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Abstract  28 

Many cellular mRNAs contain the modified base m6A, and recent studies have suggested that various 29 

stimuli can lead to changes in m6A. The most common method to map m6A and to predict changes in m6A 30 

between conditions is methylated RNA immunoprecipitation sequencing (MeRIP-seq), through which 31 

methylated regions are detected as peaks in transcript coverage from immunoprecipitated RNA relative to 32 

input RNA. Here, we generated replicate controls and reanalyzed published MeRIP-seq data to estimate 33 

reproducibility across experiments. We found that m6A peak overlap in mRNAs varies from ~30 to 60% 34 

between studies, even in the same cell type. We then assessed statistical methods to detect changes in 35 

m6A peaks as distinct from changes in gene expression. However, from these published data sets, we 36 

detected few changes under most conditions and were unable to detect consistent changes across 37 

studies of similar stimuli. Overall, our work identifies limits to MeRIP-seq reproducibility in the detection 38 

both of peaks and of peak changes and proposes improved approaches for analysis of peak changes. 39 

 40 

Keywords 41 

RNA base modifications, N6-methyladenosine, MeRIP-seq, m6A-seq, RNA immunoprecipitation 42 

sequencing, statistical methods, bioinformatics 43 

 44 

Introduction 45 

Methylation at the N6 position in adenosine (m6A) is the most common internal modification in 46 

eukaryotic mRNA. A methyltransferase complex composed of METTL3, METTL14, WTAP, VIRMA, and 47 

other cofactors catalyzes methylation at DRACH/DRAC motifs, primarily in the last exon (1,2). Most m6A 48 

methylation occurs during transcription (3). The modification then affects mRNA metabolism through 49 

recognition by RNA-binding proteins that regulate processes including translation and mRNA degradation 50 

(4–9). However, whether m6A is lost and gained in response to various cellular changes remains 51 

contentious (3,10–15). To assess the evidence for proposed dynamic changes in m6A, a reliable and 52 

reproducible method to detect changes in methylation as distinct from changes in gene expression is 53 

necessary.  54 
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 The first and most widely-used method to enable transcriptome-wide studies of m6A, MeRIP-seq 55 

or m6A-seq, involves the immunoprecipitation of m6A-modified RNA fragments followed by peak detection 56 

through comparison to background gene coverage (16,17). A second method was developed in 2015, 57 

miCLIP or m6A-CLIP, which involves crosslinking at the site of antibody binding to induce mutations 58 

during reverse transcription for single-nucleotide detection of methylated bases (2,18). MeRIP-seq is still 59 

more often used than miCLIP, despite less precise localization of m6A to peak regions of approximately 60 

50-200 base pairs that can contain multiple DRAC motifs, since it follows a simpler protocol, requires less 61 

starting material, and generally produces higher coverage of more transcripts. Antibodies for m6A can 62 

also detect a second base modification, N6,2′-O-dimethyladenosine (m6Am), found at a lower abundance 63 

than m6A and located at the 5′ ends of select transcripts (15,18). We thus refer to the base modifications 64 

detected through MeRIP-seq collectively as m6A(m), although most are likely m6A. As of late 2018, over 65 

fifty studies used MeRIP-seq to detect m6A(m) in mammalian mRNA (Additional File 1: Supplementary 66 

Table 1).  67 

 Although MeRIP-seq can reveal approximate sites of m6A(m), it cannot be used to quantitatively 68 

measure the fraction of transcript copies that are methylated (19). Studies of m6A variation in response to 69 

stimuli instead estimate differences at individual loci through changes in peak presence or peak height. 70 

Using these approaches, studies have reported changes to m6A with heat shock, microRNA expression, 71 

transcription factor expression, cancer, oxidative stress, human immunodeficiency virus (HIV) infection, 72 

Kaposi’s sarcoma herpesvirus (KSHV) infection, and Zika virus infection, including hundreds to thousands 73 

of changes in enrichment at specific sites (20–29). Statistical approaches to analysis have only recently 74 

been published and there have been no comprehensive evaluations of methods to detect changes in m6A 75 

based on MeRIP-seq data (30,31). Thus, while studies have suggested that m6A shows widespread 76 

changes in response to diverse stimuli, they have applied inconsistent analysis methods to detect 77 

changes in m6A and often don’t control for differences in RNA expression between conditions or typical 78 

variability in peak heights between replicates. In some cases, these studies have reported m6A changes 79 

based on simple differences in peak count (24,26,27,32). However, others have applied statistical tests or 80 

thresholds for differences in immunoprecipitated (IP) over input fraction enrichment and visual analysis of 81 
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coverage plots, and have reported fewer m6A changes or suggested that m6A is a relatively stable mark 82 

(33,34). As in RNA-seq, there is noise in MeRIP-seq, and multiple replicates are therefore necessary to 83 

estimate variance and statistically identify the effects of experimental intervention (35–37). To date, only 84 

one MeRIP-seq study has used more than three replicates per condition (34), while ten have used only 85 

one (17,20,32,33,38–43), suggesting that most studies may not have enough power to detect changes in 86 

m6A(m).  87 

To re-evaluate the evidence for m6A(m) changes under various conditions, we first examined the 88 

variability in m6A(m) detection across replicates, cell lines, and experiments using our own negative 89 

controls (12 replicates) as well as 24 published MeRIP-seq data sets. We then compared statistical 90 

methods to detect differences in IP enrichment using biological negative and positive controls for m6A 91 

changes. We found that these methods are limited by noise, including biological variability from changes 92 

in RNA expression and technical variability from immunoprecipitation and sequencing that limits 93 

reproducibility across studies. Our results suggest that the scale of statistically detectable m6A(m) changes 94 

in response to various stimuli is orders of magnitude lower than the scale of changes reported in many 95 

studies. However, we also found that statistical detection could miss the majority of changed sites when 96 

using only 2-3 replicates. We use our results to propose approaches to MeRIP-seq experimental design 97 

and analysis to improve reproducibility and more accurately measure differential regulation of m6A(m) in 98 

response to stimuli. These data and analyses emphasize the need for further research and alternative 99 

assays, for example recently developed endoribonuclease-based sequencing methods (44,45) or direct 100 

RNA nanopore sequencing (46), to resolve the extent to which m6A changes in response to specific 101 

conditions.   102 

 103 

Results 104 

Detection of peaks across replicates, experiments, and cell types 105 

 The first steps in MeRIP-seq data analysis are to align sequencing reads to the genome or 106 

transcriptome of origin and to identify peaks in transcript coverage in the IP fraction relative to the input 107 

control. Several methods have been developed for MeRIP-seq peak detection, including exomePeak, 108 
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MeTPeak, MeTDiff, and bespoke scripts. Another method often used for MeRIP-seq peak detection is 109 

MACS2, which was originally designed to detect protein binding sites in DNA from chromatin 110 

immunoprecipitation sequencing (ChIP-seq). We compared m6A(m) peak detection by exomePeak, 111 

MeTPeak, MeTDiff, and MACS2 (31,47–49) in seven replicates of MeRIP-seq data obtained from mouse 112 

cortices under basal conditions (34), and in 12 replicates of MeRIP-seq data we generated from human 113 

liver Huh7 cells (50). The intersect between all tools tested was high, and we saw minimal differences in 114 

