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Abstract 

Motivation: High-throughput phenomic projects generate complex data from small treatment and 

large control groups that increase the power of the analyses but introduce variation over time. A 

method is needed to utlize a set of temporally local controls that maximises analytic power while 

minimising noise from unspecified environmental factors. 

Results: Here we introduce “soft windowing”, a methodological approach that selects a window of 

time that includes the most appropriate controls for analysis. Using phenotype data from the 

International Mouse Phenotyping Consortium (IMPC), adaptive windows were applied such that 

control data collected proximally to mutants were assigned the maximal weight, while data 

collected earlier or later had less weight. We applied this method to IMPC data and compared the 

results with those obtained from a standard non-windowed approach. Validation was performed 

using a resampling approach in which we demonstrate a 10% reduction of false positives from 

2.5 million analyses. We applied the method to our production analysis pipeline that establishes 

genotype-phenotype associations by comparing mutant versus control data. We report an increase 

of 30%  in significant p-values, as well as linkage to 106  versus 99  disease models via 

phenotype overlap with the soft windowed and non-windowed approaches, respectively, from a 

set of 2,082 mutant mouse lines. Our method is generalisable and can benefit large-scale human 

phenomic projects such as the UK Biobank and the All of Us resources.  

Availability and Implementation: The method is freely available in the R package SmoothWin, 

available on CRAN http://CRAN.R-project.org/package=SmoothWin. 

 

Corresponding author: Hamed Haselimashhadi <hamedhm@ebi.ac.uk> 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 13, 2019. ; https://doi.org/10.1101/656678doi: bioRxiv preprint 

https://doi.org/10.1101/656678


Introduction 

 High-throughput, large scale phenotyping studies evaluate variables of an organism’s 

biological systems to examine the contribution of genetic and environmental factors to 

phenotypes. Standardised phenotyping screens that cover a wide range of biological systems have 

made useful insights for identifying new genetic contributors to robust phenotypes as compared to 

more focused studies that often target well-characterised genes with varying reproducibility 1–5. 

Leveraging economies of scale and using standardised procedures, high-throughput phenotyping 

screens addresses these challenges and have been applied in biological screening of chemical 

compound libraries, agricultural evaluation of crop plants, genome-wide CRISPR-based 

mutagenic cell line screens and multi-centre phenotypic screening of mutated model organisms 
6–13. The continuous generation of large volumes of data introduces new challenges affecting 

automated approaches to statistical analysis that have to scale with increasing data and address the 

underlying complexity inherent in large projects 14–17. 

The International Mouse Phenotyping Consortium (IMPC) is a G7 recognised global 

research infrastructure dedicated to generating and characterising a knockout mouse line for every 

protein-coding gene 18–20. Currently, the IMPC has phenotyped over 148,000 knockouts and 

43,000 control mice (data release 9.2, January 2019) across 11 research centres in 9 countries. 

These centres adhere to a set of standardised phenotype assays defined in the International Mouse 

Phenotyping Resource of Standardised Screens (IMPReSS), and designed to measure over 200 

parameters on each mouse. As part of these standardised operating procedures, critical factors that 

can impact data collection, such as reagent type or equipment, are reported as required metadata. 

Phenotype data is then centrally collected and quality controlled by trained professionals before 

being released for analysis. All phenotype data is processed by the statistical analysis package 

PhenStat—a freely-available R package that provides a variety of statistical methods for the 

identification of genotype to phenotype associations by comparing mutant to control data that have 

the same critical attributes 17. For quantitative data, linear mixed models are typically employed 

with several factors modelled in including sex, sex-genotype interaction, body weight, and batch 

(i.e., phenotype measures collected on the same day). Mutant mouse lines found to have a 

significant deviation in phenotype measurements are assigned a phenotype term from the 

Mammalian Phenotype Ontology 21. These associations, as well as the raw data, are disseminated 
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via the web portal (https://www.mousephenotype.org) using application programming interfaces 

(APIs) and data downloads. 

