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ABSTRACT 40 

 41 

The Democratic Republic of the Congo (DRC) harbors 11% of global malaria cases, yet little is known 42 

about the spatial and genetic structure of the parasite population in that country. We sequenced 2537 43 

Plasmodium falciparum infections, including a nationally representative population sample from DRC 44 

and samples from surrounding countries, using molecular inversion probes - a novel high-throughput 45 

genotyping tool. We identified an east-west divide in haplotypes known to confer resistance to 46 

chloroquine and sulfadoxine-pyrimethamine. Furthermore, we identified highly related parasites over 47 

large geographic distances, indicative of gene flow and migration. Our results were consistent with a 48 

background of isolation by distance combined with the effects of selection for antimalarial drug 49 

resistance. This study provides a high-resolution view of parasite genetic structure across a large 50 

country in Africa and provides a baseline to study how implementation programs may impact parasite 51 

populations.  52 
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BACKGROUND 53 

 54 

Malaria remains one of the largest global public health challenges, with an estimated 219 million cases 55 

worldwide in 20171. Despite decades of scale-up in control, there has been a recent resurgence, 56 

particularly in high transmission countries in sub-Saharan Africa1. In addition, the emergence of 57 

antimalarial resistance poses a major threat to current control and elimination efforts worldwide, and 58 

new tools are needed to quantify the changing landscape of drug resistance on timescales relevant to 59 

malaria control programmes. Genomics has emerged as a useful method for better understanding 60 

parasite populations that can be leveraged to support the design of effective interventions against a 61 

continually evolving parasite. 62 

 63 

Data from genomic studies provides information that is complementary to epidemiological data2, and 64 

can help to answer several key questions, including how parasites are transmitted, how drug resistance 65 

spreads, and how malaria control efforts impact the diversity of the parasite population. However, to 66 

date, efforts to use genomics to inform malaria control efforts have suffered from three major 67 

limitations. First, much of the work has been conducted in low transmission regions, such as Asia and 68 

transmission fringe regions of Africa, leaving it unclear how useful information can be gathered in the 69 

highest transmission settings. Some of these high burden regions have experienced increasing malaria 70 

prevalence in recent years and are now the center of strategic plans for control efforts3,4. Second, most 71 

genomic studies in Africa have relied upon convenience sampling from a few sites usually collected for 72 

other purposes, rather than population-representative samples. Lastly, studies have either relied on 73 

relatively few genetic markers, providing limited insight into the complete genome, or on expensive 74 

whole genome sequencing, limiting the number of samples studied. Overcoming these limitations is 75 

essential for genomics to have broader impacts on malaria control. 76 

 77 

Within Africa, parasite populations have been shown to vary significantly between East and West, as 78 

demonstrated by their distinct antimalarial drug susceptibilities and population genetics5,6. However, few 79 

genomic studies have incorporated samples from central Africa, limiting our understanding of the 80 

connectivity of parasite populations across the continent. The Democratic Republic of the Congo (DRC) 81 

is the largest malaria-endemic country in Africa, borders nine countries and harbors approximately 11% 82 

of global P. falciparum malaria cases1. The DRC harbors a large, understudied parasite population that 83 

likely serves as a bridge between African parasite populations. Limited previous work has shown that 84 

the DRC represents a watershed between East and West African drug resistant parasite populations for 85 

sulfadoxine-pyrimethamine and chloroquine resistance7–9. More recently, parasite population structuring 86 
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due to mutations at these and other loci associated with antimalarial resistance has been confirmed 87 

within the DRC10. However, studies focusing on hypervariable surface antigen diversity or neutral 88 

microsatellites have been unable to detect significant structure in the parasite population10,11, likely due 89 

to a lack of high-quality genome-wide signal. A better understanding of parasite populations and the 90 

spread of antimalarial resistance in the DRC will allow for the design of more effective interventions 91 

accounting for evolutionary forces. 92 

 93 

To address this knowledge gap, we leveraged a recent advance in malaria genomics, high-throughput 94 

molecular inversion probe (MIP) capture and sequencing, to characterize and map parasite population 95 

structure and antimalarial resistance profiles in the DRC and to define the connections of parasites 96 

within the DRC to East and West African parasite populations12. This approach provides a cost-97 

effective and scalable method of genome interrogation, without the expense or informatic complexities 98 

of whole genome sequencing. We previously employed MIPs to comprehensively genotype known 99 

antimalarial resistance genes in several hundred samples from the DRC10. Here, we introduce an 100 

expanded MIP panel targeted at 1834 single nucleotide polymorphisms (SNPs) distributed throughout 101 

the P. falciparum genome, and designed to quantify differentiation and relatedness between samples. 102 

