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Abstract1

Background Between January 2015 and August 2016, two epidemic waves of Zika virus (ZIKV)2

disease swept the Northeastern region of Brazil. As a result, two waves of Guillain-Barré Syndrome3

(GBS), were observed concurrently. The mandatory reporting of ZIKV disease began region-wide in4

February 2016, and it is believed that ZIKV cases were significantly under-reported before that. The5

changing reporting rate has made it difficult to estimate the ZIKV infection attack rate, and studies6

in the literature vary widely from 17% to > 50%. The same applies for other key epidemiological7

parameters. In contrast, the diagnosis and reporting of GBS cases were reasonably reliable given the8

severity and easy recognition of the diseases symptoms. In this paper, we aim to estimate the real9

number of ZIKV cases (i.e., the infection attack rate), and their dynamics in time, by scaling up from10

GBS surveillance data in NE Brazil.11

Methodology A mathematical compartmental model is constructed that makes it possible to infer12

the true epidemic dynamics of ZIKV cases based on surveillance data of excess GBS cases. The model13

includes the possibility that asymptomatic ZIKV cases are infectious. The model is fitted to the14

GBS surveillance data and the key epidemiological parameters are inferred by using the plug-and-play15

likelihood-based estimation. We make use of regional weather data to determine possible climate-driven16

impacts on the reproductive number R0, and to infer the true ZIKV epidemic dynamics.17

Findings and Conclusions The GBS surveillance data can be used to study ZIKV epidemics and18

may be appropriate when ZIKV reporting rates are not well understood. The overall infection attack19

rate (IAR) of ZIKV is estimated to be 24.1% (95% CI: 17.1% - 29.3%) of the population. By examining20

various asymptomatic scenarios, the IAR is likely to be lower than 33% over the two ZIKV waves. The21

risk rate from symptomatic ZIKV infection to develop GBS was estimated as ρ = 0.0061% (95% CI:22

0.0050% - 0.0086%) which is significantly less than current estimates. We found a positive association23

between local temperature and the basic reproduction number, R0. Our analysis revealed that asymp-24

tomatic infections affect the estimation of ZIKV epidemics and need to also be carefully considered in25

related modelling studies. According to the estimated effective reproduction number and population26

wide susceptibility, we comment that a ZIKV outbreak would be unlikely in NE Brazil in the near27

future.28

Keywords : Zika virus; Guillain-Barré syndrome; Mathematical modelling; Infection attack rate;29

reproduction number; Brazil.30
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Author Summary31

The mandatory reporting of Zika virus (ZIKV) disease began region-wide in February 2016, and32

it is believed that ZIKV cases could have been highly under-reported before that. Given the Guillain-33

Barré syndrome (GBS) is relatively well reported, the GBS surveillance data has the potential to act34

as a reasonably reliable proxy for inferring the true ZIKV epidemics. We developed a mathematical35

model incorporating the weather effects to study the ZIKV-GBS epidemics and estimated the key36

epidemiological parameters. We found the attack rate of ZIKV is likely lower than 33% over the37

two epidemic waves. The risk rate from symptomatic ZIKV case to develop GBS is likely 0.0061%.38

According to the analysis, we comment that there would be difficult for a ZIKV outbreak to appear in39

NE Brazil in the near future.40
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1 Introduction41

The Zika virus (ZIKV) was first identified in 1947 in the Zika forest of Uganda [1], and within a42

few years was found spreading in human populations of Nigeria [2, 3]. Transmitted through the bites43

of mosquito vectors (usually of the Aedes genus), ZIKV is an arbovirus from the family Flaviviridae44

[4, 5]. Other transmission routes have also been found (materno-fetal, sexual transmission, and via45

blood transfusion) but they are less common [6, 7, 8, 9]. By the 1970s, the virus was circulating widely46

in West Africa, although it was considered a relatively mild human infection that generally results in47

only fever, rash and possibly conjunctivitis [3, 10]. By 2007, the virus had escaped Africa to the island48

of Yap in Micronesia where, according to some estimates, it infected up to 75% of the island population49

[11]. ZIKV reached Polynesia in 2013, and at least by 2015, it had invaded Brazil and then very quickly50

the rest of South America where it reached epidemic levels [12, 13]. Since its appearance in French51

Polynesia and Brazil, the virus has been associated with severe neurological disorders linked to birth52

defects. ZIKV infection was found to pass from mother to fetus during pregnancy with the potential to53

result in microcephaly which causes fetal abnormalities including possible skull collapse [5]. In addition,54

since 2014 ZIKV was found to be strongly associated with the Guillain-Barré syndrome (GBS) amongst55

a small proportion of those infected [14, 15]. GBS can result in long-term muscle weakness, pain, and56

in some circumstances death [16]. Although there is still no proven causal link between GBS and ZIKV57

disease, GBS has many times been associated with ZIKV outbreaks in many countries [15], and the58

empirical association is unusually strong.59

While considered relatively benign for decades since 1947, ZIKV disease suddenly became a major60

global disease threat. A Public Health Emergency of International Concern (PHEIC) was announced61

by the WHO on February 01, 2016 [17], in the lead-up to the Rio Olympic Games in Brazil. But until62

then, because of the relatively low interest in the ZIKV, surveillance in most areas was of low quality63

with poor coverage and consequently a large under-reporting of cases. There was little knowledge64

of key parameters: for example the true attack rate, the proportion of asymptomatic cases amongst65

infected ZIKV cases, the reproductive number. This has led to stepped up activity in surveillance and66

modelling efforts in recent years. But given the poor case-data available and the lack of knowledge67

of a reporting rate (which changed significantly in time and location) for those infected with ZIKV,68

results from modelling efforts have often proved to be inconsistent. Here, we take a new approach that69

attempts to overcome some of the problems associated with the large uncertainties associated with the70

reporting of ZIKV cases. Instead, we work with time series of GBS cases which should be far more71

reliable. We argue that a high proportion of people infected with GBS will in fact report to the doctor.72

