DMN separation 
variability in the ABCD sample, including subject/scanner heterogeneity in the multi-site ABCD 
study and immaturity of the brain’s network architecture in 9- and 10-year-olds. 
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Discussion 
 
Elucidation of the mechanisms of general intelligence has been a long-standing goal of cognitive 
neuroscience14–17. Our major contribution in this study is to introduce FPN/DMN separation as 
an important brain network mechanism of general intelligence. We showed this mechanism has 
a large effect size, accounting for as much as 21% of the variance in general intelligence scores, 
it is a mediator and not just a marker of general intelligence, and the operation of this 
mechanism during tasks is at least partly reflected in connectivity patterns of the brain’s 
intrinsic functional architecture. These results provide a new perspective on how general 
intelligence is realized in the brain, highlighting the underappreciated role of complex 
interrelationships between FPN and DMN, two major large-scale brain networks.  
 
The findings from this study should be interpreted in terms of over two decades of observations 
of antagonistic and cooperative relationships between FPN and DMN across tasks, during 
neurodevelopment, and in psychiatric disorders. Across a wide range of cognitively demanding 
tasks, FPN activation increases 37,38,71,72, while DMN activation decreases 73–75, where the 
magnitude of FPN activation45–47 and DMN deactivation48–50 closely tracks the level of cognitive 
demands. Antagonism between FPN and DMN is also reflected in the phenomenon of lapses of 
attention, where spikes in DMN activation precede errors75–78; during the resting state, where 
spontaneous slow oscillations in DMN and FPN are anti-correlated36,44; and during 
neurodevelopment, where the two networks become increasingly segregated from childhood 
to young adulthood79–81. Notably, loss of segregation between FPN and DMN is frequently 
found in mental disorders, including ADHD81,82, PTSD83,84, and schizophrenia85,86. On the other 
hand, the networks also exhibit cooperative dynamics during certain tasks87, for example during 
contextual recollection88, future-directed thought89,90 and mind wandering91,92. Overall, while 
complex FPN/DMN interrelationships have long been recognized as a central feature of brain 
network organization, this study appears to be the first to link the activation profiles of these 
two networks to general intelligence. 
 
Our results agree with those from previous studies that examined correlations between brain 
activation patterns during cognitive tasks and general intelligence, but we extend them in a 
number of important ways, and several specific differences are worth highlighting. First, nearly 
all previous task-based studies of general intelligence used voxel-wise methods to search across 
the brain for individual brain regions whose activation correlates with intelligence. Our study 
encourages a shift in units of analysis from specific voxels or regions to entire brain networks, 
i.e., distributed large-scale systems that operate as relatively integrated units to perform 
cognitive functions93,32. Second, whereas activation within FPN regions has been repeatedly 
highlighted in previous studies22,23,27,28,94, our study introduces the somewhat novel idea that 
the critical feature for predicting general intelligence is the joint activation profile of FPN and 
DMN. Notably, we found a model predicting general intelligence from mean FPN activation 
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alone explained only half the variance of an analogous model using FPN/DMN separation 
(Results, §1).  
 
Third, we demonstrated robust moderation of brain-intelligence relationships by task difficulty. 
This finding potentially sheds lights on mixed results observed in previous studies where 
activation in executive regions was found to correlate positively22–25, negatively26–28 , or exhibit 
no relationship29 with general intelligence. These inconsistent relationships may reflect varying 
task difficulties across different studies, as well as perhaps varying cognitive abilities of the 
respective subject populations (e.g., some elite student populations have ceiling performance 
on tasks that other populations find fairly challenging; see for example 22,29). If brain-
intelligence relationships are moderated by task difficulty, one would expect to see complex 
patterns of variation in brain-intelligence relationships across such studies.  
 