A challenge with high-throughput phenotyping efforts is the small sample size for the 

experimental group (i.e., the knockout mice) that is produced to maximise the use of finite 

resources, considering biological relevance and power analysis 22. The IMPC centres are 

encouraged to measure these knockout mice in two or more batches, as this improves the false 

discovery rate by modelling in the random effect of day-to-day variation 23. In contrast, large 

control sample sizes accumulate as they provide a strong internal control of the pipeline and 

typically generated with every experimental batch. Such large control groups represent a unique 

dataset that increase the power of the subsequent analyses and allow the construction of a robust 

baseline19. However, this can lead to the accumulation of heterogeneities including seasonal 

effects, changes in personnel, and unknown time-dependent environmental factors 23. 

A simple approach to cope with heterogeneity in the data is to set explicit time boundaries 

(e.g., one year) before and after experimental collection dates. This “hard windowing” approach 

will capture different time-frames depending on how much time elapses between the first and last 

batch of experimental data measured. This approach is unsatisfactory for IMPC data as some 

mutant lines had enough experimental mice to measure in one batch, while others needed multiple 

batches over 18 months due to breeding difficulties or other factors. This variation in time-frames 

can lead to a widely different number of controls being applied to an analysis, making it 

challenging to explore correlations between mutant lines. Thus, more tunable approaches were 

needed. 

In this study, we address the complexity of the data collected over time by proposing a 

novel windowing strategy that we call “soft windowing”. This approach utilises a weighting 

function to assign flexible weights, ranging from 0 to 1, to the control data points. Controls that 

are collected on or near the date of mutants are assigned the maximal weights, whereas controls at 

earlier or later dates are assigned less weight. In contrast to the hard windowing, the weighting 

function in this soft windowing allows for different shapes and bandwidths by alternating the 

tuning parameters. In addition, we demonstrate how to tune parameters and demonstrate the 

implementation of the soft windowing on IMPC data.  
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Fig 1: Examples of longitudinal data from the IMPC selected for high variance in control population. Scatter plot of 

the Forelimb grip strength normalised against body weight (left) and Mean cell volume (right) from the IMPC Grip 

Strength and Haematology procedures, respectively. The dashed black line represents the overall trend of the controls 

(dark blue). Mutant mice are in orange. 

 

System and methods 

In high-throughput projects, such as the IMPC, the model parameters may not stay constant 

over time that can lead to misleading inferences. For example, Figure 1 illustrates changes to the 

control group trend and/or variation over time for the Forelimb grip strength normalised against 

body weight and Mean cell volume. One approach widely used in signal processing 24–27 is to define 

a windowing function that includes the appropriate number of data points to capture the effect of 

interest while minimising the noise. This is defined by  

 


��, �, �� � ����� � � � � �0 �. � �,  (1) 

 

where setting ���� to a constant, e.g., ���� � 1, leads to hard windowing, while setting it to a 

smooth function results in the soft windowing. The same approach can be generalised to multiple 

signals 28–30 or applied as a rolling window 31 in the presence of exogenous variables to account for 

time dependency in the regression coefficients 32. Alternatively, we propose a soft windowing 

approach for the regression methods by defining a weighting function that applies less weight to 
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the residuals outside the window of interest. This leads to distinct advantages over the hard 

windowing. First, the entire dataset is included in the analysis in contrast to the limited data points 

in the hard windowing. Second, the windowing and the parameter estimation are coupled, which is 

a direct result of using the Weighted Least Squares (WLS). Critically, by bounding the controls in 

a window, we freeze the analysis and abrogate the need for further analysis assuming no new 

experimental data is generated within the time window.  

 

Algorithm 

Our novel windowing strategy explicitly defines the weighting function and proposes a 

simple but effective set of criteria to estimate the minimal window for the noise-power trade off.  