Figure 1 makes clear the strong association between ZIKV cases and GBS by plotting reported cases73

of both diseases on the same axes. It is clear that the dynamics of the two diseases are closely in74

step. The unique feature of our work is that we draw on this property and fit our model to GBS data75

collected during and following the period of a ZIKV outbreak. We use this to infer the true numbers,76

and dynamics in time, of ZIKV cases.77

For the modelling work that follows, it is useful to consider some of the above events in more detail78

on a country-specific basis, as they give further important background information that justifies our79

approach in using GBS as a proxy for zika-cases, on data sources and on choices of parameter values.80
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French Polynesia From October 2013 to April 2014, a severe ZIKV outbreak hit French Polynesia,81

and the attack rate (IAR) was first estimated as 66% [18], but updated soon after to 49% [19]. An82

outbreak of 42 GBS cases was simultaneously reported, but with a three-week delay in the peak timing,83

and was linked to the ZIKV outbreak [20]. Based on the IAR of [19], the risk of ZIKV induced GBS can84

thus be calculated as 0.32 GBS cases per 1,000 ZIKV infections, or just ρ = 0.00032. [20] estimated the85

proportion to be ρ = 0.00024. Aubry et al. also found that, the ratio of asymptomatic to symptomatic86

infections (asymptomatic ratio) was about 1:1 in the general population and 1:2 among school children87

[19]. These findings are notably different from estimates for a previous ZIKV outbreak in Yap island88

in 2007, where the asymptomatic ratio was 4.4:1 and the estimated overall ZIKV IAR was about 75%89

[11].90

Following the ZIKV outbreak in French Polynesia, the region experienced a Chikungunya virus91

(CHIKV) disease outbreak with an estimated 66,000 cases from October 2014 to March 2015, and 9 GBS92

cases occurred [21]. The crude risk of CHIKV induced GBS was found to be 0.136 per 1,000 CHIKV93

infections. Thus, based on these studies [20, 21], a ZIKV infection is of (0.32÷ 0.136 =) 2.35-fold more94

likely to induce GBS when compared to a CHIKV infection. Cauchemez et al. [18] also found that95

the risk of ZIKV induced microcephaly was 95 cases (34-191) per 10,000 women infected in their first96

trimester during 2013-14.97
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Figure 1: Total ZIKV (red) and GBS (green) cases as time series summed over the different states
and countries: Bahia State, Colombia, the Dominican Republic, El Salvador, Honduras, Suriname, and
Venezuela from April 01 of 2015 to March 31 of 2016. Data from Ref. [64].

Northeastern Brazil The Northeastern (NE) region of Brazil was the hardest-hit region in the98

Americas during 2015-16. In this period three mosquito-borne diseases - dengue virus, ZIKV and99

CHIKV, co-circulated often simultaneously, and weekly cases were documented [22]. In addition, local100

GBS and microcephaly cases were also recorded. Over the two years, two waves of ZIKV disease101
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were accompanied by two waves of reported GBS cases, as shown in Fig 2, which indicated a possible102

epidemiological association. A striking wave of microcephaly cases with a 23-week delay to the first103

ZIKV wave was identified and discussed in [22]. The delay arises because ZIKV infections in the first104

trimester of pregnancy are most likely to induce microcephaly [18, 23, 24, 25]).105

A substantial CHIKV wave was also observed during the second ZIKV wave in 2016 as indicated106

in Fig 2 and [22]. CHIKV can induce GBS with a smaller risk ratio (1 to 2.35) than ZIKV as discussed107

above and according to results in [21, 26, 27, 28, 29]. Note that in the latter studies, no cases of GBS108

induced by dengue epidemics were reported. One recent cohort study was conducted on 345 pregnant109

women with ZIKV rash observed (presenting at the Oswaldo Cruz Foundation) in Rio de Janeiro (the110

largest city in Eastern Brazil) between September 2015 and May 2016 [25]. The IAR of CHIKV was111

found to be approximately 17%; and in contrast, the IAR of ZIKV was 53%, as based on PCR tests.112

In addition, a strong cross-protection between ZIKV and CHIKV was also observed, but no cross-113

protection was observed between ZIKV and dengue virus (DENV). The IAR of CHIKV was 21.1%, and114

41.7% for ZIKV-negative women while only 2.8% of ZIKV-positive women were infected with CHIKV.115

Thus, among pregnant women with rash observed in this period, the ratio of ZIKV and CHIKV is116

(roughly) 5 to 2. Evident cross-protection between CHIKV and ZIKV (but not between dengue and117

ZIKV) can be deduced from the same study with the same women [25]. Therefore, we suspect that118

the two waves of excess GBS cases in NE Brazil were largely due to ZIKV disease rather than CHIKV,119

for two reasons: (i) ZIKV is 2.35-fold likely to induce GBS than CHIKV; and (ii) ZIKV IAR could be120

three times higher than that of CHIKV based on the Rio de Janeiro study [25] to project the situation121

in NE Brazil.122

Our work is based on the fact that it is difficult to estimate the infection attack rate (IAR) of123

ZIKV directly from the reported ZIKV cases time series given the non-constant reporting efforts over124

2015 and 2016. In the literature, estimates of the IAR of ZIKV in Brazil (especially Northeast Region125

of Brazil) vary from less than 20% to more than 60%, and thus appear inconclusive. A summary table126

is provided in the Supplementary Information S4. Most of previous works were based on unreliable127

ZIKV surveillance data. In this work, we aim to use the relatively reliable GBS data in NE Brazil to128

infer the ZIKV epidemic.129

The under-reporting of ZIKV cases in 2015 also appears to be reflected in what was felt to be a130

high number of microcephaly cases (after a 26-week delay [22]). This is because microcephaly cases are131

easier to identify and are thus better reported [17]. Nevertheless, the reporting criteria of microcephaly132

cases also changed significantly over the two years [30] leading to overall unreliable estimates. Given133

this known and documented unreliability [30], we felt it might not be wise to estimate IAR of ZIKV134

directly based on the reported number of microcephaly cases.135

However, it seems a reasonable approximation to assume that the number of GBS cases per ZIKV136

infected individual should remain constant in time, and that the reported GBS cases are relatively137

well reported over time. The reporting criteria of GBS is reasonably accurate and stable owing to the138

distinct identifiable and severe clinical features of GBS [16]. By assuming the GBS-ZIKV risk ratio139

is constant, we attempted to fit an epidemic model and infer this ratio based on the GBS cases time140

series. Because of the co-circulation of both dengue fever and ZIKV during the two waves, misdiagnoses141

of ZIKV could occur [25, 23, 22], especially given both diseases have similar symptoms. Nevertheless,142

no GBS induced DENV was reported in the 2015 and 2016 years. Thus, the large-scale ZIKV outbreak143

was the major source of the excess GBS cases [22]. For these reasons, we use the excess GBS cases time144
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series to infer the pattern of ZIKV outbreak and the overall IAR of ZIKV in Northeastern Brazil.145