Using this panel of genome-wide SNP MIPs, in combination with the previous drug resistance MIP 103 

panel, we evaluated the parasite population diversity in 2537 parasite isolates from the DRC and 104 

surrounding countries in East and West Africa. We used this information to quantify relatedness of and 105 

gene-flow between parasites over large geographic scales and to assess the origins of antimalarial 106 

resistance mutations.  107 
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RESULTS 108 

 109 

Sample quality and filtering: We obtained 2537 samples collected in 2013-2015 from the DRC and 110 

surrounding countries (DRC=2039, Ghana=194, Tanzania=120, Uganda=63, Zambia=121). All 111 

samples were sequenced using two separate MIP panels: a genome-wide panel designed to capture 112 

overall levels of differentiation and relatedness, and a drug resistance panel designed to target 113 

polymorphic sites known to be associated with antimalarial resistance10. The genome-wide panel 114 

included 739 ostensibly geographically informative SNPs, chosen on the basis of high differentiation 115 

(FST) between surrounding African countries in publicly available genomic sequences made available 116 

by the Pf3K project (see Supplemental Text 1 and Supplemental Table 1), and 1151 putatively 117 

neutral SNPs distributed throughout the genome, with an overlap of 56 SNPs that were both neutral 118 

and geographically informative. The drug resistance panel included SNPs in known and putative drug 119 

resistance genes and has been described elsewhere 10. The median number of unique molecular 120 

identifiers (UMIs) per MIP was 31 (range: 1-8,490) for the genome-wide panel, and 10 (range: 1-121 

32,511) for the drug resistance panel. Complete UMI depth distributions are shown in Supplemental 122 

Figure 1. After filtering for samples and loci with sufficient UMI coverage, we were left with 1382 123 

samples and 1079 loci from the genome-wide panel, and 674 samples and 1000 loci from the drug 124 

resistance panel, with an overlap of 452 samples between both panels. In addition to these samples, 125 

114 controls consisting of known mixtures were sequenced and used to assess the accuracy of allele 126 

calls and frequencies. Expected versus measured allele frequencies for each SNP, calculated from 127 

these controls, are shown in Supplemental Figure 2. 128 

 129 

Complexity of infection: Initial analyses focused on the genome-wide MIP panel only. Complexity of 130 

infection (COI) for each sample was estimated using THE REAL McCOIL13 (Supplemental Figure 3). 131 

The mean COI was estimated at 2.2 (range 1 - 8) for the study as a whole. We observed significant 132 

differences in COI between countries (Ghana: 1.55 (non-parametric bootstrap 95% CI: 1.39 - 1.73), 133 

DRC: 2.23 (2.15 - 2.31), Tanzania: 2.17 (1.83 - 2.51), Zambia: 2.68 (2.39 - 3.00), Uganda 2.18 (1.87 - 134 

2.51), and within the DRC we observed a statistically significant relationship between COI and P. 135 

falciparum prevalence by microscopy at both the province and cluster levels (Supplemental Figure 4), 136 

with higher COIs observed at higher prevalences. 137 

 138 

Population structure: We explored population structure through principal component analysis (PCA) 139 

evaluated on within-sample allele frequencies at all 1079 genome-wide loci. We found the same 140 

separation between East and West Africa described in previous studies (Figure 1) as well as finer 141 
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structure between regions within East Africa. DRC samples comprised a continuum between the East 142 

and West African clusters. 143 

 144 

 145 
Figure 1 The first two (a) and three (b) principal components calculated from within-sample allele frequencies using the 146 
genome-wide MIP panel. Colors indicate country of origin of each sample. 147 
 148 

The relative contribution of each locus to each principal component was quantified through normalized 149 

loading values. Relative contributions to the first four principal components are shown in Figure 2. After 150 

the fourth principal component the percent variance explained by subsequent components plateaued 151 

(Supplemental Figure 5). For principal component 1 (PC1) large contributions came from loci 152 

distributed throughout the genome, and a relatively larger contribution (65.2%) came from putatively 153 

geographically informative SNPs (non-parametric bootstrap, p<0.001). In contrast, contributions to PC2 154 

were concentrated in a region on chromosome seven in close proximity to P. falciparum chloroquine 155 

resistance transporter (pfcrt), a known drug resistance locus, suggesting that resistance to chloroquine 156 

or amodiaquine may be driving differentiation along this secondary axis. For PC3, locus contributions 157 

were concentrated  in three genic regions: PF3D7_0215300 (8.5%), PF3D7_0220300 (5.0%), and 158 