DRAC motif enrichment, which we use to provide an estimate of tool precision in the absence of true 115 

positive m6A sites (Additional File 2: Supplementary Figure 1a). In addition, we assessed the 116 

METTL3/METTL14-dependence of specific peaks identified by single tools using MeRIP-RT-qPCR. We 117 

found that of these peaks, 4/4 from MACS2, 5/5 from MeTPeak, and 4/5 from MeTDiff showed decreased 118 

m6A(m) enrichment following METTL3/METTL14 depletion, suggesting that these are true m6A sites. By 119 

comparison, only 1/5 of the peaks uniquely called by exomePeak showed statistically significant 120 

decreases (p < 0.05), although replicate variance was high and 4/5 showed a downward trend 121 

(Additional File 2: Supplementary Figure 1b). Since MACS2 was the most commonly used tool for 122 

peak calling and was previously found to perform well in comparison with a graphical user interface tool 123 

and several other peak callers (51), we used MACS2 for the remainder of our analyses. Repeating the 124 

analyses shown in Figures 2-4 using the MeTDiff peak caller instead of MACS2 did not affect any of our 125 

conclusions (Additional File 3).   126 

For m6A(m) peak detection, a transcript must be sufficiently expressed for enrichment by the 127 

m6A(m) antibody and for adequate sequencing coverage in both the IP and input fractions. Previous 128 

reports have suggested that m6A(m) presence does not decrease with lower mRNA expression level, and, 129 

if anything, is higher in mRNAs with lower expression as methylated transcripts tend to be less stable 130 

(9,38). Peak callers, however, identify fewer peaks in genes at low expression, which we therefore 131 

assume reflects inadequate coverage for peak calling. To estimate the level of coverage necessary for 132 

peak detection, we analyzed the percent of genes with at least one, two, or three peaks relative to mean 133 

input transcript coverage in both the mouse cortex and Huh7 cell data (Figure 1a). Based on the upper 134 

shoulders of the sigmoidal curves as the percent of genes with peaks begins to plateau, we estimate that 135 
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mean gene coverage of approximately 10-50X is necessary to avoid missing peaks based on insufficient 136 

coverage. Including a wider array of samples in this analysis likewise showed an increase in the percent 137 

of transcripts with ≥1 peak as coverage rose to 10X (Additional File 2: Supplementary Figure 1c). Our 138 

analysis of the input RNA-seq coverage of peak regions alone again supported a similar threshold; few 139 

peaks are detected with median input read counts below 10 across replicates (Additional File 2: 140 

Supplementary Figure 1d). These thresholds do not mean that peaks in genes with mean coverage < 141 

10X or peaks with fewer than 10 input reads are false positives, but that the likelihood of false negatives 142 

rises with lower coverage (Additional File 2: Supplementary Figure 1e).  143 

 144 
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Figure 1: Thresholds for peak 
detection. a) m6A(m) site detection 
in MeRIP-seq data from mouse 
cortex (left) and human liver cells 
(Huh7, right) shows saturation of 
peak detection as transcript 
coverage approaches 10-50X for 
replicates at basal conditions, with 
peaks merged from all replicates. b) 
The total number of peaks captured 
increases with more replicates, with 
single replicates capturing a 
median of 66-78% of total peaks 
depending on study. Boxes span 
the 1st to 3rd quartiles of distributions 
for random subsamples of 
replicates, with lines indicating the 
median number of peaks, and 
whiskers showing the minimum and 
maximum points within ±1.5x the 
interquartile distance from the 
boxes. Jittered points show results 
for each random subsample (a total 
of 6 subsamples per replicate 
number for the mouse cortex data 
and 12 for the Huh7 data). c) The 
percent of peaks detected in at least 
r replicates for the same data sets.   
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 To evaluate the reproducibility of MeRIP-seq data, we next examined the consistency of m6A(m) 145 

peak calling between replicates. Previous studies have reported that peak overlap between replicates is 146 

approximately 80% (9,16,52,53). Similarly, we found that between two replicates, log2 fold enrichment of 147 

IP over input reads at detected peaks showed a Pearson correlation of approximately 0.81 to 0.86 148 

(Additional File 2: Supplementary Figure 1f). A single sample captured a median of 78% of the peaks 149 

found in seven replicates of mouse cortex data and 66% of peaks found in twelve replicates of Huh7 cell 150 

data. The number of detected peaks increased log-linearly with the addition of more replicates, such that 151 

with three replicates, 84-92% of the peaks found with 7-12 replicates were detected (Figure 1b). 152 

Conversely, the number of peaks in common across replicates decreased as the number of replicates 153 

increased, such that while ~80% of peaks were detected in at least two replicates, only ~60% were 154 

detected in six replicates for both data sets and ~25% in all twelve replicates of Huh7 cell data (Figure 155 

1c). Detection of peaks in more replicates did not increase DRAC motif enrichment (Additional File 2: 156 

Supplementary Figure 1g). These results suggest that many m6A(m) sites may be missed in studies that 157 

use one to three replicates, and that increasing replicates could enable detection of more peaks. 158 

However, not all peaks correspond to true m6A(m) sites. A recent comparison to data from an 159 

endoribonuclease-based method for m6A detection suggested MeRIP-seq has a false positive rate of 160 

~11%, although this would differ by study and detection threshold (3,54).  161 

The number of peaks detected across studies varies. Given that coverage affects peak detection, 162 

we hypothesized that variation in sequencing depth could contribute to differences in peak count. Zeng et 163 

al. (2018) reported that peak count begins to saturate by around 20 million reads by subsampling data 164 

within individual studies (42). However, we found that there is no positive correlation between peak count 165 

and input or IP sequencing depth across data sets from different published studies, each of which had 3-166 

81M reads per replicate (input Pearson’s R = -0.37, p = 0.015; IP Pearson’s R = -0.17, p = 0.28) 167 

(Additional File 1: Supplementary Table 2, Additional File 2: Supplementary Figure 2a-b). This 168 

implies that experimental factors beyond sequencing depth contribute to the variability of peak counts 169 

across studies. 170 
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Figure 2: Reproducibility of peak 
detection. a) Peak detection between 
studies that used the same cell type 
shows variable overlap. Overlap was 
calculated as the percent of peaks 
detected in Experiment 1 with an overlap 
of ≥ 1 base pair with peaks from 
Experiment 2. b) Peak detection across 
tissue and cell types shows samples 
from the same study cluster better 
together than samples from the same 
tissue. Median overlap was 46%. c) 
Peak detection across tissue types for 
data from the same study (Xiao et al., 
2019). Median overlap was 72%. Studies 
used in (a) and (b) are described in 
Additional File 1: Supplementary 
Table 2.  
 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 10, 2020. ; https://doi.org/10.1101/657130doi: bioRxiv preprint 

https://doi.org/10.1101/657130
http://creativecommons.org/licenses/by/4.0/


	 	 	
	

 	 	
	

9 

We next analyzed the overlap of peaks among studies and found inconsistency in peak 172 

localization on transcripts as well. Within four commonly used cell types, the percent of peaks detected in 173 

one experiment that were also detected in a second varied among pairs of studies from as low as 2% of 174 

peaks to as high as 90% (median = 45%), after filtering for transcripts expressed above a mean of 10X 175 

input coverage in both to ensure sufficient expression for peak detection (Figure 2a). In fact, peaks 176 

showed higher overlap within different cell types from the same study than within the same cell type from 177 

different studies, suggesting that MeRIP-seq data is prone to strong batch effects (Figure 2b). While this 178 

could be due to differences among experimental protocols used (summarized in Additional File 1: 179 