Mathematical modelling provides a possible way to infer the epidemic waves of ZIKV (or together146

with a minor proportion of CHIKV). First, we assume a constant risk ratio between symptomatic ZIKV147

cases and reported GBS cases (ZIKV-GBS ratio), denoted by ρ. Second, we simulate our ZIKV model,148

and fit the model to observed GBS cases with a time-dependent ZIKV transmission rate. Finally, by149

using iterated filtering techniques, we find the maximum likelihood estimates of ρ and the overall IAR.150

2 Data and Methods151

2.1 Data152
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Figure 2: The (reported) suspected ZIKV cases, excess (or surplus) GBS cases and GBS-to-ZIKV ratio
in the NE region of Brazil from January 2015 to November 2016. The red dotted line represents weekly
ZIKV disease cases, the dark blue dotted line represents weekly surplus GBS cases and the light blue
bars are GBS-to-ZIKV ratios. The “major” (with weekly cases over 1000) CHIKV outbreak of 2016 is
shaded in green according to CHIKV disease level. The light green area denotes time periods when the
weekly reported CHIKV cases were between 1000 - 5000, green denotes weekly reported CHIKV cases
between 5000 - 7500 and dark green denotes weekly reported CHIKV cases over 7500. The GBS-to-
ZIKV ratios are not plotted for the initial few weeks as the scale of the ZIKV data is not large enough
to compute a meaningful ratio.

The reported weekly excess (or surplus) GBS cases time series of NE Brazil, from Jan 2015 to153

Nov 2016, were kindly provided by Professor Oliveira from the Ministry of Health in Brazil, as used154
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in their important recent study [22]. The time series are plotted in Fig 2 with datasets of ZIKV155

and Chikungunya for the period. The GBS data used in this work follow the case definitions given in156

Supplementary Information S1. In Fig 2 we observe that the GBS-to-ZIKV ratio of 2016 was significantly157

lower than in 2015, which was likely due to the under-reporting of ZIKV epidemic before 2016 [17].158

Daily mean temperature and total rainfall (beginning from December 1, 2014) data were obtained159

from six cities in NE Brazil (source: https://www.worldweatheronline.com/). A map of the locations of160

the six cities is given the Supplementary Information S2. We calculated the daily average temperature161

and the average total rainfall across the six cities.162

2.2 Methods163

In previous work [6, 31], we developed a ZIKV transmission model, including both hosts and164

vectors, based on mosquito-borne and sexual (human-to-human) transmission of ZIKV. Hosts infected165

with ZIKV generate a proportion of GBS cases as determined by ρ which is the ratio of reported GBS166

cases to symptomatic ZIKV cases. In our earlier work, asymptomatic ZIKV cases were assumed to be167

non-infectious. However, in this work the asymptomatic ZIKV cases are now assumed to be infectious,168

and we study their impact on the estimation of IAR and the ratio (ρ). The basic reproduction number169

(R0) of the model is derived and estimated. We apply the plug-and-play likelihood-based inference170

framework for model fitting [32].171

2.2.1 ZIKV-GBS Model172

Figure 3: The ZIKV-GBS epidemic model diagram. The black arrows represent the infection status
transition paths. Red dashed arrows represent transmission paths, and the light blue arrows represent
the natural birth and death of mosquito vectors. Square compartments represent the host classes, and
circular compartments represent the vector classes. Red compartments represent infectious classes, and
the grey compartment is the (weekly) excess GBS cases (ZGBS). Sh, Eh, Ih, Rh represents the numbers
of Susceptible, Exposed, Infected and Recovered host population with respect to ZIKV. Please see text
below Eqns (1) for complete listing of all compartment codes.

Fig 3 shows the model diagram of the ZIKV disease transmission pathways in both human and173

mosquito. Following our previous work [6, 31], we continue to assume that hosts infected with ZIKV are174
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infectious during the convalescent stage and can infect other susceptible hosts through sexual transmis-175

sion [8, 9]. However, they are assumed to be noninfectious to susceptible mosquito vectors [19, 33, 34].176

It is supposed that the asymptomatic cases are infectious at a weaker level than symptomatic cases177

and do not develop to the convalescent stage, which is biologically and clinically reasonable [8, 9]. We178

therefore arrive at the following ordinary differential equation (ODE) system (1).179 

S ′h = −ab · Iv
Nh

Sh − β ·
ηAh + Ih1 + τIh2

Nh

Sh,

E ′h =

(
ab · Iv

Nh

+ β · ηAh + Ih1 + τIh1

Nh

)
Sh − σhEh,

A′h = (1− θ) · σhEh − γhAh,
I ′h1 = θ · σhEh − γh1Ih1,

I ′h2 = γh1Ih1 − γh2Ih2,

R′h = γhAh + γh2Ih2,

Z
(i)
GBS =

∫
week i

ργh1Ih1 dt,

S ′v = Bv(t)− ac ·
ηAh + Ih1

Nh

Sv − µvSv,

E ′v = ac · ηAh + Ih1

Nh

Sv − (σv + µv)Ev,

I ′v = σvEv − µvIv.

(1)

Here, Sh is the susceptible host class, Eh is the exposed host class (i.e., within ZIKV infection latent180

period), Ah denotes the asymptomatic host class, Ih1 denotes the host class infected with ZIKV, Ih2181

denotes the convalescent host class, and Rh denotes the host’s recovered class. The variable Z
(i)
GBS182

denotes the simulated weekly excess (or surplus) reported GBS cases for the i-th week during the study183

period. Sv is the susceptible vector class, Ev is the exposed vector (i.e., within ZIKV infection latent184

period) and Iv denotes the infectious vector class. The parameter ρ denotes the ratio of reported (excess)185

GBS cases per symptomatic case of ZIKV. The model (1) parameters are summarised in Table 1.186

In addition,187

Nh = Sh + Eh + Ah + Ih1 + Ih2 +Rh,

Nv = Sv + Ev + Iv,

where Nh and Nv represent the total number of hosts and vectors respectively, of which Nv is time-188

dependent. The population of the Northeastern (NE) region of Brazil in 2014 was Nh = 56.7 million189

[35].190

As in our previous work, it is assumed that the total mosquito population is given by:191

Nv(t) = m(t) ·Nh, (2)

where m(t) is the (time-dependent) ratio of mosquitoes population (Nv(t)) to humans population (Nh).192

In the model simulation, in order to reflect the changing dynamics of m(t) to the mosquito population,193
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Table 1: Summary table of model parameters in Eqns (1). The “H” denotes human hosts’ population,
and “V” denotes mosquito vectors’ population. “X→Y” denotes ZIKV infected class X infects the
(ZIKV) susceptible class Y.