Our observation of strong moderation by task difficulty also helps adjudicate between 
“capacity” and “efficiency” approaches to interpreting task activation correlates of general 
intelligence94. Observations of greater activity in executive regions during cognitive tasks 
among more intelligent subjects (or subjects with better task performance) led some authors to 
conclude these subjects have greater executive capacity22–24. On the other hand, observations 
of negative correlations led other authors to favor a neural efficiency explanation26–28,95, in 
which higher intelligence subjects require fewer cognitive resources to achieve similar or better 
performance. Our results point to both explanations potentially playing a role, with higher 
intelligence associated with greater capacity in high demand tasks and greater efficiency in low 
demand tasks94. Moreover, they point to a role for a third critical construct: adaptivity. We 
found those with higher intelligence have better ability to produce larger differences in 
FPN/DMN separation across the low and high task load conditions, perhaps reflecting an ability 
to shift between high capacity and high efficiency processing modes.  
 
Our identification of FPN/DMN separation as a key element in individual differences in general 
intelligence immediately raises a number of new and intriguing questions about the 
mechanisms that produce individual differences in FPN/DMN separation: How do such 
differences arise during development?, How are they regulated during task contexts?, Can 
FPN/DMN separation be modified through cognitive training or pharmacological interventions, 
among other means?  
 
In the current study, we clarified one key mechanism of individual-differences in FPN/DMN 
separation: Resting state functional connectivity patterns, especially connectivity of FPN. This 
result is consistent with emerging models of FPN as a core executive network that flexibly 
interconnects with various other distributed networks65 (including DMN)87,30, and which 
supplies adaptive control signals that modify processing in targeted networks65–67. Overall, 
however, the present study is clearly a starting point rather than a conclusion. By introducing 
FPN/DMN separation as a new network mechanism strongly linked to general intelligence, the 
door is opened for future work to elucidate of structural, functional, developmental, and 
genetic bases that combine to produce adaptive versus maladaptive adjustment in FPN/DMN 
separation across different cognitive tasks and in health and disease.  
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We confirmed the robustness of our result by extending them to an additional task in the HCP 
dataset (one that involves abstract reasoning rather than working memory) as well as an 
additional sample: 1,240 9- and 10-year-olds in the ABCD dataset. We did observe some 
diminution of size of the link between FPN/DMN separation and intelligence in these replication 
datasets. One potential explanation takes note of the fact that the change in FPN/DMN 
separation observed in these two datasets is substantially smaller—about half the size of the 
HCP N-back effect size (measured in standard deviation units). It is possible that in tasks that 
produce less change in FPN/DMN separation across easy and hard conditions, the link between 
FPN/DMN separation and intelligence is correspondingly muted.  
 
In the N-back task in the ABCD dataset, in particular, reduced change in FPN/DMN separation 
was due to much greater FPN/DMN separation variability in this dataset, which in turn might be 
explained in at least two ways. One possibility is that the underlying brain network mechanisms 
of general intelligence in youth in ABCD are comparable to adults in HCP, but other 
characteristics of the ABCD sample explain their greater FPN/DMN separation variability. These 
factors might include differences across scanners in the multi-site ABCD study, higher levels of 
head motion in children, poorer grasp of task instructions in children compared to adults, and 
other such factors. A second possibility is that from a developmental perspective, critical 
aspects of the FPN/DMN network architecture supporting general intelligence are still 
immature in 9- to 10-year olds and there is still substantial neurodevelopmental change that 
lies ahead96–100. In this regard, it is noteworthy that functional connections involving FPN and 
DMN have been shown to be among most intensely maturing from early adolescence to young 
adulthood79–81,101,102. We will be able to clarify the relative roles of these two explanations in 
the coming years taking advantage of the longitudinal nature of the ABCD study, which will 
follow the baseline sample over the next ten years. Moreover, to the extent that the second 
explanation turns out to play an important role, we will be able to examine in detail the 
maturational changes in brain network architecture that facilitate the emergence of adult 
patterns of general intelligence functioning. 
 
In sum, this study introduces separation between FPN and DMN as a novel brain network 
mechanism of general intelligence and a major locus of individual-differences. Our results invite 
systematic investigation into the neural, developmental, and genetic mechanisms of regulation 
of FPN/DMN separation in different cognitive tasks, across the lifespan, and in health and 
disease.     
 