Supplementary Table 2), we were unable to identify such a link. Overall, most percent overlaps of m6A(m) 180 

peaks fell between ~30% (1st quartile) and ~60% (3rd quartile) (Figure 2b). With rare exceptions (e.g. that 181 

described by Ke et al., 2017 in their Supplementary Figure 8 (3)), most MeRIP-seq data sets do show 182 

enrichment of the m6A motif DRAC. These results indicate, however, that multiple labs running MeRIP-183 

seq on the same cell type will detect different subsets of m6A(m) sites. Possible contributing factors in the 184 

differences among studies include cell state (e.g. different stages of the cell cycle), experimental 185 

conditions, and sequencing depth. Despite predictions that tissue or cell type would be a large factor in 186 

differences among samples, though, peaks detected in different tissues analyzed in a single experiment 187 

showed high overlap and little clustering by tissue type (Figure 2c) (55). This suggests that although 188 

there is evidence that m6A levels vary by tissue (19), modified sites are consistent.  189 

 190 

Detection of changes in peaks between conditions 191 

Following m6A(m) peak detection, many studies compare the expression of peaks between two 192 

conditions to predict peak changes. While looking at plots of IP and input gene coverage under different 193 

conditions can help evaluate the evidence for these changes (33), statistical or heuristic methods are first 194 

necessary to narrow down a list of candidate sites to plot.  Several tools used for statistical analysis by 195 

the studies in Additional File 1: Supplementary Table 1 or for other types of RNA IP sequencing assays 196 

model peak counts using either (a) the Poisson distribution, in which the variance of a measure (here, 197 

read counts) is assumed to be equal to the mean (MeTDiff), or (b) the negative binomial distribution, in 198 
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which a second parameter allows for independent adjustment of mean and variance (QNB and two 199 

implementations of a generalized linear model approach using DESeq2 or edgeR, Table 1) (30,31,56–200 

58). In the mouse cortex and Huh7 cell data, we found that, similar to RNA-seq data (24,57,59), the 201 

variance in read counts under peaks exceeded their mean, indicative of overdispersion (Additional File 202 

2: Supplementary Figure 3a). The log likelihood (the probability of an observation given a distribution 203 

with known parameters) for our sample also fell within the distribution of expected log likelihoods for the 204 

negative binomial distribution (bottom) but not the Poisson distribution (top) (Figure 3a). Thus, the 205 

negative binomial distribution captures the mean-variance relationship in MeRIP-seq data, suggesting 206 

that tools that account for overdispersion better model the distribution of read counts at m6A(m) peaks than 207 

tools that do not.  208 

 209 

Table 1: Statistical methods for the detection of peak changes 210 

Method Read count distribution Publication 

MeTDiff Poisson Cui et al. (2018) 

Quad-negative binomial (QNB) Negative binomial Liu et al. (2017) 

GLM (DESeq2) Negative binomial based on Park et al. (2014) 

method for HITS-CLIP GLM (edgeR) Negative binomial 

 211 

We next defined positive and negative controls to evaluate tool performance for detection of 212 

changes in m6A(m) peaks. Past publications describing new methods to detect m6A(m) peak changes have 213 

used data sets in which methylation machinery genes or the methyl donor were disrupted compared to 214 

baseline conditions as positive controls, and have simulated negative controls by randomly swapping 215 

labels in the positive controls (30,31). However, swapping labels for conditions that may feature 216 

differences in gene expression in addition to differences in m6A levels could unrealistically increase 217 

variance in read counts within groups. Therefore, we instead used the two data sets from mouse cortex 218 

and Huh7 cells, which each comprised many replicates at baseline conditions (n=7 and n=12, 219 
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respectively), as negative controls. We randomly divided the mouse cortex data into two groups of three 220 

to four replicates for comparison and divided the Huh7 replicates by lab of incubation, which did not affect 221 

sample clustering (Additional File 2: Supplementary Figure 3b). We would expect to see minimal 222 

changes in IP enrichment at m6A peaks between groups for our negative controls, whereas our positive 223 

controls, which featured genetic or chemical interference with the m6A machinery, should show 224 

discernible differences in peaks when compared to baseline or wildtype conditions in the same cell lines 225 

(summarized in Additional File 1: Supplementary Table 3). Indeed, the absolute difference in log2 fold 226 

change between peaks and genes was centered around 0 for the negative controls and showed small 227 

shifts that varied in magnitude and direction for the positive controls (Additional File 2: Supplementary 228 

Figure 3c).  229 

 230 

−10

−5

0

5

−10 −5 0 5
Peak L2FC

G
en

e 
L2

FC

MeTDiff qnb edger deseq2

0

10

20

intersect union

%
 p

ea
ks

Conditio
bas

mo

shM

Fto

fto

siM

daa

me

shW

me

0

10

20

30

40

DESeq2 edgeR MeTDiff QNB

%
 p

ea
ks

 p
 <

 0
.0

5
Condition

MouseCortex

Huh7

shMETTL14

FtoKO

FTOoe

siMETTL3

DAA

shMettl14

shWTAP

Mettl3KO

0

500

1000

co
v
e
ra

g
e

0 500 1000 1500

NODAL

0

50

co
v
e
ra

g
e

0

1000

2000

co
v
e
ra

g
e

0 500 1000 1500 2000 2500 3000

SMAD7

0

200

400

co
v
e
ra

g
e

Activin Activin

SB 2h SB 2h

R = 0.22 R = 0.10R = 0.14R = 0.54

a b

N
eg

at
iv

e 
bi

no
m

ia
l

Po
is

so
n

Huh7Mouse cortex

c d

p
o
sitiv

e
n
e
g
. co
n
tro

ls

e

Mean log likelihood across peaks

Fr
eq

ue
nc

y

−6000 −5000 −4000 −3000 −2000 −1000 0

0
20

40

sample
simulated data

Mean log likelihood across peaks

Fr
eq

ue
nc

y

−146.65 −146.60 −146.55 −146.50 −146.45 −146.40

0
20

50

sample
simulated data

Mean log likelihood across peaks

Fr
eq

ue
nc

y

−2000 −1500 −1000 −500 0

0
20

50

sample
simulated data

Mean log likelihood across peaks

Fr
eq

ue
nc

y

−84.55 −84.50 −84.45 −84.40 −84.35

0
20

40

sample
simulated data

MeTDiff QNB edgeR GLM DESeq2 GLM

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 10, 2020. ; https://doi.org/10.1101/657130doi: bioRxiv preprint 

https://doi.org/10.1101/657130
http://creativecommons.org/licenses/by/4.0/


	 	 	
	

 	 	
	

12 

 231 

Using statistical methods to detect changes in peak enrichment, we found that the percent of 232 

changes called below a p-value threshold of 0.05 were similar in the positive and negative controls 233 

(Figure 3b). With all tools except MeTDiff, a knockout of Mettl3 showed the largest effects on m6A (60), 234 

while fewer significant peaks in other positive controls suggested variable effects of the positive control 235 

conditions on m6A(m), possibly related to efficiency of the methylation machinery knockdown or 236 

overexpression (7,33,61–65). In the absence of true differences between groups, p-value distributions 237 

should be uniform for well-calibrated statistical tests, meaning that ~5% of peaks should have p-values < 238 