PF3D7_1127000 (4.3%). The first and largest of these encodes an acyl-CoA synthetase and is part of a 159 

diverse gene family known to undergo extensive gene conversion and recombination14. For PC4 we 160 

observed a region of high locus contribution on chromosome eight in close proximity to the known 161 

antifolate drug resistance gene dihydropteroate synthase (dhps). Combined, these results suggest that 162 

geography and drug resistance are both contributors to the observed population structure. 163 

 164 
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The relationship between the PCA results and the spatial distribution of parasites was explored by 165 

plotting raw principal component values against the geographic location of samples (Figure 3a-3d). For 166 

PC1 this revealed a complex pattern of spatial variation, containing both north-south and east-west 167 

clines. For PC2 and PC4 the maps essentially recapitulate the known geographic distribution of pfcrt 168 

and dhps resistance mutations, respectively (Figure 3e-3f). For PC3 the map indicates some east-west 169 

spatial structuring that is not explained by known markers of antimalarial resistance and warrants 170 

further investigation. 171 

 172 
Figure 2 The relative contribution (%) of each locus to the first four principal components. Chromosomes are plotted in order, 173 
separated by vertical white gridlines. Point colors indicate sites that were chosen in the design based on FST values to be 174 
geographically informative (blue) or not (red). 175 

 176 
Figure 3  Panels (a) to (d) show the mean principal component value per DHS cluster. Panels (e) and (f) show estimated 177 
distributions of the prevalence of molecular markers of resistance for pfcrt and pfdhps. 178 
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 179 

Identity by Descent: The relatedness of all pairs of samples was explored through pairwise identity by 180 

descent (IBD), estimated using a maximum likelihood approach. IBD has advantages over simpler 181 

statistics like identity by state (IBS) in that it takes account of allele frequency distributions, and so 182 

provides an objective measure of relatedness that can be compared between studies15. The overall 183 

distribution of pairwise IBD was found to be heavy-tailed, consisting of a large body of weakly related 184 

samples and a tail of very highly related samples (Figure 4). 185 

 186 

 187 
Figure 4 A histogram of pairwise identity by descent (IBD) between all samples, estimated by maximum likelihood. Inset 188 
shows the heavy tail of the distribution, with some pairs of samples having IBD > 0.9. 189 
 190 

Mean IBD was significantly higher within clusters compared to between clusters (0.06 vs. 0.02, two-191 

sample t-test, p<0.001). When plotted against geographic separation there was a clear fall-off of IBD 192 

with distance (Figure 5a), consistent with the classical pattern expected under isolation-by-193 

distance16,17. Focussing on the tail of highly related samples, which includes the major strain in complex 194 

infections, there were 12 sample pairs with a relatedness greater than IBD=0.9. Comparison of raw 195 

allele frequency distributions confirmed that these were likely clones (Supplemental Figure 6). These 196 

highly related pairs were found more often within the same cluster than in different clusters (7 vs. 5 197 

respectively, chi-squared test, p<0.001), suggesting the presence of local clonal transmission chains. 198 

The five between-cluster highly related pairs (Figure 5b) were spread over large geographic distances 199 

(281-1331 km), far beyond the normal expected scale of the breakdown in genetic relatedness (Figure 200 

5a), suggesting recent long distance migration. 201 
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 202 

 203 
Figure 5 Panel (a) shows the mean IBD between clusters, binned by the spatial distance between clusters. Vertical lines show 204 
95% confidence intervals. Panel (b) shows the spatial distribution of highly related (IBD>0.9) parasite pairs. Black areas 205 
indicate major water bodies, including the Congo River. 206 
 207 

Prevalence of markers of resistance: Based on previous findings of an east-west divide in molecular 208 

markers of antimalarial resistance in the DRC8,9, all samples in the DRC were divided by 209 

geographically-weighted K-means clustering into two populations (Supplemental Figure 7). The 210 

prevalence of every mutation identified by the drug resistance MIP panel was calculated in eastern and 211 

western DRC, as well as at the country level. Table 1 gives a summary of all mutations that reached a 212 

prevalence >5% in any geographic unit, and a complete list of all identified mutations along with their 213 

prevalence is given in Supplemental Table 2. Note that in the dhps mutation G437A the reference is 214 

resistant, hence this is re-coded as A437G and prevalence values indicate the prevalence of the 215 

reference allele. Estimated prevalences of these alleles in the DRC as a whole were broadly similar to 216 

previously published estimates10. However, we did identify several polymorphisms in known and 217 

putative resistance genes not previously reported in the DRC, including kelch K189T and pfatp6 218 