 

Methods 
 
 

1  HCP Task Analysis 
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1.1 Data Acquisition and Preprocessing 
We used data from the HCP-1200 release51,52 and all research was performed in accordance 
with relevant guidelines and regulations. Subjects provided informed consent, and recruitment 
procedures and informed consent forms, including consent to share de-identified data, were 
approved by the Washington University institutional review board. Subjects completed two 
runs each of seven scanner tasks across two fMRI sessions, using a 32-channel head coil on a 3T 
Siemens Skyra scanner (TR = 720ms, TE = 33.1ms, 72 slices, 2mm isotropic voxels, multiband 
acceleration factor = 8) with right-to-left and left-to-right phase encoding directions. 
Comprehensive details are available in the papers describing HCP’s overall neuroimaging 
approach51,103. 
 
The main analysis was performed on an N-back working memory task, in which participants 
respond when the picture shown on the screen is the same as the one two trials back (=2-back 
condition) or the same as one shown at the start of the block (=0-back condition). Stimuli 
consisted of pictures of places, tools, faces, and body parts. Within each run, the 4 different 
stimulus types were presented in separate blocks. Also, within each run, ½ of the blocks use a 
2-back working memory task and ½ use a 0-back working memory task. A 2.5 second cue 
indicates the task type (and target for 0-back) at the start of the block. Each of the two runs 
contains 8 task blocks (10 trials of 2.5 seconds each, for 25 seconds) and 4 fixation blocks (15 
seconds). On each trial, the stimulus is presented for 2 seconds, followed by a 500 ms inter-task 
interval. 405 time points were collected per run, resulting in 4.86 minutes of data per run, or 
9.72 minutes combining both runs. 
 
An additional analysis was performed on the HCP Relational Task. In this task, participants 
identify the dimension along which a cue pair of objects differs and determine if a target pair 
differs along same dimension (=relational condition). Or they determine if a cue object matches 
a member of a target pair along a given dimension (=match condition). For both conditions, the 
subject responds yes or no using buttons. For the relational condition, the stimuli are presented 
for 3.5 seconds, with a 500 ms seconds ITI, and there are four trials per block. In the matching 
condition, stimuli are presented for 2.8 seconds, with a 400 ms ITI, and there are 5 trials per 
block. Each type of block (relational or matching) lasts a total of 18 seconds. In each of the two 
runs of this task, there are 3 relational blocks, 3 matching blocks and 3 16-second fixation 
blocks. 
 
Data was preprocessed through the HCP minimally preprocessed pipeline, which is presented in 
detail by Glasser et al.54 and task details are described by Barch et al.34 Briefly, the pipeline 
includes gradient unwarping, motion correction, field-map distortion correction, brain-
boundary based linear registration of functional to structural images, non-linear registration to 
MNI152 space, and grand-mean intensity normalization. Data then entered a surfaced-based 
preprocessing stream, followed by grayordinate-based processing, which involves data from the 
cortical ribbon being projected to surface space and combined with subcortical volumetric data. 
Left hemisphere surface, right hemisphere surface, and subcortical volume data from the 
grayordinate space were split and processed separately for all steps. Subject-level fixed-effects 
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analyses were conducted using FEAT to estimate the average effects across runs within-
participants.  

 
1.2 Inclusion/Exclusion Criteria 
For the N-back analysis, subjects were eligible to be included if they had available MSMAll 
registered task data for both runs of the N-back task, full behavioral data for this task, no more 
than 25% of their volumes in each run exceeded a framewise displacement threshold of 0.5mm, 
and accuracy on both 0-back and 2-back conditions was at least 60%. These exclusions resulted 
in 920 subjects for the N-back fMRI analysis.  
 
For the Relational analysis, subjects were eligible to be included if they had available MSMAll 
registered task data for both runs of the task, full behavioral data for this task, no more than 
25% of their volumes in each run exceeded a framewise displacement threshold of 0.5mm, and 
accuracy on both the match and relational conditions was at least 40%. These exclusions 
resulted in 917 subjects for the Relational fMRI analysis. 