0.05 for the negative controls. MeTDiff reported an excess number of sites with p-values below 0.05 239 

(Additional File 2: Supplementary Figure 3d) and identified a higher percentage of sites as differentially 240 

methylated in the mouse cortex negative control data set than in all but two positive controls (Figure 3b). 241 

On the other hand, the generalized linear models (GLMs) and QNB showed uniform to conservatively 242 

shifted p-value distributions, with differences between the mouse cortex and Huh7 data sets (Additional 243 

File 2: Supplementary Figure 3d), suggesting that these tools detect fewer false positives.  244 

To ensure significant peak changes detected by each of the tools reflected changes in IP 245 

enrichment independent of differential gene expression, we measured the correlation between changes in 246 

Figure 3: Analysis of methods to detect peak changes disproportional to gene expression 
changes. a) A comparison of Poisson (above) and negative binomial (below) models for read counts 
under peaks. The negative binomial mean log likelihood of the sample data fell within the 74th and 89st 
percentiles of 500 simulations for mouse cortex and Huh7 cell data, respectively, while the Poisson 
model failed to capture the sample distributions. b) The percent of sites below an unadjusted p-value 
threshold of 0.05 for different methods (described in Table 1) to detect differential methylation in 
negative controls between two groups at baseline conditions and positive controls in which methylation 
processes were disrupted with respect to baseline conditions (Additional File 1: Supplementary 
Table 3). The line at 5% indicates the expected proportion of sites given a uniform p-value distribution 
(see Additional File 2: Supplementary Figure 2c), while colours indicate negative (orange) and 
positive (purple) control experiments. c) The correlation between change in gene expression and 
change in peak expression between conditions for sites identified as differentially methylated in the 
eight positive control experiments. Pearson’s R = 0.22, 0.10, 0.55, and 0.14 for edgeR, DESeq2, 
MeTDiff, and QNB, respectively, with p = 0.05, 0.09, 5.8E-87, and 2.4E-11. d) Coverage plots showing 
changes in peak expression are proportional to changes in gene expression for genes identified as 
differentially methylated by Bertero et al. (2018) using MeTDiff with activin signaling and an activin-
NODAL inhibitor, SB431542 (SB). Lines show the mean coverage across three replicates, while 
shading shows the standard deviation. Peaks detected as significantly changed are highlighted in 
yellow. Coding sequences are shown in grey. e) The intersect and union of peaks with p < 0.05 from 
DESeq2, edgeR, and QNB from (b), coloured as in (b). 
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IP read counts at peak sites and changes in input read counts across their encompassing genes. For 247 

significant peaks (FDR-adjusted p-value < 0.05) from the positive controls, correlation between log2 fold 248 

change in peak IP and gene input read counts was low for the GLMs and QNB (Pearson’s R = 0.10 to 249 

0.22) but reached 0.55 (p = 5.8E-87) for MeTDiff (Figure 3c). The higher correlation for MeTDiff was 250 

driven by peaks with proportional changes in IP and input levels, which suggests that MeTDiff often 251 

detects differential expression of methylated genes rather than differential methylation. Therefore, 252 

published studies that have used MeTDiff may actually be detecting differential expression and not 253 

differential methylation (22,66). Indeed, plotting coverage for genes reported as differentially methylated 254 

in one of these studies, with the y-axis scaled separately per condition, confirmed that changes in m6A 255 

identified by MeTDiff were proportional to changes in gene expression (Figure 3d) (22). Given these 256 

results, QNB or the GLM implementations are better methods than MeTDiff to detect differential 257 

methylation. Taking the intersect of significant peaks for the GLMs and QNB may help determine the 258 

most probable sites of m6A changes, while taking the union of predictions provides a less conservative 259 

approach to selecting sites for further validation (Figure 3e). However, additional filters are needed for 260 

robust peak change detection as there were still significant peaks for which the difference between peak 261 

log2 fold change and gene log2 fold change was close to zero, particularly with QNB (Additional File 2: 262 

Supplementary Figure 3e). For microarray and RNA-seq data, a filter of absolute log2 fold change > 1 263 

has been recommended to reduce false positive rates (67); in the remainder of our analyses, we 264 

implemented a similar filter for absolute difference in peak and gene log2 fold change ≥ 1 to the combined 265 

predictions from QNB and the two GLMs, with an additional filter where noted for peak read counts ≥ 10 266 

across all replicates and conditions to ensure sufficient coverage for consistent peak detection (as 267 

discussed in Figure 1a).  268 

 269 

Reanalyzing peak changes between conditions 270 

 We next estimated the scale of statistically detectable peak changes under various conditions 271 

using our approaches and compared these results to previously reported estimates of these changes 272 

(Figure 4a, Additional File 1: Supplementary Table 4). We identified fewer peaks as differentially 273 
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methylated than originally reported under most conditions, with zero to hundreds of peaks significantly 274 

changed (depending on experiment and method), versus hundreds to over ten thousand described in 275 

publications (22–26,34,63,66,68–71). Notably, knockdown of Zc3h13 did appear to disrupt m6A(m), 276 

suggesting the gene does participate in methylation as recently described (69). Another study reported 277 

that activin treatment of human pluripotent stem cells led to differential methylation of genes that encode 278 

pluripotency factors (22). However, our reanalysis only found a few peak changes that passed our filters 279 

for significance, fold change, and expression (minimum input read count across peaks ≥ 10), and no 280 

enrichment for pluripotency factors among affected genes. Even when we removed the thresholds for fold 281 

change and expression, the adjusted p-value for “signaling pathways regulating pluripotency of stem 282 

cells” was still 0.15 and driven by only three genes, LEFTY2, FZD28, and FGFR3 (Additional File 2: 283 

Supplementary Figure 4a). Interestingly, the minimum read threshold made a particularly dramatic 284 

difference in the case of a recent study that looked at the effects of knocking down the histone 285 

methyltransferase SETD2 on m6A in mRNA. For this data, of the 2065 sites predicted by QNB, 2064 fell 286 

below the minimum read threshold due to low input coverage in the first and second replicates (Figure 287 

4a, Additional File 2: Supplementary Figure 4b-e) (70). We could not compare our approach to results 288 

reported by Su et al. (2018), who found 6,024 peaks changed with R2HG treatment, Zeng et al. (2018), 289 

who found 465-599 peaks changed between tumour samples, or Ma et al. (2018), who found 12,452 290 

peaks were gained and 11,192 lost between P7 and P20 mouse cerebella, as each relied on a single 291 
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sample per condition, with no replicates (40–42). 292 

 293 

 294 

Multiple studies have investigated m6A(m) in the context of heat shock, HIV infection, KSHV 295 

infection, and dsDNA treatment or human cytomegalovirus (HCMV) infection (Additional File 1: 296 