N569K, both of which have been described at appreciable frequencies elsewhere in Africa18–20. 219 

 220 

Geographic distribution of haplotypes: Previous studies have demonstrated that mutations 221 

associated with antimalarial resistance are clustered into east-west groupings within DRC8,10. Focusing 222 

on the 107 samples from DRC that were identified as monoclonal from The REAL McCOIL analysis, we 223 

explored the joint distribution of all combinations of mutant haplotypes in both the dhps and crt genes. 224 

Raw combinations of mutations were visualized using the UpSet package in R21, and the spatial 225 

distribution of haplotypes in the DRC was explored by plotting these same mutant combinations against 226 
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their corresponding DHS cluster locations (Figure 6). Our results for dhps recapitulate those found 227 

previously, showing a clear east-west divide with the K540E and A581G mutants concentrated in the 228 

east, and S436A and A437G concentrated in the west. For crt we also find evidence of an east-west 229 

divide, with haplotypes containing N326S and F325C concentrated in the east and those containing 230 

I356T concentrated in the west. 231 

 232 

 233 
Table 1 Prevalence (%) of mutations identified by the drug resistance MIP panel. Includes all mutations that reached a 234 
prevalence >5% in any given geographic unit. 235 
 236 

Selective sweep and haplotype analysis: Using the drug resistance MIPs and genome-wide SNP 237 

MIPs combined, the extended haplotypes of the monoclonal infections were determined for 200kb 238 

upstream and downstream of each putative drug resistance allele that had at least 5% overall 239 

prevalence in the DRC. The CVIET haplotype within the crt gene showed a signal of positive selection, 240 

with longer haplotype blocks in western DRC as compared to eastern DRC (Figure 7; p’XP-EHHD < 241 

0.05). In the east, patterns of haplotype homozygosity are consistent with positive selection for the 242 

derived I356T haplotype  (Supplemental Figure 8), although a XP-EHHD statistic could not be 243 

calculated for this locus because the derived haplotype was absent in western DRC, supporting the 244 

geographic localization of the I356T mutation in the east (Figure 6).   245 
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 246 
Figure 6 The spatial distribution of all combinations of mutant haplotypes for dhps and crt from the monoclonal DRC samples. 247 
Panels (a) and (c) are UpSet plots showing the number of times each combination of mutations was seen for dhps and crt, 248 
respectively. Panels (b) and (d) show these same haplotypes on a map of DRC. Colours correspond horizontally between 249 
panels, i.e. between (a) and (b), and between (c) and (d), with the exception of wild-type haplotypes (grey) which are not 250 
shown in panels (b) and (d). 251 
 252 

Mutations in dhps were more difficult to interpret. This gene has undergone multiple selective sweeps 253 

associated with increasing drug resistance. The most recently introduced mutation into the DRC, dhps 254 

A581G, showed relatively conserved local haplotypes around the mutation in both eastern and western 255 

DRC (Supplemental Figure 9). Extended haplotypes around the other mutations (Supplemental 256 

Figures 10 and 11) are inconsistent with a classical hard sweep, perhaps due to selection on multiple 257 

independent haplotypes or to interference between A581G and other linked alleles. Finally, we did not 258 

detect any strong signals of differing patterns of recent positive selection between the eastern and 259 

western DRC among the dhfr and mdr2 genes (Supplemental Table 3, Supplementary Figure 12).   260 

 261 
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 262 
Figure 7. EHH and Bifurcation Plots for pfcrt K76T from the monoclonal samples with no missing genotype data. Panels (a) 263 
and (b) display EHH curves 200 kb upstream and downstream from the K76T core SNP in centimorgans among the samples 264 
from the eastern DRC and western DRC. Panels (c) and (d) show haplotype bifurcation plots with respect to the core allele 265 
ancestry and the eastern DRC and western DRC for a subsetted region. Position is considered in kilobases, and segregating 266 
sites for each haplotype are displayed at the nodes. Overall, there is strong evidence for recent positive selection of the pfcrt 267 
CVIET haplotype in the west that is mitigated in the east.   268 
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DISCUSSION 269 