 

Weight generating function 

 Let � � ���, ��, … , ��� represent a set of � continuous time units, � � ���, ��, … , ��� 

the time units when the treatments are measured (peaks in the windows), 

 � ����, ���, ���, ���, … , ���, ���� a set of �  non-negative left and right bandwidths and 

� � �����, ����, ����, ����, … , ����, ����� a set of � positive left and right shape parameters. We 

impose the continuity on the time to simplify the definition of a continuous function over the time 

units, e.g., by converting dates to UNIX timestamps. Furthermore, we introduce a peak generating 

function (PGF) of the form of �� � ���; �� ! ��, �����1 ! ���; �� " �� , �����, # � 1,2, … , � 

where ���; $, %� � &'��( � �|$, %�  is selected from the family of cumulative distribution 

functions (cdf) with location $ and scale % . In this study, we select �  from the family of 

continuous and symmetric distributions (such as the Logistic, Gaussian, Cauchy and Laplace 

distributions). Then, we propose a weight generating function (WGF) of the form of  
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 Figure 2: Behaviour of the Symmetric Weight Generating Function (SWGF) for a spectrum of values for the shape 

parameter, �, ranging from � � 50 (blue) to � � 0.2 (red), in intervals of � � 1,2,… ,70, and for the different 

values of the bandwith � � 5, 10, 15 (left to right). The black dashed lines show the hard windows corresponding to 

�. The gray dotted lines show the window peaks. These plots show the capability of the WGF to generate different 

forms of the window. 

 

where ��
	 � 
�

�� 
�

 denotes the normalised peak generating function. The first term on the right 

hand side of Eq. 2 produces the individual windows and the second term accounts for merging the 

intersections amongst the windows. Figure 2 shows the symmetric weight generating function 

(SWGF), that is �� � ��  and ��� � ���, # � 1, 2, … , �, for the different values of � + ,0.2, 50. 
coloured from blue (� � 50) to red (� � 0.2) and for the different values of  � 5, 10, 15. The 

vertical black dashed lines show the hard window corresponding to the value of . From this plot, 

the function is capable of generating a range of windows from hard (blue) to smooth (red). Further, 

the weights lay in the �0,1. interval for all values of time; however, they may not cover the entire 

�0,1. spectrum in a bounded time domain. Then, the weights are normalised to be ranged in �0,1. 
before inserting into the WGF as shown by ��

	 in Eq 2. Figure 3 shows the merge capability of the 

SWGF for the logistic �  with � � 15, 35  and different values of � � 0.5, 1.5, 3  and  �
6, 8, 10, 12. From this figure, the function is capable of producing a range of flexible multimodal 

windows (top) as well as aggregated windows (bottom) if |�� " | 0 |�� ! | for all �� 1
��,  + 2. In all cases, the weights lay in the �0,1. interval. 
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 Fig 3: Merging behaviour of the SWGF for different values of the shape parameter � � 0.5, 1.5, 3 and the 

bandwidth � � 6, 8, 10, 12 on a sequence of time points � � 1, 2,… , 60. The vertical dashed gray lines show the 

corresponding hard windows to �. This plot shows the capability of SWGF to generate multimodal windows as well as 

merging individual windows. 

 

Windowing regression 

Let 3 � �4 " 5  denote a linear model, with 3 , � , 4  and 5  representing response, 

covariates, unknown parameters and independent random noise, 5 6 7�0, %� 1 ∞� respectively. 

Imposing the weights in Eq. 2 on the residuals leads to the following weighted least square (WLS)  

 

9�4� �  WGF��, , �, ��=|3 ! �4|=
�

�
  (3) 

 

Where =|. |=
�
denotes the second norm of a vector. Minimising 9�4� with respect to 4 leads to 

4> � ��?������?�3, where � is a diagonal matrix of weights from WGF and (?) denotes the 

transpose of a matrix. Weighted linear regression (WLR), in the context of this study, is equivalent 

to imposing less weight on the off modal time points with respect to �. We illustrate this in Figure 

4, where 60 observations are simulated from the following model,  
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3� � �4�@������ " �4�@��������� " �4�@������ " 5, 
 

with � � 1,2, … ,60, 4� � 0, 4� � 1,  4� � 0, 5 6��� 7�0,1� and @ is the indicator function,  

@�� + ,A, B.� � �1 � + ,A, B.0 �. � �. 
 

 In other words, the model is piecewise linear and only significant in the � + �20, 40� interval. 

Figure 4 (left) shows the global estimation of the linear regression from the entire data (dotted 

black line) and the WLR by WGF��, 9,5,30� (dashed blue line) as well as weights from the WGF 

on the right. This plot shows that the non-weighted linear regression leads to a horizontal line, 

where no significant gradient is detected, whereas the WLR tends to model the significant section 

of the data that leads to fitting the true line. Figure 4 compares the effect of windowing vs. 

considering the entire dataset, showing the different conclusions.   