Supplementary Table 5). Since each step in MeRIP-seq analysis risks introducing false negatives, we 297 

cannot rule out consistent changes between studies that used similar experimental interventions based 298 

on statistical detection alone. Therefore, we started by plotting coverage for specific genes reported as 299 
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Figure 4: Changes in peaks between conditions. a) Detected m6A(m) changes in thirteen published 
data sets that measured m6A(m) peak changes between two conditions (Additional File 1: 
Supplementary Table 4). The number of peaks detected as changed in the original published 
analyses are compared to the number of peaks with FDR-adjusted p-values < 0.05 in our reanalysis 
using DESeq2, edgeR, or QNB, and taking the union of results from these three tools with additional 
filters for log2 fold difference in peak and gene changes of ≥1 and peak read counts ≥10 across all 
replicates and conditions (“filtered”). b) Gene coverage plots for Hspa1a in mouse embryonic 
fibroblasts (MEFs) and HSPA1A in human cells (HepG2 and BCL) before and after heat shock. Input 
coverage is shown in black and IP coverage in raspberry, with putative m6A peaks changed highlighted 
in yellow and marked by arrows. miCLIP coverage for an experiment in HepG2 cells is shown in orange. 
c) Coverage plots for PSIP1, which was reported to have a change in 5′ UTR m6A with HIV infection 
by Lichinchi et al (2016). d) Coverage plots for SUN2, in which we detected changes in m6A with HCMV 
infection and dsDNA treatment suggesting a possible increase in methylation under higher interferon 
conditions (after 12 h of dsDNA treatment compared to untreated controls and after 6 h post-HCMV 
infection compared to 72 h, when interferon levels have declined). Lines in coverage plots (b-d) show 
the mean across all replicates for each experiment, while shading shows the standard deviation. 
Coding sequences are shown in grey. 
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differentially methylated to evaluate reproducibility across these studies. Zhou, et al. (2015) reported 5′ 300 

UTR methylation of Hspa1a with heat shock (20). Coverage was too low for untreated controls to 301 

determine if Hspa1a was simply newly expressed or was actually newly methylated with heat shock 302 

based on our alignment of their data using STAR (72). We were also unable to detect a change in 303 

methylation of HSPA1A using data from other heat shock studies, including a new data set from a B-cell 304 

lymphoma cell line and a published miCLIP data set, although coverage was again low (Figure 4b) 305 

(4,73). Lichinchi, et al. (2016) reported that 56 genes showed increased methylation with HIV infection in 306 

MT4 T-cells, with enrichment for genes involved in viral gene expression (25). Specific genes, for 307 

example PSIP1, in which we also detected a peak using MACS2 and see a change in the peak when 308 

plotting coverage using the data from Lichinchi et al. (2016), did not show the same changes in data from 309 

two other CD4+ cell types, primary CD4+ cells and Jurkat cells (Figure 4c) (74). Two other studies both 310 

used MeRIP-seq to establish the presence of m6A in IFNB1 induced through dsDNA treatment or by 311 

infection with the dsDNA virus HCMV (75,76). While these studies did not discuss changes in m6A, we 312 

used these data sets to examine the replicability of m6A(m) changes in response to dsDNA sensing and 313 

interferon induction. Although different dsDNA stimuli, time points, and use of a fibroblast cell line versus 314 

primary foreskin fibroblasts make it difficult to compare between the two experiments, using QNB and the 315 

GLM approaches, we found four peaks in three genes (AKAP8, SUN2, and TMEM140) that showed 316 

significant changes with higher interferon (Figure 4d). Overall, we were unable to detect the same 317 

changes in m6A(m) across studies of heat shock or HIV, and we detected only a few common changes in 318 

the response to dsDNA. However, we do note that cell line-specific differences in m6A(m) regulation and 319 

differences in experimental protocols could account for some of the variability among these studies.  320 

We did not have MeRIP-seq data for two studies from exactly the same conditions and cell lines 321 

to compare, but two studies both used cell lines derived from iSLK to study the effects of KSHV on host 322 

m6A (27,28). Both suggested that KSHV infection could decrease the number of m6A sites in host 323 

transcripts. Hesser et al. (2018) found that lytic KSHV infection decreased the number of peaks on host 324 

transcripts by >25%; Tan et al. (2018) suggested a loss of 17-59% of peaks in two different cell types, but 325 

that m6A(m) peak fold enrichment showed better clustering by cell type than by infection status. Neither of 326 
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these studies discussed specific genes that showed differential methylation with lytic infection. For our 327 

comparison of m6A(m) peak changes in these data sets, we identified probable changes in peaks based on 328 

statistical significance using QNB or the GLMs with log2 fold change difference between peaks and genes 329 

of ≥1. We detected 80 peak changes in the data from Hesser et al. (2018) and 18 in the data from Tan et 330 

al. (2018) but found no peaks that changed in both iSLK data sets with lytic KSHV infection. Applying the 331 

same statistical approaches, we were likewise unable to detect any shared peak changes between the 332 

studies of HIV infection, and there were insufficient replicates to compare heat shock studies 333 

(16,20,25,73,74). Thus, in our reanalysis of m6A changes in response to stimuli, we detected only four 334 

statistically reproducible peak changes, all in response to dsDNA.  335 

Disparities between experiments were not simply due to significance thresholding or differences 336 

in peak detection. Taking the union of peaks called in two experiments for KSHV, HIV, and dsDNA 337 

treatment, we found minimal to negative correlations in changes in m6A enrichment induced by treatment 338 

at the same sites, further showing that changes with similar treatments are not reproducible (Additional 339 

File 2: Supplementary Figure 4e). 340 

 341 

MeRIP-RT-qPCR validation 342 

Although statistical approaches revealed fewer changes in m6A(m) with various stimuli than 343 

published estimates, and we were unable to confirm changes in m6A(m) methylation of specific genes 344 

across studies of similar conditions, many of the studies we looked at do include additional validation of 345 

m6A(m) changes from MeRIP-seq using MeRIP-RT-qPCR. Recently it was shown that MeRIP-RT-qPCR 346 

can capture differences in m6A:A ratios at specific sites (34), but it is unknown how MeRIP-RT-qPCR is 347 

affected by changes in gene expression. To test this, we ran MeRIP-RT-qPCR on in vitro transcribed 348 

RNA oligonucleotides that lacked or contained m6A spiked into total RNA extracted from Huh7 cells 349 

(Additional File 1: Supplementary Table 6). We found that MeRIP-RT-qPCR detected the direction of 350 

change in m6A levels at different concentrations of spike-in RNAs (Figure 5a-b). However, technical 351 

variation could also lead to spuriously significant differences. For example, a comparison of m6A 352 
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enrichment between two dilutions (0.1 fmol and 10 fmol) of a 30% methylated spike-in mixture returned a 353 

p-value of 0.004 (unpaired Student’s t-test). 354 

 355 
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Figure 5: MeRIP-RT-qPCR validation and replicates necessary for the detection of peak changes. 
a) Relative enrichment of the indicated amounts of an in vitro transcribed standard containing unmodified 
A or m6A, as measured by MeRIP-RT-qPCR. Data are shown for two independent replicates of three 
technical replicates each as IP enrichment over input relative to pulldown of a positive control spike-in, 
with the 0.1 fmol (0.01 m6A: 0.09 A) sample normalized to 1. Bars represent mean ± SEM of two 
independent replicates. *** p ≤ 0.005 by unpaired Student’s t-test. b) Linear regression of relative m6A 
enrichment from (a). Points and error bars mark mean ± SEM of two independent replicates. c) Change 
in MeRIP-RT-qPCR vs. MeRIP-seq enrichment for peaks detected as significantly differentially expressed 
with infection of Huh7 cells by dengue virus, Zika virus, and hepatitis C virus. d) Number of replicates of 
infected vs. uninfected cells needed to detect the peaks in (c). Replicates were randomly subsampled 10 
times to calculate the fraction of subsamples in which peaks were called as significant by the GLMs or 
QNB.  Boxes span the 1st to 3rd quartiles, with medians indicated. Whiskers show the minimum and 
maximum points within ±1.5x the interquartile distance from the boxes. Results for each subsample of 
replicates are shown as jittered points. 
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We next assessed the correlation between m6A enrichment observed using MeRIP-seq and 358 