 270 

Here we provide the first large-scale, robustly sampled study of falciparum malaria in central Africa 271 

using MIP capture and sequencing, a novel high-throughput genotyping approach that is appropriate for 272 

large population based surveys. Using a panel of probes designed to detect genome-wide SNPs, 273 

combined with a second panel targeting drug resistance genes, we were able to show that the parasite 274 

population in the DRC contains a signal of differentiation by geographic separation, consistent with the 275 

classical pattern of isolation by distance. This background population structure is overlaid with the clear 276 

impacts of drug resistance mutations, which cause distinct structure between East and West African 277 

parasite populations. Additionally, the use of relatively dense genome-wide SNPs allowed us to carry 278 

out relatedness analysis, revealing a handful of cases where human hosts separated by many 279 

hundreds of kilometers were infected by essentially identical clones. Given the rapid breakdown of 280 

distinct genotypes by recombination in high transmission areas, it is highly likely that these events 281 

represent relatively recent infection and migration events. With this in mind, it is interesting to note that 282 

pairwise links of high relatedness tend to fall along the Congo River, an important route of 283 

transportation in DRC. Lastly, the combination of the two MIP panels allowed us to examine extended 284 

haplotypes surrounding drug resistance genes, revealing rapid breakdown of haplotypes in the 285 

population and different signals of selection in East vs. West DRC. 286 

 287 

We previously investigated population structure using MIPs targeting 20 microsatellites in the DRC10, 288 

failing to detect a strong signal of population structure based upon these markers. Here we leveraged 289 

the same 552 samples as the previous study, plus additional samples from the DRC and neighboring 290 

countries, to identify clear structure with an improved SNP-based genotyping method. Our ability to 291 

detect population structure in the present study is likely due to several factors. First, the new SNP panel 292 

contains nearly two orders of magnitude more markers than the previous panel. While this new SNP 293 

MIP panel expanded the number of loci interrogated, we have yet to achieve the full potential of MIPs. 294 

Specifically, massively increased, multiplexed probe sets that target additional portions of the genome 295 

are feasible. MIPs have now been used in human studies to detect as many as 55,000 markers in a 296 

single reaction22. Second, a large number of genome-wide SNPs in this study were chosen based on 297 

high FST values in publicly available samples from surrounding countries. This increases our power to 298 

detect geographic differentiation, but comes at the cost of not being able to comment on the relative 299 

importance of geography vs. drug resistance, which would require random genetic sampling or 300 

alternatively whole genomes. Similarly, we should be cautious when interpreting spatial clines in 301 

population structure from our data, as we may have greater power to detect structure along some axes 302 
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than others due to the unequal distribution of surrounding countries in publicly available samples, 303 

although in general we have good representation in both the East-West and North-South directions. 304 

 305 

The flexible nature of MIP panels allows for multiplex detection of SNPs associated with drug 306 

resistance in any known or putative resistance loci for which they are designed. This allowed for a more 307 

detailed evaluation of molecular markers associated with antimalarial resistance than has previously 308 

been possible in the DRC. To date, studies of antimalarial resistance markers in the DRC  have 309 

focused primarily on pfcrt (K76T), dhfr (N51I, C59R, S108N, I164L), dhps (I431V, S436A, A437G, 310 

K540E, A581G, A613S), pfmdr (N86Y, F184Y, D1246Y), and a few kelch mutations23–29. The data 311 

suggests that mutations associated with artemisinin resistance remained absent in the country as of 312 

2014. The World Health Organization identified 9 mutations within the K13 propeller region that are 313 

validated in terms of their clinical phenotype of artemisinin resistance, and a further 11 mutations that 314 

are candidates associated with the phenotype of delayed clearance.30 We identified 14 mutations within 315 

the K13 gene (Supplemental Table 2), although none of these correspond to validated or candidate 316 

artemisinin resistance mutations. 317 

 318 

Beyond looking at mutations within drug resistance genes, differences in extended haplotypes around 319 

drug resistance genes have been used to understand evolution and spread31. Though not originally 320 

designed for this purpose, the genome wide MIP panel can be leveraged for conducting similar 321 

analyses. For example, the differences in CVIET EHH between the West and East  suggests that the 322 