  Fig 

4: (Left) Comparison between the inferences from the windowed linear regression on the simulated data (blue dashed 

line) and without windowing (dotted black line). (Right) The corresponding weights from WGF centred on � � 30. 

With windowing, we attempt to model the effective section of the data (blue dots). 

 

Selection of the tuning parameters 

 Selection of the tuning parameters � and  to define the soft window have a strong 

impact on the final estimations and consequently on the inferences that are made from the 

statistical results. Indeed, a wide or over-smooth window can lead to the inclusion of too much 

noise, whereas a small window can result in low power in the analysis. An additional challenge is 
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the direct linear correlation between increasing the number of peaks, �, and to the total number of 

the parameters for the windows �, �� that results in significant growth in the computational 

complexity of the final fitting. This is due to tuning the window in the general form of WLS in Eq. 

3 requires 2�  dimensions in space to search for the optimal   and � . To cope with this 

complexity, we propose to fix  and � so all windows are symmetric and have the same shape 

and bandwidth. We then select the tuning parameters by searching the space on the grid of �, �� 

values and look for the most significant change in mean and/or variation of the 

residuals/predictions. The grid is searched by generating a series of scores from applying t-test (to 

detect changes in mean) and F-test (to detect change in variation) to the consecutive 

residuals/predictions at each step of expanding ( C  " 1) and/or reshaping (� C � " 1) the 

windws. This technique is based on the assumption that the mean and the variation of the 

residuals/predictions remain unchanged in different time periods 33. 

To gain the necessary power in the analysis, we apply the statistical tests to the values of  
that correspond to a minimum D observations in the windows. Then one can define the quantity of 

D�� that is the total number of observations that is included in the hard window corresponding to 

. We should stress that the definition of D�� in the soft windowing can be challenging because 

the WGF assigns weights to the entire dataset in the final fitting. To address this complexity, we 

propose the Sum of Weights Score by E
E��, � � ∑  �
��� 
G���� , �, , ��, that is the summation 

of weights from WGF for specific  and �. Note that E
E�, �� H D�� with the equality for 

sufficiently large �. Because  is generally unknown, a value of D�� � D  independent of  
needs to be decided before the analysis. Our experiments, inspired by the z-test minimal sample 

size �� 0 30�, show that setting E
E H D with  

D I Jmax�35, N�O�� Single peak35� Multiple peaks� 
 

provides sufficient statistical power and precision for the analysis of each sex-parameter in IMPC.  

Once the bandwidth, , is selected, the shape parameter, �, can be optimised on a grid of 

values similar to .  

This algorithm is implemented for a broad range of models in the R package SmoothWin 

that is available from https://cran.r-project.org/package=smoothWin. The main function of the 

package, E����\
#��… �, allows an initial model for the input and, given a range of values for 
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the bandwidth and shape, it performs soft windowing on the input model. Furthermore, it allows 

plotting of the results for diagnostics and further inspections. One also can generate the weights 

from SWGF using the 5��
5#]\�… � function. 

 

Implementation 

Validation using a resampling approach 

 To assess the performance of the soft windowing method, we implemented a resampling 

approach to construct a sample of artificial mutants from the IMPC control data by relabelling 

some control data as mutant. We then examined the difference in the number of false positives that 

were detected by the standard (non-windowed) analysis versus the soft windowed approach.  

Mutant data in the IMPC has a special structure, resulting from mice being born in the 

same litters and being phenotyped closely together in time (batch effect), which must be replicated 

in the resampling approach. We address this by utilising structured resampling that replaces the 

mutants with the closest random controls in time. We create artificial mutant groups by randomly 

sliding the true mutant structure over the time domain of controls, collecting as many controls as 

there were mutants in the original set, and repeating this procedure five times per dataset 

(supplemental Figure 1 shows an illustration of three iterations of the structured resampling on the 

Bone Mineral Content parameter).  