MeRIP-RT-qPCR using data from our recent work that identified 58 peak changes in m6A in Huh7 cells 359 

following infection by four different viruses (50). For those experiments, we again selected peaks that 360 

change based on results from the union of QNB and the GLM approaches. We found that the magnitude 361 

of changes in common among viruses correlated between MeRIP-seq and MeRIP-RT-qPCR, both across 362 

peaks (Pearson’s R = 0.57, p = 3.7E-6) and within single peaks across viruses (13 out of 19 peaks 363 

showed positive correlations, four of which had p-values < 0.05 with three data points) (Figure 5c, 364 

Additional File 2: Supplementary Figure 5). Given the correlation we found between MeRIP-seq and 365 

MeRIP-RT-qPCR, it is unclear why changes in IP over input sequencing reads were undetectable at the 366 

peaks reported by Bertero et al. (2018) and Huang et al. (2019) but differences in peaks were 367 

successfully validated using MeRIP-RT-qPCR (22,70). Based on these discrepancies, while MeRIP-RT-368 

qPCR can be used as an initial method of validation for predicted peak changes, additional methods are 369 

necessary to confirm quantitative differences in m6A levels and to resolve points where the assays do not 370 

agree.  371 

We next used our peaks validated with MeRIP-RT-qPCR to estimate the number of replicates 372 

necessary for detection of changes with either the GLM or QNB methods. Using a permutation test, we 373 

downsampled infected and uninfected replicates and reran statistical detection of changes. We found that 374 

approximately 6-9 replicates were necessary for consistent detection (in at least 50% of subsamples) of 375 

most peak changes (Figure 5d). Schurch et al. (2016) and Conesa et al. (2016) produced similar 376 

recommendations for basic RNA-seq studies, finding that 6-12 replicates were necessary to detect most 377 

changes in gene expression and that changes of 1.25 were detectable 25% of the time with five 378 

replicates, rising to 44% with ten replicates, respectively (36,77). While our findings broadly agree with 379 

these recommendations for RNA-seq, they also suggest that almost all published MeRIP-seq studies to 380 

date are underpowered.  381 

 382 

Discussion 383 
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In the eight years since MeRIP-/m6A-seq was first published (16,17), many studies have used 384 

these methods to examine the function of m6A, its distribution along mRNA transcripts, and how it might 385 

be regulated under various conditions. While 35 out of 64 of the MeRIP- and miCLIP-seq papers we 386 

surveyed (Additional File 1: Supplementary Table 1) refer to m6A as “dynamic”, and, by contrast, only 387 

two describe the modification as “static”, the literature is unclear on what is meant by the word “dynamic”. 388 

There is mixed evidence as to whether m6A is reversible through demethylation by the proposed 389 

demethylases FTO and ALKBH5 (71,78–80). Recent research using an endoribonuclease-based method 390 

for m6A detection suggests that ALKBH5 has only a mild suppressive effect on m6A levels and FTO no 391 

effect (54). Although m6A does not appear to change over the course of an mRNA’s lifetime at steady-392 

state (3), whether it changes in response to a particular stimulus and at what point is less clear. Some 393 

studies have suggested that m6A may be modulated through changes in methyltransferase and 394 

demethylase expression, producing consistent directions of change across transcripts (8,23,34), through 395 

alternative mechanisms involving microRNA, transcription factors, promoters, or histone marks 396 

(21,22,66,70,81), or through indeterminate mechanisms (17,20,25–28,52). However, based on our 397 

reanalysis of available MeRIP-seq data, there is still only meagre support for widespread changes in m6A 398 

across the transcriptome independent of changes in the expression of methylation machinery (e.g. 399 

increases or decreases in METTL3 expression). 400 

In particular, replication of peaks and changes in peaks across studies is limited. As with other 401 

RNA IP-based methods, MeRIP-seq data contains noise, owing to technical and biological variation (82). 402 

In fact, while peak overlaps reach ~80% between replicates of the same study, they decrease to a 403 

median of 45% between studies, most of which use 2-3 replicates each (Figure 1). Given that the 404 

detection of peaks is so variable and that peak heights differ among replicates, it is perhaps not surprising 405 

that peak changes have yet to be reproduced between multiple studies of similar conditions. Indeed, 406 

variability in MeRIP-seq could also mask differences in m6A regulation among cell types, which have 407 

been described in mouse brains (34) and in cell lines exposed to KSHV (28). To distinguish biological and 408 

technical variation, it will therefore be particularly important to test if multiple groups using the same cell 409 

line and conditions can better reproduce changes in m6A.  410 
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 411 

Disparities in the methods used to detect changes in m6A(m) peaks also play a role in differing 412 

conclusions among studies. Here, we analyzed four statistical methods to detect changes in peaks and 413 

found that three of these methods showed uniform or conservatively shifted p-value distributions and 414 

were able to identify changes in m6A(m) independent of changes in gene expression. We therefore 415 

suggest that these statistical methods, in combination with filters for input levels in both conditions and 416 

the difference in log2 fold change between peaks and genes, can be used to identify candidate m6A(m) 417 

sites from MeRIP-seq data for further analysis and validation (Figure 6). Based on our results, while 418 

MeTDiff works for peak detection, we do not recommend MeTDiff for peak change detection as it does 419 

not control well for differences in gene expression (Figure 3). Similar to others (33), we found that plotting 420 

predicted m6A changes was invaluable and that appropriate scaling for gene coverage could reveal 421 

changes proportional to gene expression. In addition, plotting the standard deviation in transcript 422 

coverage can help assess typical variation in peak height among replicates. We note that both differential 423 

methylation of a gene and methylation of a gene that is differentially expressed could be important, but 424 

they should not be conflated when considering the role of m6A in transcript regulation. 425 

Align reads to genome

Call peaks

(MACS2, exomePeak, 

MeTPeak, MeTDiff)

edgeR GLMDESeq2 GLM QNB

Consider all significant

results (adjusted p < 0.05)

Filter for |peak IP log2FC - gene 

input log2FC| ≥ 1

(and for peak read count ≥ 10)

Plot gene IP and input 

coverage, 

while scaling for differences in 

expression between conditions

(DEQ R package)