Parameter Notation (Value)/Range Remark/Unit Status Source(s)
Mosquito biting rate a (0.5) 0.3 - 1.0 per vector·day fixed [6, 43, 60]

Transmission prob. of host b (0.4) 0.10 - 0.75 per bite fixed [6, 43, 60]
Transmission prob. of vector c (0.5) 0.30 - 0.75 per bite fixed [61]
Transmission rate by contact β (0.05) 0.001 - 0.10 per day fixed [6]

Host latent period σ−1
h (5) 2 - 7 days fixed [10, 62]

Vector latent period σ−1
v (10) 8 - 12 days fixed [60, 63]

Asymptomatic infectious period γ−1
h (7) 5 - 10 days assumed Nil

Infectious period γ−1
h1 (5) 3 - 7 days fixed [6, 62]

Convalescent infectious period γ−1
h2 (25) 14 - 30 days fixed [33, 34]

Proportion of symptomatic θ (50%) 20% - 80% Nil to be estimated [19]
infectivity scale of asymptomatic η 0.0 - 0.99 H→H, H→V to be estimated Nil

infectivity scale of convalescent τ (0.3) 0.01 - 0.99 H→H fixed [6]
female vector lifespan µ−1

v (25) 4 - 35 days fixed [60, 61]

Ratio: reported GBS
symptomatic ZIKV ρ 0.001% - 0.1% Nil to be estimated [15, 19, 20]

Ratio: mosquito population
human population m(t) 0 - 20 time-dependent to be estimated [6, 31, 43]

Initial susceptible proportion Sh(0)/Nh 0.25 - 1.0 Nil to be estimated [6]

we increase the susceptible mosquitoes appropriately when m(t) increases, and remove the susceptible194

and infectious mosquitoes when m(t) decreases to compensate. In other words, the human population195

(Nh) is fixed to be constant, whereas we vary the mosquito population (Nv(t)) to reconstruct the196

time-dependent m(t).197

2.2.2 Basic Reproduction Number198

Following previous studies, the basic reproduction number, R0, is derived using the next generation199

matrix method [6, 36, 37, 38]. We have200

R0 =
Rh +

√
R2
h + 4R2

v

2
, (3)

where201

Rh = β ·
[
η · 1− θ

γh
+ θ ·

(
1

γh1

+
τ

γh2

)]
,

and202

Rv = a ·

√
bcm · θγh + (1− θ)ηγh1

γhγh1

· σv
µv · (µv + σv)

.

From Eqn (3), it can be seen that R0 depends on the mosquito-borne transmission path (in term of203

Rv) and the human-to-human transmission path (in term of Rh). Furthermore, if one excludes the204
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exposed and asymptomatic compartments, limRh→0+R0 = Rv = a ·
√

bcm
γh1µv

, which provides the basic205

reproduction number of the classical Ross-Macdonald malaria model [6, 39, 40].206

2.2.3 Model Fitting and Parameter Estimation207

To evaluate our methodology, model (1) was set up to fit the real epidemic data in NE Brazil. The208

time series of the number of weekly excess GBS cases in NE Brazil is modelled as a partially observed209

Markov process (POMP, also know as hidden Markov model) with a “spillover” rate (ρ) from local210

symptomatic ZIKV cases. Here ρ is the combined effect of the GBS reporting ratio and the risk rate of211

“symptomatic ZIKV inducing GBS i.e., the ratio ρ = reported GBS
symptomatic ZIKV

(see Table 1).212

The simulated (weekly) number of excess GBS cases (ZGBS) from model (1) is considered as the213

theoretical or true number of cases. And the corresponding observed GBS cases of the i-th week, C
(i)
GBS,214

are assumed to have a Negative-Binomial (NB) distribution [6, 32, 41, 42, 43, 44].215

C
(i)
GBS ∼ NB

(
n =

1

τ
, p =

1

1 + τZ
(i)
GBS

)
with mean: µi = Z

(i)
GBS. (4)

Here, τ denotes an over-dispersion parameter that needs to be estimated. Finally, the overall log-216

likelihood function, `, is given by217

`
(

Θ|C(1)
GBS, . . . , C

(N)
GBS

)
=

T∑
i=1

log
[
Li

(
C

(N)
GBS | C

(1)
GBS, . . . , C

(i−1)
GBS ; Θ

)]
. (5)

The vector Θ denotes the parameter vector under estimation. The Li(·) is the likelihood function218

associated with the i-th NB prior defined in Eqn (4). The term T denotes the total number of weeks219

during the study period.220

Our methodology reconstructs the mosquito abundance m = m(t) which is otherwise unknown221

but variable and time-dependent over the study period. Following Eqn (3), the basic reproduction222

number is a function of m(t), and thus we also allow R0 to be time-dependent (i.e., R0 = R0(t)). The223

time-dependent m(t) is climate-driven and modelled as an exponential function of the daily average224

temperature and rainfall time series, together with a two-piece step function for the baseline component.225

It is modelled as follows226

m(t) = m(t; τ0, τ1, p1, p2, p3, p4)

= exp [p1Temperature(t− τ0) + p2Rainfall(t− τ0) + p31(t < τ1) + p41(t > τ1)] .
(6)

The term τ0 is the time delay between the occurrence of weather factors and their effects on the227

GBS epidemic. It contains the lagged effect on the local mosquito population, the progress from ZIKV228

to GBS development and any reporting delay. From previous studies [22, 45], there exists a time delay229

of at least 3 weeks between the exposure of patients to ZIKV and the development of GBS (i.e., an230

incubation period plus a typical reporting delay). For the mosquito, the life cycle progresses from an231

egg to an adult, and maturity takes approximately 8-10 days [46]. Therefore, the time lag of the effects232

from the weather factors are taken to be one month in total i.e., τ0 = 3× 7 + (8 + 10)/2 = 30 days.233
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In Eqn (6), p1 and p2 are the scale parameters controlling the effects of local temperature and234

rainfall respectively. The two terms p3 and p4, are time-driven baseline effects characterizing trends in235

m that switch on depending on the time period τ1. We could view τ1 as the timing of baseline change in236

the mosquito population, which could be due to the interference between ZIKV and CHIKV for instance237

and/or local mosquito control measures. The function 1(·) is an indicator function, which equals 1, if238

the condition in the brackets is true; but is 0 otherwise.239

Based on fitting and comparisons, the scale of p2 was found to be negligible in magnitude, indicating240

that the effects of the local rainfall is (relatively) negligible, compared to temperature. Thus, in most241

parts of the analysis that follows, we neglect the rainfall term in Eqn (6) for simplicity.242