 
1.3 Constructing a General Intelligence Factor 
 
 

 
 
Figure 10: Bifactor Model Based on Ten Behavioral Tasks from the HCP Dataset with General 
Factor (“g”) and Four Group Factors. C=Crystallized Intelligence, S=Processing Speed, 
V=Visuospatial Ability, M=Memory.  
 
We conducted an exploratory factor analysis utilizing the approachß and associated code made 
available by Dubois and colleagues (https://github.com/adolphslab/HCP_MRI-behavior), who 
recently investigated prediction of intelligence from resting state fMRI in the HCP dataset58. 
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Unadjusted scores from ten cognitive tasks for 1181 HCP subjects were included in the analysis 
(subjects with missing data or MMSE < 26 were excluded), including seven tasks from the NIH 
Toolbox (Dimensional Change Cart Sort, Flanker Task, List Sort Test, Picture Sequence Test, 
Picture Vocabulary Test, Pattern Completion Test, Oral Reading Recognition Test) and three 
tasks from the Penn Neurocognitive Battery (Penn Progressive Matrices, Penn Word Memory 
Test, Variable Short Penn Line Orientation Test), with additional details supplied in 58.  
 
We applied Dubois and colleagues’ code to this data, which uses the omega function in the 
psych (v 1.8.4 ) package104 in R (v3.4.4). In particular, the code performs maximum likelihood-
estimated exploratory factor analysis (specifying a bifactor model), oblimin factor rotation, 
followed by a Schmid-Leiman transformation105 to find general factor loadings. The resulting 
bifactor model exhibited very good fit to the data (CFI=0.99; RMSEA=0.03; SRMR=0.02; BIC=-
0.52), which is substantially better than a single factor model (CFI=0.72; RMSEA=0.14; 
SRMR=0.09; BIC=591.2). The general factor accounted for 59% of the variance in task scores, 
group factors accounted for 18% of the variance, and 15% of the variance was unexplained (see 
Dubois and colleagues58 for additional discussion of the fit of this bifactor model).  
 
To assess reliability of general intelligence factor scores, in a separate analysis, we re-ran the 
factor analysis excluding 46 subjects that had Test/Retest sessions available. We then estimated 
factor scores for both sessions for these subjects and calculated test/retest reliability via 
intraclass correlation (we used ICC(3,1) in the Shrout and Fleiss scheme62). 
 

2 HCP Resting State Analysis 
 
2.1 Data Acquisition, Preprocessing, and Connectome Generation 
Data used was from the HCP-1200 release51,52. Four runs of resting state fMRI data (14.4 
minutes each; two runs per day over two days) were acquired using the same sequence 
described above in Methods, §1.1. Processed volumetric data from the HCP minimal 
preprocessing pipeline including ICA-FIX denoising were used. Full details of these steps can be 
found in Glasser103 and Salimi-Korshidi106.  
 
Data then went through a number of resting state processing steps, including a motion artifact 
removal steps comparable to the type B (i.e., recommended) stream of Siegel et al.107. These 
steps include linear detrending, CompCor to extract and regress out the top 5 principal 
components of white matter and CSF108, bandpass filtering from 0.1-0.01Hz, and motion 
scrubbing of frames that exceed a framewise displacement of 0.5mm. We next calculated 
spatially-averaged time series for each of 264 4.24mm radius ROIs from the parcellation of 
Power et al.109. We then calculated Pearson’s correlation coefficients between each ROI. These 
were then were transformed using Fisher’s r to z-transformation.  
 
2.2 Inclusion/Exclusion Criteria 
Subjects were eligible to be included if they had structural T1 data and had 4 complete resting 
state fMRI runs (14m 24s each). Subjects with more than 10% of frames censored were 
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excluded from further analysis. Subjects had to have full necessary behavioral data and not be 
one of the subjects with retest data. This resulted in 910 subjects.  
 