CVIET haplotype in the West has potentially been more recently introduced, has experienced less 323 

breakdown through recombination, or has undergone stronger recent positive selection as compared to 324 

the East. Redesign of the selected targets with denser sampling around known drug resistance genes 325 

will allow for more robust assessment of these selected regions. 326 

 327 

DRC’s location in central Africa and the enormous number of malaria cases in the country means that 328 

malaria control in Africa likely depends on improving our understanding on Congolese malaria. This 329 

represents the largest study of falciparum population genetics in the DRC and, unlike other large 330 

population genetic studies of malaria in Africa, leverages a nationally representative sampling 331 

approach. Thus, this study provides the first data on fine-scale genetic structure of parasites at a 332 

national scale in Africa, and provides a baseline that can be used to study how implementation 333 

programs impact parasite populations in the region. The newly implemented MIP platform represents a 334 

highly scalable and cost-effective means of providing genome-wide genetic data, relative to whole 335 
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genome sequencing 10. The highly flexible nature of the platform allows it to be rapidly scaled in terms 336 

of targets and samples leading it to be applicable across malaria endemic countries.  337 
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METHODS 338 

 339 

Study Populations: Chelex-extracted DNA from dried blood spots, collected as part of the 2013-2014 340 

DRC Demographic Health Survey (DHS), was tested using quantitative real-time PCR as described 341 

previously32,33. Previously published DRC samples10 were included (n=589), and used to set a Ct 342 

threshold of <30 which was applied to the remaining DRC samples (n=1450), resulting in a total of 2039 343 

DRC samples sent for sequencing. These samples represented 369 of the overall 539 DHS clusters. In 344 

addition, dried blood spot samples from 4 further counties were used: Ghana (n=194), Tanzania 345 

(n=120), Uganda (n=63) and Zambia (n=121). Samples from Ghana were collected in 2014 from 346 

symptomatic RDT and/or microscopy positive individuals presenting at health care facilities in Begoro 347 

(n=94) and Cape Coast (n=98)34. Samples from Tanzania were collected in 2015 from symptomatic 348 

RDT-positive patients of all ages at Kharumwa Health Center in Northwest Tanzania35. Samples from 349 

Uganda were collected in 2013 from RDT-positive symptomatic patients at Kanungu in Southwest 350 

Uganda36. Finally, samples from Zambia were collected in 2013 from RDT positive individuals from a 351 

community survey of all ages in Nchelenge District in northeast Zambia on the border with the DRC. All 352 

non-DRC samples were Chelex extracted, except for the Ghanaian samples which were extracted 353 

using QiaQuick per protocol (Qiagen, Hilden, Germany).   354 

 355 

MIP Design: We used two distinct MIP panels - a genome-wide panel designed to capture overall 356 

levels of differentiation and relatedness, and a drug resistance panel designed to target polymorphic 357 

sites known to be associated with antimalarial resistance. The drug resistance MIP panel has been 358 

described previously10. When selecting targets for the genome-wide panel, we used the publicly 359 

available P. falciparum whole genome sequences provided by the Pf3k and P. falciparum Community 360 

projects from the MalariaGEN Consortium. This consisted of sample sets from Cameroon (n=134), 361 

DRC (n=285), Kenya (n=52), Malawi (n=369), Nigeria (n=5), Tanzania (n=66) and Uganda (n=12) 362 

(Supplemental Table 1). The genomic sequence from these samples underwent alignment, variant 363 

calling, and variant-filtering following the Pf3k strategy consistent with the Genome Analysis Toolkit 364 

(GATK) Best Practices with minor modifications37–40. Full details of the bioinformatic pipeline used in 365 

MIP design are given in the Supplemental Text. Samples from Nigeria and Uganda were dropped 366 

after variant calling due to small sample sizes, and the final filtered sequences were used to calculate 367 

Weir and Cochran’s FST
41 with respect to country for each biallelic locus. The 1,000 loci with the highest 368 

FST values were considered for MIP design as phylogeographically informative loci. Of these 1,000 369 

potential loci, 739 were identified as regions that were suitable for MIP-probe design. Separately, from 370 

the combined SNP file, we identified 1595 loci that had a minor-allele frequency greater than 5%, had 371 
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an FST value between 0.005 and 0.2, and were annotated by SNPEff as functionally silent mutations. 372 

These loci were identified as putatively neutral SNPs, and 1151 were found to be suitable for MIP 373 

design. The distribution of MIPs is shown in Supplemental Figure 13 and MIP sequences and targets 374 

are shown in Supplemental Table 4. 375 

  376 

Capture and Sequencing: In addition to patient samples, control samples were known mixtures of 4 377 

strains of genomic DNA from malaria at the following ratios: 67% 3D7 (MRA-102, BEI Resources, 378 