We note that the average lifespan of the female mosquito µv is approximately 30 days. This differs243

from Zhang et al. who suggest the average lifespans goes from just under 1 day up to 7.2 days [12].244

In this respect, their parametrisation seems problematic, and they probably considered the average245

lifespan of the mosquito, rather than the female mosquito.246

According to Eqn (3), R0 is a function of m(t), and thus R0 is also time-dependent. Hence, R0247

can also be determined by the parameters in Eqn (6), i.e., R0 = R0(m) = R0(t; τ0, τ1, p1, p2, p3, p4).248

Besides the climate-driven model, we also test a non-mechanistic model where the mosquito population249

(or transmission rate) is an exponential function of the a cubic spline function. Similar techniques250

were used in our previous work [43]. We compare the result with the climate-driven model and the251

non-mechanistic model.252

The parameter fitting and inference process are rigorously and exhaustively checked within biolog-253

ically and clinically reasonable ranges. We should have confidence that the fits of observed time-series254

are realistic because of the consistency with the true underlying epidemiological processes rather than255

because of artificial model over-fitting. The maximum likelihood estimate (MLE) approach is adopted256

for model parameter estimation. The 95% confidence intervals (CI) of parameters are estimated based257

on the parameter ranges in Table 1, using the method of profile likelihood confidence intervals [31, 32].258

The Bayesian Information Criterion (BIC) is employed as a criterion for model comparison, and259

quantifies the trade-off between the goodness-of-fit of a model and its complexity [47]. The simulations260

were conducted by deploying the Euler-multinomial integration method with the time-step fixed to one261

day [32, 39]. We deploy the iterated filtering and plug-and-play likelihood-based inference frameworks262

to fit the reported number of excess GBS cases time series [6, 32, 43, 48, 49]. The R package “POMP”263

is available via [50]. Parameter estimation and statistical analysis are conducted by using R (version264

3.3.3) [51].265

3 Results266

3.1 Connecting the GBS and ZIKV data, and changing reporting rates267

Figure 1 plots the time series of ZIKV cases and GBS from the period April 1 of 2015 to March268

31 of 2016. The data are an aggregation of the six countries Columbia, the Dominican Republic, El269

Salvador, Honduras, Suriname, and Venezuela as well as the Bahia State in Brazil. These time series270

demonstrate the tight connection between the reported ZIKV disease and GBS, whose case numbers271

closely mimic one another in time. The connection is the basis of our method for estimating ZIKV272

cases from GBS reports, which as we have discussed, are by their nature, reasonably reliable records.273
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The North East Brazil datasets are plotted in Figure 2. Here we see two epidemic outbreaks of274

reported ZIKV cases, where the second outbreak in 2016 is far stronger than the first in 2015. Despite275

this, the two waves of GBS appear similar over the two years although a close examination reveals there276

were fewer cases in 2016. If one ignores possible regional difference and adopts the GBS-ZIKV risk rate277

of 0.032% i.e., 0.32 GBS cases per 1,000 ZIKV infections (asymptomatic and symptomatic) calculated278

in [20], the total cases of ZIKV can be approximated according to the excess GBS cases time series279

(Fig 2). But this is a naive calculation and we will seek ways to improve this.280

Tallying the case numbers, in 2015 there were 233 excess GBS cases and 38,641 reported ZIKV281

cases, but in 2016 there were 168 excess GBS cases and 70,916 reported ZIKV cases. The ratio of282

GBS/Zika reported cases is plotted (blue) in Fig 2, and one sees the transition from GBS/ZIKV(repoted)283

(= 233÷ 38641 = 0.60% in the first year (2015) to GBS/ZIKV(reported) =168÷ 70916 = 0.24% in the284

second year (2016).285

Let us first assume that the GBS/ZIKV (reported) ratio did not change in time in any major way286

over the two years 2015 and 2016. Our analysis of data from the time series in Fig 2 shows that as287

GBS cases dropped from 233 cases in 2015, to 168 cases in 2016, i.e. by a factor of 0.72 (168/233), the288

number of reported ZIKV cases rose by a factor of 70, 916÷38, 641 = 1.8. The only explanation for this289

is that there must have been a major under-reporting of ZIKV cases in the first year of 2015 [44, 52].290

This also seems reasonable since in 2015 the official WHO ZIKV reporting program had not yet been291

launched [17]. Suppose now the GBS/ZIKV(reported) ratio was 0.24% in both 2015 and 2016 even292

though we know that this could not be the case. A simple calculations shows that there should have293

been some 98,353 (= 233× 70916÷ 168) ZIKV reported cases in 2015 rather than only the 38,641 cases294

that were reported in reality. Thus for the 2015 year it would appear that ZIKV was under-reported295

by a factor of 2.5 when compared to the ZIKV reporting rate in 2016.296

3.2 Fitting the model to GBS data297

We fit model (1) based on the reported excess GBS cases time series shown by the dark blue298

dotted line in Figure 2. This was repeated for different sets of baseline parameters. Several different299

(possible) values of η (asymptomatic ZIKV relative infectivity) and θ (proportion of symptomatic ZIKV300

infections) were considered. The θ = 0.5 simulations correspond to a 1:1 ratio of the symptomatic to301

asymptomatic ZIKV infection of [19]. And θ = 0.2 simulations correspond to the 4:1 ratio of the302

symptomatic to asymptomatic ZIKV infection of [11].303

Fig 4 shows the fitting results with θ = 0.5 and η = 0.3. The mean GBS values for 1000 simulations304

are plotted (red) in time and fit the trajectory of the reported GBS cases (black line) closely. The305

grey shading gives the 95% credible interval (CI) of the case numbers for each day of the simulation.306