2.3 Train/Test Split 
We previously constructed a train/test split of the usable HCP resting state data, which is 
described in detail in our previous report69. In brief, this split included 810 train subjects and 
100 test subjects unrelated to the train subjects and to each other. For the purposes of 
predicting task activation signatures from resting state for the present study, we intersected 
subjects with usable task data for each task with the resting state train/test split. For the 
prediction of FPN/DMN separation in the N-back task, this yielded 834 subjects total; 744 in the 
train set and 90 unrelated subjects in the test set. For the Relational task, this yielded 819 
subjects total; 734 in the train set and 85 unrelated subjects in the test set. 
 
2.4  Brain Basis Set Modeling  
To generate predictions of phenotypes from a basis set consisting of k components, we used 
Brain Basis Set (BBS) modeling, a predictive modeling approach validated in our previous 
studies69,59,70. This approach is similar to principal component regression110,111, with an added 
predictive modeling element. In a training partition, we calculate the expression scores for each 
of k components for each subject by projecting each subject’s connectivity matrix onto each 
component. We then fit a linear regression model with these expression scores as predictors 
and the phenotype of interest as the outcome, saving B, the k x 1 vector of fitted coefficients, 
for later use. In a test partition, we again calculate the expression scores for each of the k 
components for each subject. Our predicted phenotype for each test subject is the dot product 
of B learned from the training partition with the vector of component expression scores for that 
subject. We set k at 75 based on our prior study69 that showed that larger values tend to result 
in overfitting and worse performance.  
 
2.5 Consensus Component Maps for Visualization 
To help convey overall patterns across the entire BBS predictive model, we constructed 
“consensus” component maps. We first fit a BBS model to the entire dataset consisting of all 
participants. We then multiplied each component map with its associated beta from this fitted 
BBS model. Next, we summed across all components yielding a single map, and thresholded the 
entries at z=2. The resulting map indicates the extent to which each connection is positively 
(red) or negatively (blue) related to the outcome variable of interest. 
 

3 ABCD Task Analysis 
 
3.1 Data Acquisition and Preprocessing  
The ABCD study is a multisite longitudinal study established to investigate how individual, 
family, and broader socio-cultural factors shape brain development and health outcomes. The 
study has recruited 11,875 children between 9-10 years of age from 21 sites across the United 
States for longitudinal assessment. The study conforms to the rules and procedures of each 
site’s Institutional Review Board, and all participants provide informed consent (parents) or 
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informed assent (children). At each assessment wave, children undergo assessments of 
neurocognition, physical health, and mental health, and also participate in structural and 
functional neuroimaging. Detailed description of recruitment procedures112, assessments113, 
and imaging protocols114 are available elsewhere. The ABCD data repository grows and changes 
over time. The ABCD data used in this report came from NDA Study 576, DOI 
10.15154/1412097, which can be found at https://ndar.nih.gov/study.html?id=576. 
 
Imaging protocols were harmonized across ABCD sites and scanners. For the current analysis, 
minimally preprocessed fMRI data from the curated ABCD annual release 1.1 were used, and 
full details are described in 115. This data reflects the application of the following steps: i) 
gradient-nonlinearity distortions and inhomogeneity correction for structural data; and ii) 
gradient-nonlinearity distortion correction, rigid realignment to adjust for motion, and field 
map correction for functional data. Additional processing steps were applied by our group using 
SPM12, including co-registration, segmentation and normalization using the CAT12 toolbox and 
DARTEL, smoothing with a 6mm FWHM Gaussian kernel,  and application of ICA-AROMA116. 
 
The ABCD N-back task is broadly similar to the HCP N-back task in having high and low memory 
load conditions (2 back and 0 back). The main difference is that the stimuli in the ABCD N-back 
task consist of faces (happy, fearful and neutral) and places, but no tools and body parts. The 
task includes two runs of eight blocks each (4.93 minutes per run, 9.87 minutes across both 
runs). Each block consists of 10 trials (2.5 s each) and 4 fixation blocks (15 s each). Each trial 
consists of a stimulus presented for 2 s, followed immediately by a 500 ms fixation cross, with 
160 trials total.  
 