The outcome of the simulation study consists of 18 IMPC procedures across 11 centres 

and over 2.5 �##�� analyses and p-values. Comparing the results from the IMPC standard and 

soft windowed analyses on resampled data, we detect an overall of 14,201 and 12,716 false 

positives (FP), respectively, at the signficance level used by the IMPC, 0.0001. This constitutes 

more than a 10% relative improvement in FPs when the soft windowed method is applied. Table 

1 shows the top ten IMPC procedures with the significant changes in the FPs. From this table, the 

procedures Body Composition, Open Field, Urinalysis, Heart Weight, Acoustic Startle and 

Pre-pulse Inhibition account for the highest relative reduction of 68% in FPs, whereas the 

Clinical Blood Chemistry, X-Ray, Insulin Blood Levels, Electrocardiogram and Eye Morphology 

account for the maximum increase of 32% in FPs. Supplemental Figure 2 shows parameters from 

the Body Composition and Clinical Blood Chemistry procudures that showed the biggest loss and 

gain in false positives for assocaited data parameters, respectively. This plot shows an 
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improvement in decreasing FPs in all IMPC_DXA parameters, which contrasts with an increase in 

the FPs for IMPC CBC parameters. We further examined the top two IMPC_CBC parameters, 

Alanine aminotransferase (IMPC_CBC_013) and Aspartate aminotransferase (IMPC_CBC_012) 

in Supplemental Figure 3, and noted a high level of randomly deviated points from the mean of 

controls that can bias the outcome of the structured resampling.  

 

Table 1: Top ten IMPC procedures with the highest change in the total number of false positives 

Procedure name Procedure id Total p-values NFP* WFP† WFP/(NFP+WFP)%  

Body Composition (DEXA 

lean/fat) 

IMPC_DXA  167789 3809 2293 37.58 

Clinical Blood Chemistry  IMPC_CBC  320949 1472 2414 62.12 

Open Field  IMPC_OFD  182894 1507 830 35.52 

Haematology  IMPC_HEM  243640 3125 2746 46.77 

Heart Weight  IMPC_HWT  16236 553 409 42.52 

Acoustic Startle and 

Pre-pulse Inhibition (PPI)  

IMPC_ACS  73177 352 243 40.84 

X-ray  IMPC_XRY  7016 27 135 83.33 

Insulin Blood Level  IMPC_INS  9465 63 164 72.25 

Electrocardiogram (ECG)  IMPC_ECG  122257 378 471 55.48 

Eye Morphology  IMPC_EYE  15739 86 153 64.02 

* False positives from the non-windowed results  

† False positives from the soft-windowed results 

 

Soft windowing as part of the IMPC statistics pipeline 

We next show the performance of the soft-windowing approach on IMPC data by 

integrating it into the standard IMPC statistics pipeline, PhenStat 34. Using data release 9.2 

(January 2019), we re-analysed 14 �##�� " data points from which 10 �##�� " are mutant 

animals across the range of IMPC phenotyping procedures. The original IMPC standard analysis 

that did not apply the soft windowing approach to select the control data encompassed 

403,000 " analyses and p-values. This analysis led to 12,728 significant p-values (< 0.0001�, 

compared to 16,415 significant p-values when the soft windowing was applied, an increase of 

30% in total significant p-values. The IMPC assigns mouse lines with phenotype terms from the 

Mouse Phenotype Ontology when a significant deviation from the control data is detected for a 

given data parameter 35. Our windowing approach led to 17,391 associations gained and 15,996 
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associations lost. To explore these differences further, we created an online tool that displays the 

entire control dataset for a given mouse line-parameter assay with the statistical summaries for 

both the non-windowed methodology and the soft windowed approach. Users may filter on a 

number of attributes, arrange filter order, zoom in on data visualisation, or navigate directly to 

the results (https://wwwdev.ebi.ac.uk/mi/impc/dev/phenotype-

archive/media/images/windowing/).  