Figure 6: Proposed approach to identify 
candidates for m6A(m) changes for further 
validation using MeRIP-seq data. We suggest 
predicting changes in m6A(m) using DESeq2, 
edgeR, and QNB, and have implemented the 
DEQ package in R to facilitate this.  
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The extent to which m6A changes on particular transcripts and whether it changes in binary 426 

presence/absence or in degree is unclear. MeRIP-RT-qPCR could detect methylation differences in in 427 

vitro transcribed RNA. Further, we found that these changes correlated with differences in MeRIP-seq 428 

enrichment. However, neither MeRIP-seq nor MeRIP-RT-qPCR can reveal the precise fraction of 429 

transcript copies modified by m6A. In general, antibody-based methods are subject to biases, including 430 

from differences in binding efficiencies based on RNA structure and motif preferences (83). There is an 431 

oft-cited but little-used method for quantification of m6A, site-specific cleavage and radioactive-labeling 432 

followed by ligation-assisted extraction and thin-layer chromatography (SCARLET) (19). However, this 433 

method can be challenging, works only for highly abundant transcripts, and is impractical for 434 

transcriptome-wide analysis. A recently developed endoribonuclease-based, antibody-independent 435 

approach for m6A detection is promising in terms of quantification of m6A, but its use is limited to a subset 436 

of m6A sites within DRAC motifs ending in ACA (~16% of all sites) (44,45). So far, comparison to this data 437 

suggests that antibody-based approaches may underestimate the number of m6A sites (54). Alternative 438 

methods to detect m6A based using single-molecule sequencing (including direct RNA sequencing and 439 

real-time cDNA synthesis) are under development and may offer ways to detect, quantify, and phase m6A 440 

sites, but these have not yet been shown to accurately detect m6A across a cellular transcriptome (84–441 

86). For now, site-specific SCARLET is the only option to biochemically validate proposed changes in 442 

m6A at most motifs.   443 

 444 

 445 

Conclusions 446 

Our work reveals the limits of MeRIP-seq reproducibility for the detection of m6A(m) and in 447 

particular suggests caution when using MeRIP-seq for the detection of changes in m6A(m). To increase 448 

confidence in predicted changes in m6A(m), we propose statistical approaches that account for differences 449 

in gene expression between conditions and variability among replicates. These methods can be used to 450 

gain insight into the regulation and function of m6A(m) and to predict specific sites for validation before the 451 
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development of high-throughput alternatives to MeRIP-seq, and similar strategies may be applicable to 452 

other types of RNA sequencing assay. 453 

 454 

Methods 455 

New MeRIP-seq data 456 

- Huh7 data 457 

Total RNA was extracted from Huh7 cells using Trizol (Thermo-Fisher). mRNA was purified from 200 μg 458 

total RNA using the Dynabeads mRNA purification kit (Thermo-Fisher) and concentrated by ethanol 459 

precipitation. Purified mRNA was fragmented using the RNA Fragmentation Reagent (Thermo-Fisher) for 460 

15 minutes followed by ethanol precipitation. Then, MeRIP was performed using EpiMark N6-461 

methyladenosine Enrichment kit (NEB). 25 μL Protein G Dynabeads (Thermo-Fisher) per sample were 462 

washed three times in MeRIP buffer (150 mM NaCl, 10 mM Tris-HCl, pH 7.5, 0.1% NP-40) and incubated 463 

with 1 μL anti-m6A antibody (NEB) for 2 hours at 4°C with rotation. After washing three times, anti-m6A 464 

conjugated beads were incubated with purified mRNA with rotation at 4°C overnight in 300 μL MeRIP 465 

buffer with 1 μL RNAse inhibitor (recombinant RNasein; Promega). Beads were then washed twice with 466 

500 μL MeRIP buffer, twice with low salt wash buffer (50 mM NaCl, 10 mM Tris-HCl, pH 7.5, 0.1% NP-467 

40), twice with high salt wash buffer (500 mM NaCl, 10 mM Tris-HCl, pH 7.5, 0.1% NP-40), and once 468 

again with MeRIP buffer. m6A-modified RNA was eluted twice in 100 μL MeRIP buffer containing 5mM 469 

m6A salt (Santa Cruz Biotechnology) for 30 minutes at 4°C with rotation and concentrated by ethanol 470 

precipitation. RNA-seq libraries were prepared from eluate and the 10% of RNA set aside as input using 471 

the TruSeq mRNA library prep kit (Illumina) and checked for fragment length using the Agilent 2100 472 

Bioanalyzer. Single-end 50 base pair reads were sequenced on an Illumina HiSeq 2500. 473 

- Heat shock 474 

Early passage OCI-Ly1 diffuse large B-cell lymphoma cells were grown in Iscove’s modified Eagle 475 

Medium (IMDM) with 10% fetal bovine serum (FBS). OCI-Ly1 cells were obtained from the Ontario 476 

Cancer Institute and regularly tested for Mycoplasma contamination by PCR and identified by single 477 

nucleotide polymorphism. Cells were maintained with 1% penicillin/streptomycin in a 37°C, 5% CO2, 478 
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humidified incubator. In these growing conditions, heat shocked cells were exposed to 43 °C for 1 hour, 479 

followed by 1 hour of recovery at 37°C while control cells were maintained at 37°C. Following treatment, 480 

cells were processed at 4°C to obtain total cell lysates. Lysates were immunoprecipitated for m6A(m) using 481 

Synaptic Systems antibody (SYSY 202 003) following the protocol described in Meyer, et al (2012) and 482 

sequenced on an Illumina HiSeq 2500 (16).  483 

 484 

Read processing 485 

Reads were trimmed using Trimmomatic (87) and aligned to the human genome (hg38) or the mouse 486 

genome (mm10), as appropriate, using STAR, a splice-aware aligner for RNA-seq data (72). We used the 487 

flag “--outFilterMultimapNmax 1” to keep only uniquely aligned reads. Scripts used for alignment are 488 

provided with the rest of the analysis scripts at https://github.com/al-mcintyre/merip_reanalysis_scripts. 489 

 490 

Peak detection and comparison 491 

IP over input peaks were called using MACS2 callpeak using the parameters “--nomodel --extsize 100 (or, 492 

if available, the approximate fragment size for a specific experiment to extend reads at their 3’ ends to a 493 

fixed length) --gsize 100e6 (the approximate size of mouse and human transcriptomes based on gencode 494 

annotations)” (49). No filter for coverage was applied at the stage of peak detection. Transcript coverage 495 

was estimated using Kallisto (88) with an index construct 31mers, except for the Schwartz et al (2014) 496 

data set, where the reads were too short and an alternative index based on 29mers was constructed (33). 497 

For Figure 1b, the full union of unique peaks was taken and the percent of that set detected in single 498 

replicates calculated. Intersects between peaks that overlapped for transcripts with ≥10X mean coverage 499 

in both samples were taken using bedtools (89) for Figure 2, allowing a generous minimum of 1 500 

overlapping base. Heatmaps for peak overlaps were generated using the ComplexHeatmap package in R 501 

(90). MeRIP-seq data sets in Figure 2b included those for human cell lines in Figure 2a, other data sets 502 

from the same studies and any data sets that shared the same cell lines, and other data sets that looked 503 

at multiple human cell types. We considered only data sets from baseline conditions in Figure 2 504 

(untreated cells and knockdown controls).  505 
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 506 

Poisson and negative binomial fits  507 

Reads aligned to peaks were counted using featureCounts from the Rsubread package (91). Poisson and 508 

negative binomial models were fit to input and IP read counts at peaks using maximum likelihood 509 

estimation. Simulated read counts were generated with Poisson or negative binomial distributions based 510 

on estimated parameters from the sample, with 500 random generations per model. The log likelihood of 511 

seeing read counts from the sample and the simulations given the model parameters was then calculated 512 

and the mean taken across all peaks.  513 

 514 

Peak change detection and generalized linear models 515 

Generalized linear models to detect changes in IP coverage while controlling for differences in input 516 

coverage were implemented based on a method previously applied to HITS-CLIP data (58). Full and 517 

reduced models were constructed as follows:  518 

log μij = βi0 + βiIPXjIP + βiSTIMXjSTIM + βiSTIM:IPXjSTIM:IP 519 

log μij = βi0 + βiIPXjIP + βiSTIMXjSTIM 520 

 521 

Where μij is the expected read count for peak i in sample j, modelled as a negative binomial distribution, 522 