3.2 Inclusion/Exclusion Criteria 
Subjects were eligible to be included if they had available task data for at least one run of the N-
back task, full necessary behavioral data, at least 3 minutes of data in each run was below a 
framewise displacement threshold of 0.5mm, and accuracy on both 0-back and 2-back 
conditions was at least 60%. Additionally, visual inspections were performed of the 
coregistration and normalization steps and subjects with poor coregistration and/or 
normalization were excluded. The auto-generated first level masks from SPM were compared 
to a canonical brain mask in MNI space to exclude subjects with excessive signal loss, and 
subjects with less than 90% coverage of the canonical mask were excluded. Finally, we excluded 
those sites that had fewer than 75 subjects that passed the above criteria in order to allow 
sufficient subjects at each site for regression-based removal of site effects. These exclusions 
resulted in 1240 subjects from 10 sites for the task fMRI analysis. To account for site effects in 
the data, we regressed the linear effect of site voxel-wise from included subjects’ N-back task 
contrast maps. 
 
3.3 Constructing a General Intelligence Factor 
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Figure 11: Bifactor Model Based on Eleven Behavioral Tasks from the ABCD Dataset with 
General Factor (“g”) and Four Group Factors. C=Crystallized Intelligence, S=Processing Speed, 
R=Reasoning, M=Memory.  
 
As above in the HCP data, we applied Dubois and colleagues’ exploratory factor analysis code to 
behavioral task data to find a general intelligence factor. For the ABCD dataset, the variables 
included in the analysis were unadjusted scores from the NIH toolbox (Dimensional Change 
Card Sort, Flanker Task, List Sort Test, Picture Sequence Test, Picture Vocabulary Test, Pattern 
Completion Test, Oral Reading Recognition Test) as well as total correct from the Short Delay 
and Long Delay of the Rey Auditory Verbal Leaning Task, WISC-V Matrix Reasoning total raw 
score, and number correct on the Little Man Task. The bifactor model exhibited very good fit to 
the data (CFI=0.99; RMSEA=0.03; SRMR=0.01; BIC=2.3), which is substantially better than a 
single factor model (CFI=0.74; RMSEA=0.14; SRMR=0.07; BIC=2906.7). The general factor 
accounted for 66% of the variance in task scores, group factors accounted for 16% of the 
variance, and 13% of the variance was unexplained. 
 

4 ABCD Resting State Analysis 
 
4.1 Data Acquisition, Preprocessing, and Connectome Generation 
Data acquisition/preprocessing for the resting state data follows the steps described for task 
data above in section 3.1, which includes application of ICA-AROMA. Resting state fMRI was 
acquired in four separate runs (5 minutes per run, 20 minutes total). Resting state-specific 
processing steps applied including linear detrending, CompCor to regress the top 5 components 
of CSF and WM signal108, bandpass filtering from 0.1-0.01Hz, and motion scrubbing of frames 
that exceed a framewise displacement of 0.5mm. We next applied the parcellation of Power et 
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al.117, calculated Pearson’s correlation coefficients between each ROI, and applied Fisher’s r to 
z-transformation. 
 
4.2 Inclusion/Exclusion 
There were 4521 subjects in the ABCD Release 1.1 dataset. Of these, 3575 subjects had usable 
T1w images and one or more resting state runs that passed ABCD quality checking standards 
(fsqc_qc = 1). Next, 3544 passed preprocessing and were subsequently visually checked for 
registration and normalization quality, where 197 were excluded for poor quality. Motion was 
assessed based on number of frames censored, with a framewise displacement threshold of 
0.5mm, and only subjects with two or more runs with at least 4 minutes of good data were 
included (n=2757). To remove unwanted sources of dependence in the dataset, only one sibling 
was randomly chosen to be retained for any family with more than 1 sibling (n=2494). Finally, in 
order to implement leave-one-site-out cross validation, sites with fewer than 75 subjects that 
passed these quality checks were dropped, leaving 2206 subjects across 15 sites to enter the 
PCA step of BBS predictive modeling. For the purposes of predicting task activation signatures 
from resting state, this dataset was then intersected with the included ABCD task dataset above 
to yield 946 subjects from 10 sites. 
 