The models fits the data well, and all 95% CI cover the associated observation. This indicates the307

simulation outcomes are not statistically different to the observations, and thus our model successfully308

reconstructed the two waves of the ZIKV epidemic in NE Brazil. We estimate the time-dependent R0(t)309

which ranged from 1.1 to 3.3 over the whole study period. The simulations determine the best fitting310

initial condition of susceptible population is Sh(0) = 0.55. The inserted panel shows the parameter311

estimation of ρ found where the likelihood profile reaches the minimum BIC value. Namely, we fix ρ at312

20 values over a range, fit the model (1) to the GBS data, and calculate the BIC. While the minimum313

is ρ = 0.00061, a value of ρ from 0.00005 to 0.0001 will yield an (almost) equivalent level of BIC given314
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Figure 4: The fitting results for θ = 0.5 and η = 0.3. The fitting results in the main panel show the best
scenario, which attains the smallest BIC. The red line is a plot of the mean GBS cases averaged from
1000 simulations plotted as a function of time. The grey shaded area shows the 95% credible interval
(CI) of the fitted number of GBS cases. The inset panel shows the profile of BIC as a function of ρ.
The minimum occurs at ρ = 0.000061, which is our best estimate for ρ.

the flatness of the curve in this regime.315

In addition to the mechanistic reconstruction of R0(t) in the main results here, we also present316

a non-mechanistic reconstruction in Supplementary Information S3. The non-mechanistic approach317

is implemented by using a cubic spline function to reconstruct the R0(t). The model also fits the318

disease surveillance data well. The BIC of the non-mechanistic model is 7 units larger than the above319

climate-driven model in Fig 4. We find that the non-mechanistic reconstruction of R0 matches the daily320

temperature reasonably well. This suggests the weather-driven R0(t) in our main results here is neither321

coincidental nor artificial.322

3.3 Estimation of Attack Rate (IAR) and model parameters323

The estimates of the GBS/ZIKV ratio ρ and the IAR are summarised in Table 2. For the parameter324

ZIKV symptomatic ratio, θ, we follow the previous serological study conducted in French Polynesia that325

found asymptomatic : symptomatic case ratios is 1 : 1 in the general population [19]. Thus, we treat326

the scenarios with θ = 0.5 in our main results. Setting a constant θ = 0.5, the estimation of ρ is roughly327

0.000063 (= 0.0063%). This appears to hold even if η, the relative infectivity of the asymptomatics, is328

changed over the interval (0, 1). Estimates of ρ thus appear to be reasonably insensitive to the change of329
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relative infectivity of the asymptomatics (η). However, ρ is sensitive to the change of the symptomatic330

proportion of ZIKV infections (θ). Setting θ = 0.2 gives ρ = 0.00013, but as Table 2 reveals, this result331

is also relatively insensitive to changes in η.332

To calculate the number of ZIKV cases and IAR, we use our estimated ρ = 0.00061 (ratio of333

reported GBS to symptomatic ZIKV), and we denote our ZIKV symptomatic ratio by θ. The ρ can be334

estimated from the model. Then, the number of ZIKV cases equals (the number of reported GBS) ÷335

[reported GBS/symptomatic ZIKV] ÷ (ZIKV symptomatic ratio), which is the number of the reported336

GBS/ρ/θ. Therefore, the IAR equals the number ZIKV cases ÷ the total population in the NE Brazil.337

For all pairs of θ and η in Table 2, the estimated IARs are similar with IAR ≈ from 22% to 28%338

and the 95% CIs largely overlap. Thus, for θ = 0.5, we can be at least 95% sure the IAR of the ZIKV339

epidemic is below 33%, and is likely to be well below.340

Table 2: Summary table of the estimation results of ρ and IAR. The estimates with θ = 0.5 and η = 0.3
are used as main results, also in Fig 4.

θ η ρ 95% CI IAR 95% CI
0.5 0.1 0.000053 (0.000046,0.000080) 0.2792 (0.1841, 0.3234)
0.5 0.3 0.000061 (0.000050,0.000086) 0.2411 (0.1711, 0.2932)
0.5 0.5 0.000063 (0.000049,0.000086) 0.2352 (0.1711, 0.3005)
0.5 0.7 0.000063 (0.000050,0.000084) 0.2352 (0.1753, 0.2932)
0.5 0.9 0.000067 (0.000053,0.000086) 0.2186 (0.1711, 0.2792)
0.2 0.1 0.000139 (0.000083,0.000169) 0.2645 (0.2175, 0.4423)
0.2 0.3 0.000129 (0.000117,0.000178) 0.2847 (0.2071, 0.3140)

The estimates of the initial susceptible levels (Sh(0)) and the parameters (p1, p3 and p4) that341

control the temporal pattern of R0(t) are summarised in Table 3. Note that according to Eqn (3), m342

is proportional to R2
v (i.e., m ∝ R2

v), a key term in the formula for the basic reproduction number. It343

is not hard to show that [exp(0.5p1)− 1]× 100% is the change rate in Rv when there is one unit (oC)344

increase in temperature. From Table 3, one unit increase in temperature will lead to an increase of345

(exp(0.5× 0.52)− 1 =) 29.7% in Rv when η = 0.1. And one unit increase in temperature will lead to346

(exp(0.5×0.53)−1 =) 30.3% increase in Rv when η = 0.3. Eqn (3) shows theR0 is comprised ofRv and347

Rh, where the Rh is the contribution from the sexual transmission path. The sexual transmissibility348

of ZIKV can be ignored owing to (i) the contribution of this path is negligibly small [6, 7]; and (ii) the349

sexual contact is recommended to be prevented during the ZIKV epidemics [10]. Hence, the Rh could350

be very close to zero, and its contribution to the whole R0 is probably far less than the mosquito-borne351

transmission Rv. According to Eqn (3), R0 = Rv when Rh = 0. Provided limRh→0+R0 = Rv, the352

effect of the temperature to Rv, determined by the p1 estimate, is (almost) equivalently applicable to353

R0.354

In table 3, the Sh(0) is estimated to be 0.55 (95% CI: 0.47-0.73) when η = 0.1, and 0.57 (95%355

CI: 0.46-0.74) when η = 0.3. The large overlap in the 95% CIs indicates that the two Sh(0) estimates356

are not statistically different. According to the 95% CIs of Sh(0), it is likely that over a quarter (i.e.,357

> 25%) of the whole population were not involved in the 2015-16 ZIKV epidemic.358

We estimate that the time points (τ1) when the baseline of m(t) (or R0(t)) changes from p3 to359

p4 in Eqn (6). It was found that τ1 is most likely to be March 7 of 2016. For the parameters p3360
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Table 3: Summary table of the estimation results of the initial susceptibility (Sh(0)) and parameters
p1, p3 and p4 in Eqn (6). The estimates with θ = 0.5 and η = 0.3 are used as main results, also in Fig 4.