XjIP = 1 for IP samples and 0 for input samples, and XjSTIM = 1 for samples under the experimental 523 

intervention and 0 for control samples.  524 

 525 

Statistical significance was then assessed using a chi-squared test (df=1) for the difference in deviances 526 

between the full and reduced models, with the null hypothesis that the interaction term (βiSTIM:IP) for 527 

differential antibody enrichment driven by the experimental intervention is zero. The likelihood ratio test 528 

was implemented through DESeq2 (56) and edgeR (57), two programs developed for RNA-seq analysis 529 

that differ in how they filter data and in how they estimate dispersions for negative binomial distributions. 530 

Generalized linear models implemented through edgeR included a term for the normalized library size of 531 

sample j.  532 
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 533 

QNB was run as suggested for experiments with biological replicates, where each IP and input variable 534 

(“ip1”, etc.) consisted of a matrix of peak counts for either condition 1 or condition 2: 535 

> qnbtest(ip1, ip2, input1, input2, mode="per-condition") 536 

 537 

We extracted functions from MeTDiff so that we could supply our own peaks and thus control for 538 

differences in peak detection among tools. The main post-peak calling function, diff.call.module, was run 539 

as follows using the same count matrices as for QNB: 540 

>  diff.call.module(ip1, input1, ip2, input2) 541 

 542 

Gene and peak expression changes were estimated as log2 fold changes from DESeq2 based on 543 

differences in input read counts aligned to genes and IP read counts aligned to peaks, respectively, and 544 

the change in peak relative to gene enrichment was calculated as the absolute difference in log2 fold 545 

change between those values.  546 

 547 

Comparison to published studies 548 

The sources for published estimates of m6A peak changes included in our comparison are listed in 549 

Additional File 1: Supplementary Table 4. Significant (FDR-adjusted p < 0.05) peaks were considered 550 

for DESeq2, edgeR, and QNB, run as described above. We also considered a filtered set of peaks 551 

derived from the union of significant peaks from the three tools with additional filters for location within 552 

exons, |log2 fold change between peak IP and gene input| ≥ 1, and a minimum peak read count of 10 553 

across replicates and conditions. We used gProfiler to calculate enrichment of functional categories (92).  554 

 555 

In Figure 4b-c, we selected Hspa1a/HSPA1A as our representative gene for heat shock because it was 556 

the primary example cited by Zhou et al. (2015) and Meyer et al. (2015) (4,20). For HIV, we selected 557 

PSIP1 because it was among the 56 genes reported by Lichinchi et al. (2016a) (25), it plays a known role 558 

in HIV infection, and we detected a peak in the gene using MACS2.  559 
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 560 

For KSHV, we compared significant results (adjusted p < 0.05) from QNB and GLMs (DESeq2 and 561 

edgeR), with additional filtering for |peak IP – gene input log2 fold change|  ≥ 1 (lowering this threshold to 562 

0.5 did not change results), for data from Hesser et al. (2018) (27) in lytic vs. latent iSLK.219 cells and 563 

data from Tan et al. (2018) (28) in lytic vs. latent iSLK BAC16 cells. We used the same approach to 564 

compare data from Rubio et al. (2018) and Winkler et al. (2019) (75,76) for response to dsDNA. Data sets 565 

used for site-specific comparisons are summarized in Additional File 1: Supplementary Table 5. 566 

 567 

Gene coverage was plotted using CovFuzze (https://github.com/al-mcintyre/CovFuzze), which 568 

summarizes mean and standard deviation in coverage across available replicates (93). Pearson’s 569 

correlations were taken for Supplementary Figure 4 for peaks expressed above a minimum input peak 570 

read count of 10 across replicates and conditions.  571 

 572 

Spike-in controls and MeRIP-RT-qPCR 573 

In vitro transcribed (IVT) controls were provided by the Jaffrey Lab and consisted of 1001 base long RNA 574 

sequences with three adenines in GAC motifs (Additional File 1: Supplementary Table 6) either fully 575 

methylated or unmethylated. m6A and A controls were mixed in various ratios (1:9, 3:7, and 9:1) that 576 

approximate the variation in m6A levels detected by SCARLET (m6A levels at specific sites have been 577 

reported to vary from 6-80% of transcripts (19)). Modified and unmodified standards were mixed at the 578 

indicated ratios to yield a final quantity of 0.1 fmol, 1 fmol, and 10 fmol. Mixed RNA standards were added 579 

to 30 μg total RNA from Huh7 cells, along with 0.1 fmol of positive (m6A-modified Gaussia luciferase 580 

RNA, “GLuc”) and negative control (unmodified Cypridina luciferase, “CLuc”) spike-in RNA provided with 581 

the N6-methyladenosine Enrichment kit (EpiMark). Following MeRIP as described above, cDNA was 582 

synthesized from eluate and input samples using the iScript cDNA synthesis kit (Bio-Rad), and RT-qPCR 583 

was performed on a QuantStudio Flex 6 instrument. Data was analyzed as a percent of input of the spike-584 

in RNA in each condition relative to that of the provided positive control spike-in.  585 
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For MeRIP-RT-qPCR to test peak callers, Huh7 cells plated in 6-well plates were transfected with 586 

siRNAs against METTL3 and METTL14 (Qiagen; SI04317096 and SI00459942) or non-targeting control 587 

siRNa (SI03650318) using Lipofectamine RNAiMax (Thermo Fisher) twice, 24 hours apart. 48 hours 588 

following the second round of siRNA transfection, cells were harvested in TRIzol reagent and total RNA 589 

was extracted. 30 μg total RNA was fragmented for 3 mins at 75°C, concentrated by ethanol precipitation, 590 

and MeRIP-RT-qPCR was performed as described above. Primers used for RT-qPCR are provided in 591 

Additional File 1: Supplementary Table 7 and siRNA sequences in Additional File 1: Supplementary 592 

Table 8. 593 

 594 

Cell culture and infection (data used for MeRIP-RT-qPCR comparisons) 595 

Huh7 cells were grown in DMEM (Mediatech) supplemented with 10% fetal bovine serum (HyClone), 2.5 596 

mM HEPES, and 1X non-essential amino acids (Thermo-Fisher). The identity of the Huh7 cell lines was 597 

verified using the Promega GenePrint STR kit (DNA Analysis Facility, Duke University), and cells were 598 

verified as mycoplasma free by the LookOut Mycoplasma PCR detection kit (Sigma). Infectious stocks of 599 

a cell culture-adapted strain of genotype 2A JFH1 HCV were generated and titered on Huh7.5 cells by 600 

focus-forming assay (FFA), as described (94). Dengue virus (DENV2-NGC), West Nile virus (WNV-601 

NY2000), and Zika virus (ZIKV-PRVABC59) viral stocks were generated in C6/36 cells and titered on 602 

Vero cells as described (94). All viral infections were performed at a multiplicity of infection of 1 for 48 603 

hours. 604 
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