Manasas, VA), 14% HB3 (MRA-155), 13% 7G8 (MRA-154) and 6% DD2 (MRA-156). They were also 379 

represented at two different parasite densities (29  and 467 parasites/µl). MIP capture and sequencing 380 

library preparation were carried out as previously described10. Drug resistance libraries were 381 

sequenced on Illumina MiSeq instrument using 250 bp paired end sequencing with dual indexing using 382 

MiSeq Reagent Kit v2. Genome-wide libraries were sequenced on Illumina Nextseq 500 instrument 383 

using 150 bp paired end sequencing with dual indexing using Nextseq 500/550 Mid-output Kit v2. 384 

Sequencing reads have been deposited into the NCBI SRA (Accession numbers: pending). 385 

 386 

Variant Calling and filtering: Variant calling was performed as described previously10. Within each 387 

sample, variants were dropped if they had a Phred-scaled quality score of <20. Across samples, variant 388 

sites were dropped if they were observed only in one sample, or if they had a total UMI count of less 389 

than 5 across all samples. This data set was considered the final raw data used for additional filtering. 390 

 391 

Additional filters were applied to both genome-wide and drug resistance datasets prior to carrying out 392 

analysis. Sites were restricted to SNPs, and in the case of the genome-wide panel these were filtered 393 

to the pre-designed biallelic target SNP sites. Any variant that was represented by a single UMI in a 394 

sample, or that had a within-sample allele frequency (WSAF = UMI count/coverage) less than 1%, was 395 

eliminated. Any site that was invariant across the entire dataset after this procedure was dropped. 396 

Samples were assessed for quality in terms of the proportion of low-coverage sites, where low-397 

coverage was defined as fewer than 10 supporting UMIs. Samples with >50% low-coverage loci were 398 

dropped. Variant sites were then assessed by the same means in terms of the proportion of low-399 

coverage samples, and sites with >50% low-coverage samples were dropped. Samples were then 400 

combined with metadata, including geographic information, and were only retained if there were at least 401 

10 samples in a given country. This resulted in dropping Tanzanian samples from the drug resistance 402 

dataset, but no other countries were dropped. Post-filtering, genome-wide data consisted of 1382 403 

samples (DRC = 1111, Ghana = 114, Tanzania = 30, Uganda = 45, Zambia = 82) and 1079 loci, and 404 
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drug resistance data consisted of 674 samples (DRC = 557, Ghana = 29, Uganda = 43, Zambia = 45) 405 

and 1000 loci. 406 

 407 

Complexity of Infection: We applied THE REAL McCOIL categorical method to the SNP genotyped 408 

samples to estimate the COI of each individual13. Details of the analysis are in the Supplementary 409 

Text. 410 

 411 

Analysis of population structure: WSAFs were calculated for all genome-wide SNPs, with missing 412 

values imputed as the mean per locus. Principal component analysis (PCA) was carried out on WSAFs 413 

using the prcomp function in R version 3.5.1. The relative contribution of each locus was calculated 414 

from the loading values as |𝑙#|/∑&#'( |𝑙#|, where |𝑙#|is the absolute value of the loading at locus 𝑖, and 415 

𝐿 is the total number of loci. PCA results were explored in a spatial context by taking the mean of the 416 

raw principal component values over all samples in a given DHS cluster, and plotting this against the 417 

geoposition of the cluster. 418 

 419 

Identity by descent analysis: Pairwise identity by descent (IBD) was calculated between all samples 420 

from the genome-wide SNPs. We used Malécot’s42 definition of 𝑓 as the probability of identity by 421 

descent, where 𝑓,- can be defined as the probability of a randomly chosen locus being IBD between 422 

samples 𝑢 and 𝑣. At locus 𝑖, let 𝐴 denote the reference allele, which occurs at population allele 423 

frequency 𝑝#, and let 𝑎 denote the non-reference allele, which occurs at population allele frequency 424 

𝑞# = 1 − 𝑝#. Assuming that both samples 𝑢 and 𝑣 are monoclonal, let 𝑋,# denote the observed allele at 425 

locus 𝑖 in sample 𝑢, and equivalently let 𝑋-# denote the observed allele in sample 𝑣. Then the 426 

probabilities of all possible observed allele combinations between the two samples can be written: 427 