4.3  Brain Basis Set Modeling  
The Brain Basis Set modeling used for the ABCD data followed the same methodology as 
reported for the HCP dataset above, with the exception that in ABCD we utilized a leave-one-
site-out cross validation strategy instead of a single, independent training/testing split. The BBS 
procedure was repeated 10 times, each time holding one site out of the training data to be 
used as test data. Correlations were calculated between observed and predicted phenotype 
scores for each fold, transformed with a Fisher’s R to Z transformation, averaged across folds, 
and then transformed back to correlations with a Fisher’s Z to R. 
 
4.4 Permutation Testing Framework 
To assess the statistical significance of brain basis set models (BBS) in the ABCD dataset, we 
used non-parametric permutation methods. The distribution under chance of correlations 
between BBS-based predictions of FPN/DMN separation values and observed FPN/DMN 
separation values was generated by randomly permuting the subjects’ FPN/DMN separation 
values 10,000 times. At each iteration, we performed the leave-one-site out cross validation 
procedure described above, which includes refitting BBS models at each fold of the cross-
validation. We then recalculated the average correlation across folds between predicted versus 
actual neurocognitive scores. The average correlation across folds that was actually observed 
was located in this null distribution in terms of rank, and statistical significance was set as this 
rank value divided by 10,000.  
  
Since the BBS models fit at each iteration of the permutation test included covariates (mean FD 
and mean FD squared), the procedure of Freedman and Lane was followed118. In brief, a BBS 
model was first estimated with nuisance covariates alone, residuals were formed and were 
permuted. The covariate effect of interest was then included in the subsequent model, creating 
an approximate realization of data under the null hypothesis, and the statistical test of interest 
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was calculated on this data (see FSL Randomise 
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Randomise/Theory for a neuroimaging implementation).  
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Figure S1: Connections During Resting State That Are Predictive of FPN/DMN Separation 
During the Relational Task in the HCP sample. We found a predictive model trained on resting 
state data predicted change in FPN/DMN separation between the match and relational 
conditions (“delta FPN/DMN separation”) with a correlation of 0.21, which is statistically 
significant (p = 0.05). (Left Panel) Consensus connectome showing connections weighted highly 
in the predictive model. Similar to the HCP dataset, the consensus connectome showed a 
preponderance of connections involving FPN and DMN (FPN and DMN make up 12.9% percent 
of connections in the connectome but constitute 39.5% of the suprathreshold connections). 
(Right Panel) Table showing predictive success in follow-up analyses that dropped all networks 
except two. Several network pairs involving FPN and DMN showed strong predictive success, 
with somatomotor network also playing an unexpectedly important role. 
 
 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 3, 2019. ; https://doi.org/10.1101/657205doi: bioRxiv preprint 

https://doi.org/10.1101/657205
http://creativecommons.org/licenses/by/4.0/


 37 

 
 
Figure S2: Connections During Resting State That Are Predictive of FPN/DMN Separation 
During the N-Back Task in the ABCD Sample. Using leave-one-site-out cross-validation, we 
found a predictive model trained on resting state data predicted change in FPN/DMN separation 
between the 0-back and 2-back conditions (“delta FPN/DMN separation”) with a correlation of 
0.17, which is statistically significant (permutation p value = 0.0004). (Left Panel) Consensus 
connectome showing connections weighted highly in the predictive model. Similar to the HCP 
dataset, the consensus connectome showed a preponderance of connections involving FPN and 
DMN (FPN and DMN make up 12.9% percent of connections in the connectome but constitute 
40.0% of the suprathreshold connections). (Right Panel) Table showing predictive success in 
follow-up analyses that dropped all networks except two. Several network pairs involving FPN 
and DMN showed strong predictive success. 
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