θ η Sh(0) 95% CI p1 95% CI p3 95% CI p4 95% CI
0.5 0.1 0.55 (0.47,0.73) 0.52 (0.44,0.63) 0.53 (0.40,0.67) 0.25 (0.16,0.37)
0.5 0.3 0.57 (0.46,0.74) 0.53 (0.44,0.63) 0.44 (0.34,0.55) 0.21 (0.13,0.31)

and p4, we find significant difference in the baseline levels of m, which suggested the existence of the361

non-weather-driven temporal changes in the ZIKV transmissibility.362

3.4 Results of the Sensitivity Analysis363
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Figure 5: The Partial Rank Correlation Coefficients (PRCC) of the basic reproduction number, R0,
(panel (a)) and total GBS cases (panel (b)) with respect to model parameters. The Sh(0) in this figure
denotes the initial susceptible ratio, i.e, Sh(0)/Nh. The black circle is the estimated correlation, and
the bar represents 95% CI. The ranges of parameters are in Table 1.

As is conventional, the Partial Rank Correlation Coefficients (PRCC) are adopted to perform a364

sensitivity analysis of the model [6, 43, 49, 53]. Firstly, 1000 random samples are taken from uniform365

distributions of each model parameters. The ranges as set out in Table 1. Secondly, for every random366

parameter sample set, the ZVD-GBS model was simulated to obtain the target biological quantities367

(e.g., R0 and total number of GBS cases in this study). Finally, PRCCs were calculated between each368

parameter and target biological quantities.369

Results of the sensitivity analysis are presented in Fig 5, which indicates how model parameters370

impact the basic reproduction number (R0) and the total reported GBS cases. R0 is most sensitive371
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to the vector’s biting rate (a), the vector to host ratio (m) and the vectors’ lifespan (µ−1
v , or vectors’372

natural death rate, µv), indicating the importance of the mosquitoes role in disease transmission. The373

total reported GBS cases are considerably sensitive to the proportion of symptomatic cases (θ), and the374

ratio (or risk) of excess GBS cases to symptomatic ZIKV infections (ρ).375

4 Discussion376

Based on the striking parallel between cases of ZIKV disease and cases of GBS, as seen in Figure 1,377

we have proposed a ZIKV model that is calibrated on case data of GBS. ZIKV case numbers are378

obtained by scaling up from GBS. The advantage of this practice is that the GBS case numbers are379

more trustworthy and reliable compared to numbers obtained through surveillance of ZIKV where there380

is much scope for errors in the reporting rate. Our model considers heterogeneity in symptomatic and381

asymptomatic ZIKV infections (i.e., θ and η) as well as the local mosquito population (m). Model (1)382

was fitted to the reported excess GBS cases time series with different sets of parameters for symptomatic383

proportion (θ) and asymptomatic infectivity (η).384

From a recent metadata study [20] and a serological study [19], the ratio ρ of GBS to symptomatic385

ZIKV cases was found to be 0.00024 and 0.00032 respectively (see Introduction of this study). Similarly,386

based on the data from eleven countries, Mier-y-Teran-Romero et al. [15] found the overall estimate for387

the risk of reported GBS “was 2.0 (95% CI 0.5-4.5) GBS reported cases per 10,000 ZIKV infections, i.e.,388

0.02%, (which is) close to the point estimate of 2.4 GBS cases per 10,000 ZIKV, i.e., 0.024 %, infections389

estimated using only data from French Polynesia”. In this study, the model estimation finds a ratio390

between GBS and symptomatic ZIKV cases as ρ = 0.000061 or equivalently ρ = 0.0061% with 95% CI391

0.0050%-0.0086%. This or 1 GBS case per 16,393 ZIKV symptomatic cases which is approximately one392

quarter or 25% the magnitude of existing estimates. Our estimate, although still tentative and based on393

reasonable first approximations, seems plausible since ZIKV surveillance was generally unreliable and394

probably severely underreported, especially before 2016 [44, 52]. For this reason, we avoided using the395

ZIKV surveillance data to fit the epidemic model, and our estimate of ρ depends on the more reliable396

GBS data.397

The model analysis estimated the IAR of ZIKV cases in NE Brazil to lie between 22% to 28% for398

the two waves. This is based on the assumption that the proportion of symptomatics θ = 0.5, which399

appears to be reliable according to the serological results of Aubry et al. [19]. This is in line with a400

number of model and empirical estimates for other areas of Brazil and South America. For example,401

Zhang et al. estimated some 18% IAR for the areas in Brazil [12]. In pointing this out, we must also402

note that most IAR estimates in the literature need to be treated with caution. Due to poor surveillance403

and limited knowledge about the ZIKV reporting ratio, the estimates may have been based on samples404

that are not representative of the general population as a whole.405

Oliveira et al. [22] also identified a striking relationship between the dynamics in time of the first406

wave of excess GBS and that of microcephaly. Their Figure 1B shows the dynamics in time of these two407

conditions are almost identical apart from a delay of 23 weeks and differing otherwise by a scale factor.408

The remarkable similarity in the different epidemic time series allows us to compare the rates of GBS409

cases to those of microcephaly. By examining the peak heights of the two diseases, the ratio between410

them is 6.1 (maximum of microcephaly divided by maximum of GBS wave), which corresponds to 1 GBS411

case for every 6.1 microcephaly cases. If we make the reasonable assumption that the reporting rate of412
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both conditions is similar, it is clear that GBS is a much rarer disease than microcephaly. Nevertheless,413

we still chose to predict ZIKV cases based on GBS rather than microcephaly cases, because of problems414

in the correct reporting of microcephaly over the study period. For example, the criteria for identifying415

microcephaly changed dramatically at different times over the two year period and in different areas,416

making the reporting coverage highly unstable. Moreover, previous to this period, reporting was not417

compulsory nor was there consistently defined criteria for identifying the condition.418

Return now to the dynamics of the reconstructed ZIKV cases generated by Eqns (1) as calibrated419

on the GBS data (Fig 4). The reproductive number, R0(t), which quantifies the transmission rate, was420

reconstructed by modelling the local meteorological data with Eqn (6). The estimated R0(t) was found421

to oscillate due to seasonality between the values 1.1 < R0 < 3.3, and on average was found 〈R0〉 = 2.2.422