 

Figure 5 shows the corresponding visualization on the IMPC website of the data previously shown 

in Figure 1 (left) for the Forelimb grip strength normalised against body weight parameter from 

the IMPC Grip Strength procedure. The soft window is indicated, as well as changes in the total 

number of controls (here 1,572 fewer after soft windowing). Further, the p-value corresponding 

to the genotype effect shows a significant change in magnitude, from 2.05 ` 10�� to 6.75 `
10��� after applying the soft windowing.  
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Figure 5. The soft windowing visualization in the IMPC website for the Forelimb grip strength normalised against 

body weight from the IMPC Grip Strength procedure. The plot shows the response over time as well as the fitted soft 

windows. The tables below show the comparison between the descriptive statistics obtained from the standard 

(non-windowed) analysis on the left and the soft windowed approach on the right. The p-values correspond to the 

genotype effect after applying the statistical analyses taking the corresponding controls based on the non-window and 

soft windowed approaches, respectively.  

 

We then tested if our soft windowed analysis changed our human disease model discovery 

rate. We have previously described the IMPC Phenodigm translational pipeline that automatically 

detects phenotypic similarities between the IMPC strains and over 7,000 rare diseases described 
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in the Online Mendelian Inheritance in Man (OMIM), Orphanet and the Deciphering 

Developmental Disorders (DDD) databases 35. This pipeline generates qualitative scores on how 

well a mouse line’s associated phenotypes overlap with the phenotypes of the human rare disease 

populations 35–40. By comparing the disease model resulting from our soft windowed analysis vs 

non-windowed analysis for IMPC data release 9.2, we find a slight increase in the number of 

disease models (106 vs 99 models using a threshold of 50% phenotype overlap from a set of 2,082 

mouse lines that contain mutations- Supplemental Table I).     

 

 

Discussion 

High-throughput phenomics is a powerful tool for the discovery of new 

genotype-phenotype associations and there is an increasing need for innovative analyses that make 

effective use of the voluminous data being generated. Batch effects are inevitable when a large 

amount of data is collected at different times and/or sites and, therefore, need to be accounted for 

in the statistical analysis. In this study, we developed a novel “soft windowing” method which 

selects a window of time to include controls that are locally selected with respect to experimental 

animals, thus reducing the noise level in the data collected over long periods of time (years). Soft 

windowing has notable advantages over a more traditional hard windowing approach. In contrast 

to the limited data points included in the hard windowing method, the entire dataset is considered 

for the analysis. To this end, we engineered a weighting function to produce weights in the form of 

a window of time. Control data collected proximally to mutants were assigned the maximal 

weight, while data collected earlier or later had less weight. This method has the capability of 

producing indivdual windows as well as merging intersected ones. Moreover, the method was 

implemented to automatically select window size and shape.  

The performance of the method was shown on a simulated scenario that uses real control 

data collected by the IMPC high-throughput pipelines to assess detection of false positives. We 

also showed the enhancements to the IMPC statistical pipeline that establishes 

genotype-phenotype associations by comparing mutants vs control data using our soft windowed 

approach. 

There are two known conditions that affect the method: (1) The weight generating function can be 

slow when there are too many �0 20�  distinct windows, however, we have optimised the 
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algorithm to be fast enough for the typical IMPC number of peaks (I 3 seconds for 1500 

samples and 16 peaks under � � 1 and  � 30); and (2) Our resampling scenario indiciated that 

our soft windowing approach is sensitive to the data that has a high level of outliers or random 

deviation from the mean. This may result from a bias in the design of the resampling but may also 

indicate that using all available controls maybe appropriate for the cases with extreme variability. 

Our soft windowing approach addresses the scaling issues associated with analysing an 

ever-increasing set of control data in long-term projects by eliminating controls with weights 

sufficiently close to zero from future analysis. In the case of the IMPC, once a window of control 

data is determined for a dataset, there would be no further requirement to re-analyse the dataset 

with each subsequent data release. This will reduce the computational resources needed with the 

resulting gene-phenotype associations remaining stable, greatly facilitating data exchange with 

research groups trying to functionally validate genes and their disease variants. Our findings also 

have important implications for such efforts as the UK BioBank and the All of Us initiatives where 

large cohort sizes coupled with mobile medical sensors are generating phenotype data at an 

unprecedented rate 41,42.  Researchers performing restrospective analysis to analyse exposures for 

a defined outcome group (e.g. metabolic disease) are challenged by the variability and longitudinal 

characteristics associated with these datasets. The methods described here can be used with these 

human health resources to maximise analytical power and help researchers find the genetic and 

environmental contributers to human diseases.  
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