 428 

𝑃𝑟(𝑋,# = 𝐴, 𝑋-# = 𝐴	|	𝑓,-) 	= 	𝑓,-𝑝# + (1 − 𝑓,-)𝑝#?      (eq1) 429 

𝑃𝑟(𝑋,# = 𝐴, 𝑋-# = 𝑎	|	𝑓,-) 	= (1 −	𝑓,-)𝑝#𝑞#									 430 

𝑃𝑟(𝑋,# = 𝑎, 𝑋-# = 𝐴	|	𝑓,-) 	= (1 −	𝑓,-)𝑝#𝑞#									 431 

𝑃𝑟(𝑋,# = 𝑎, 𝑋-# = 𝑎	|	𝑓,-) 	= 	𝑓,-𝑞# + (1 − 𝑓,-)𝑞#? 432 

 433 

from which we can calculate the likelihood of a given value of 𝑓,- over all loci as: 434 

 435 

𝐿(𝑓,-	|	𝑋,, 𝑋-) 	= 	∏&
#'( 𝑃𝑟(𝑋,#, 𝑋-#	|	𝑓,-).      (eq2) 436 

 437 
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In practice, population allele frequencies (𝑝#) were calculated using the mean WSAF for that locus over 438 

all samples. Samples were then coerced to monoclonal by calling the dominant allele at every locus. 439 

The likelihood was evaluated using eq2 in log-space for a range of values of 𝑓,- distributed between 0 440 

and 1 in equal increments of 0.02. The maximum likelihood estimate 𝑓A,- = 𝑎𝑟𝑔𝑚𝑎𝑥E	𝐿(𝑓	|	𝑋,, 𝑋-) was 441 

calculated between all sample pairs. Hereafter the terms “IBD” and 𝑓A,- are used interchangeably. 442 

 443 

Mean IBD was calculated within and between DHS clusters, and compared using a two-sample t-test. 444 

Sample pairs were also binned into groups based on geographic separation (great circle distance) in 445 

100km bins, with an additional bin at distance 0km to capture within-cluster comparisons. Mean and 446 

95% confidence intervals of IBD ware calculated for each group. Finally, sample pairs with IBD>0.9 447 

were identified, and explored in terms of their WSAFs and their spatial distribution. 448 

 449 

Estimating mutation prevalence from drug resistance panel: Given previous findings of an East-450 

West divide in molecular markers of antimalarial resistance in the DRC8,9, all samples in the DRC were 451 

divided by geographically-weighted K-means clustering into two populations. The prevalence of every 452 

mutation identified by the drug resistance MIP panel was then calculated in East and West DRC, as 453 

well as at the country level. Prevalences in each DHS cluster were used to produce smooth prevalence 454 

maps using PrevMap version 1.4.2 in R43, using the method described in Aydemir et. al. (2018)10. 455 

 456 

Analysis of monoclonal haplotypes: Results of the previous COI analysis on the genome-wide SNPs 457 

with THE REAL McCOIL were used to identify samples that were monoclonal with a high degree of 458 

confidence. Samples were defined as monoclonal if the upper 95% credible interval did not include any 459 

COI greater than one. This resulted in 408 monoclonal samples, of which 143 overlapped with the drug 460 

resistance MIP dataset and therefore could be used to explore the joint distribution of mutations in drug 461 

resistance genes. 107 of these were from DRC. Analysis focussed on the dhps and crt genes. Raw 462 

combinations of mutations were visualized using the UpSet package in R21, and the spatial distribution 463 

of haplotypes was explored by plotting these same mutant combinations against DHS cluster 464 

geoposition. 465 

 466 

Extended haplotype homozygosity analysis: In order to improve our power to detect hard-sweeps 467 

and capture patterns of linkage-disequilibrium with EHH statistics among putative drug resistance 468 

SNPs, we combined the genome-wide and the drug resistance filtered biallelic SNPs into a single 469 

dataset. Details of this analysis are described in the Supplemental Text.  470 

 471 
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All associated EHH calculations were carried out using the R-package rehh, and were truncated when 472 

fewer than two haplotypes were present or the EHH statistic fell below 0.0544,45. In addition, we allowed 473 

EHH integration calculations to be made without respect to “borders,” which were frequent due to the 474 

MIP-probe design. Although this would result in an inflated integration statistic if the EHH statistic had 475 

not yet reached 0 within the region of investigation, this problem was mitigated by only comparing 476 

between subpopulations, and not between loci. EHH decay, bifurcation plots, and haplotype plots were 477 

adapted from the rehh package objects and modified using ggplot46.   478 
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