The average level and estimated range of R0(t) are in line with previous studies [12, 44, 52]. Because423

of temperature dependence, R0(t) reached minimum values in winters. The range of values the model424

predicted for R0(t) is very similar to the intensities reported in Fig 3 of [12] for ZIKV in Brazil.425

As the net growth rate of mosquitoes tends to increase as temperature increases [12, 54, 55], it is not426

surprising that our estimated p1 > 0 (the temperature dependence parameter in m(t)) is positive. The427

positive association between temperature and transmissibility has also been observed in the literature428

[52]. Significant nonzero estimates were found for parameters p3 and p4, which also control m(t),429

and thus the reproductive number R0. This immediately suggests the existence of non-weather-driven430

temporal changes in the ZIKV transmissibility. The baseline drop in m(t) would also lead to a drop431

in R0(t), and indicates a decrease in ZIKV transmissibility across the two epidemic waves. Since the432

official mandatory ZIKV reporting started on February 2016, this could have increased public awareness433

of ZIKV risk, and thus prevented infection effectively [53, 56, 57, 58, 59]. Disease control measures were434

also introduced by some local authorities during the second epidemic wave. The time-change point (τ1)435

when the baseline p3 switches to p4 in the model corresponds to March 7 of 2016. Interestingly, this436

time point coincides with the peak timing of the concurrent CHIKV outbreak [22]. Also, very close to437

this date, R0(t) passed through a local minimum and then increased for a two month period, generating438

in turn an increase in GBS cases.439

We compared the results of a non-mechanistic model in Supplementary Information S3 which did440

not take into account climatic factors, and those from our climate-driven model in Fig 4. Although the441

non-mechanistic model did not perform as well, it nevertheless provided useful insights by producing442

results that matched the impact of the daily temperature on R0, the transmission of ZIKV.443

Continuing further, we now attempt to estimate the reporting rate of ZIKV. We argue that the444

reporting rate of ZIKV disease increased dramatically around February and March of 2016, as suggested445

also in the literature [52]. Thus, it is reasonable to assume that the data for the second wave of ZIKV446

in 2016 is more reliable than that of the first. Taking the maximum of the second ZIKV wave divided447

by the maximum of the GBS wave, we find the ratio between the two diseases is 435.6; i.e., 1 GBS case448

per 435.6 reported ZIKV cases. However, our model fitting finds a ratio between GBS and symptomatic449

ZIKV cases as ρ = 0.000061, or 1 GBS case per 16,393 ZIKV symptomatic cases. Thus, we can conclude450

that the reporting ratio of symptomatic ZIKV cases is roughly 16393/435.6 ≈ 38. Namely for every 38451

symptomatic ZIKV cases, there was 1 case reported, over the second wave in 2016. Hence we arrive at452

an estimate for the reporting ratio of ZIKV, namely 1:38. Moreover, as mentioned, when taking this453

reporting ratio into account our estimated IAR falls in the reasonable range 22% to 28% for the two454

waves.455

18

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 31, 2019. ; https://doi.org/10.1101/657015doi: bioRxiv preprint 

https://doi.org/10.1101/657015
http://creativecommons.org/licenses/by/4.0/


Previous estimates of IAR relied on poor ZIKV data in Brazilian regions: some estimates appear to456

be less than 20%, and others yield more than 50% (see Supplementary Information S4). As mentioned,457

all these estimates must be treated with caution. This study is the first to use the more reliable GBS458

data as a proxy to estimate the IAR of ZIKV epidemics. We found that the IAR is likely to be below459

33%.460

In conclusion, we comment on the likelihood of a future major ZIKV outbreak in NE Brazil. Let461

us start from a “naive assumption” that the whole population (100%) in NE Brazil was susceptible to462

ZIKV at the beginning of 2015, even though it was probably less than 100%. Our results tell us that463

the estimated IAR is most likely below 33%. This indicates that after the 2015-2016 ZIKV outbreaks,464

probably more than (100 − 33% =) 67% of the population were susceptible and immune-naive. That465

is, Sh > 67%, after the last ZIKV outbreak that ended in 2016.466

Recall that the effective reproduction number, Reff = ShR0 < 1, must be less than unity to467

ensure the epidemic will not emerge. Given the susceptibility at the end of the outbreak was more468

than 67%, then we need R0 < 1/Sh = 1/67% ≈ 1.5 to ensure Reff < 1 under the naive assumption,469

and no outbreak will emerge. An R0 larger than approximately 1.5 will lead to a ZIKV outbreak.470

On the other hand, according to our estimation (Table 3), the initial susceptibility, Sh(0), at the start471

of 2015 was likely to be below 75%. As Table 3 shows that, typically, Sh(0) = 0.57% with 95% CI:472

47% - 74%. Thus, at least (1 − 75% =) 25% of the (susceptible) population was not affected at all473

during the 2015-16 ZIKV epidemic waves in NE Brazil. It is possibly that this 25% (or more) of the474

population, were protected because of cross-protection from infection with other Flaviviridae and/or475

because of living in zones where ZIKV cannot persist, etc. With this possibility, we now have over476

((100% − 25%) − IAR > (1 − 25%) − 33% =) 42% of the population who are still immune-naive and477

unprotected after the 2015-16 epidemic. Therefore, if R0 < 1/Sh < 1/42% ≈ 2.38, a ZIKV outbreak478

will not occur. Now the estimated average 〈R0〉 = 2.2 in Fig 4, which ensures 〈Reff〉 < 1 and implies479

that it would be difficult for a ZIKV outbreak to appear in NE Brazil in the near future.480
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List of abbreviations481

Abbreviation Full term
CHIKV Chikungunya virus
DENV Dengue virus
ZIKV Zika virus
GBS Guillain-Barré syndrome
IAR infection attack rate
BIC Bayesian information criterion
NE Northeastern
NB negative-binomial

POMP partially observed Markov process
CI confidence interval

MLE maximum likelihood estimate
PRCC partial rank correlation coefficient
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Ospina M, Pimentel R. Zika virus and the GuillainBarré syndromecase series from seven countries. New England640

Journal of Medicine. 2016;375(16):1598-601.641

25

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 31, 2019. ; https://doi.org/10.1101/657015doi: bioRxiv preprint 

https://doi.org/10.1101/657015
http://creativecommons.org/licenses/by/4.0/


Supplementary Information642

S1 Case Definition of the Guillain-Barré Syndrome643
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