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Abstract 

Access to large-scale genomics datasets has increased the utility of hypothesis-free genome-wide 

analyses that result in candidate lists of genes. Often these analyses highlight several gene signals that 

might contribute to pathogenesis but are insufficiently powered to reach experiment-wide 

significance. This often triggers a process of laborious evaluation of highly-ranked genes through 

manual inspection of various public knowledge resources to triage those considered sufficiently 

interesting for deeper investigation. Here, we introduce a novel multi-dimensional, multi-step 

machine learning framework to objectively and more holistically assess biological relevance of genes 

to disease studies, by relying on a plethora of gene-associated annotations. We developed mantis-ml 

to serve as an automated machine learning (AutoML) framework, following a stochastic semi-

supervised learning approach to rank known and novel disease-associated genes through iterative 

training and prediction sessions of random balanced datasets across the protein-coding exome 

(n=18,626 genes). We applied this framework on a range of disease-specific areas and as a generic 

disease likelihood estimator, achieving an average Area Under Curve (AUC) prediction performance of 

0.85. Critically, to demonstrate applied utility on exome-wide association studies, we overlapped 

mantis-ml disease-specific predictions with data from published cohort-level association studies. We 

retrieved statistically significant enrichment of high mantis-ml predictions among the top-ranked 

genes from hypothesis-free cohort-level statistics (p<0.05), suggesting the capture of true 

prioritisation signals. We believe that mantis-ml is a novel easy-to-use tool to support objectively 

triaging gene discovery and overall enhancing our understanding of complex genotype-phenotype 

associations.  

 

Introduction 

The explosion of genomic data in the last decade has offered the scientific community a unique 

opportunity to elucidate the functionality of the building blocks of the human genome. A major area 

of focus has been decoding the clinical relevance of protein-coding genes, which are directly 

associated with cell stability, development but also cell proliferation, pathogenicity and disease. Given 

the vast interrogation and elucidation of the protein-coding genome, the global research community 

has generated an extended amount of resources with regards to tissue-specific gene expression, 

intolerance to genetic variation, model organism function and various other diverse types of 

annotation. Additionally, it is now evident that complex phenotypes, such as disease, are not 

represented by the variability of a single data type (e.g. expression in tissue or GWAS results) but 

rather require the combination of a multitude of data types and resources that describe multiple 

aspects of the phenotype at different dimensions1,2,3. 

At the same time, tens-to-thousands of genes have been identified as essential contributors to 

complex diseases. The underlying biology for these diseases is complex and current knowledge 
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provides a limited view of the full collection of disease-associated genes. We sought to explore this 

issue by leveraging the rich collection of gene-associated annotations to identify patterns shared 

among genes associated with a disease and leverage those patterns to predict putative genes of 

interest that may also be disease-associated.  

We applied this framework to a number of disease areas, each time harvesting diverse types of 

information per gene, including gene expression4, human disease literature5, mouse phenotypes6, 

proteomic7, interactome8 and genic metrics of human-lineage purifying selection9,10,11. Our machine 

learning framework is implemented in a disease agnostic manner so that it can be applied to any 

disease area, given a sufficient starting set of known disease-associated genes and is demonstrably 

relevant when applied as a tool to orthogonally triage the results of exome-wide association statistics. 

To illustrate this, we have applied mantis-ml to three broad disease groups where exome-wide 

association statistics have been published: Amyotrophic Lateral Sclerosis (ALS), Chronic Kidney Disease 

(CKD) and Epilepsy. 

 

Results 

Automated feature pre-processing 

mantis-ml has been developed as an automated machine learning (AutoML) framework to enable 

learning from an arbitrary set of gene-associated features (Suppl. Fig. 1). We collated data from a 

diverse set of gene-annotation sources (Fig. 1a and Suppl. File 1), classified into three categories: 

generic resources (disease/tissue agnostic), resources filtered by tissue and finally disease-specific 

features. Given a set of user-specified query terms relating to a tissue and/or disease of interest the 

data compilation and cleaning is performed automatically. This includes filtering of highly correlated 

features (default threshold: Pearson’s r ≥ 0.8) and features with high ratio of missing or undefined 

data (default missing data threshold=0.25). Missing/undefined data are imputed across all features, 

either with zero or the median value depending on the feature type (see Methods).  

Furthermore, mantis-ml generates an automated set of visualisations for exploratory analysis, 

including heatmaps for pairwise feature correlations (prior and post feature filtering), missing data 

ratios across features and the distribution of numerical and/or categorical variables across the known 

and unlabelled genes from the entire gene pool (Suppl. Fig. 2, 3). Additionally, mantis-ml 

automatically performs dimensionality reduction on the original feature set using Principal 

Component Analysis (PCA), t-distributed Stochastic Neighbouring Embedding12 (t-SNE) and Uniform 

Manifold Approximation and Projection13 (UMAP) to allow for visualisation of the original high-

dimensional space into two dimensions (Suppl. Fig 4). These visualisations aim to highlight any evident 

and/or trivial segregation of the known disease-associated genes from the unlabelled ones based on 

either pairwise relationships between the features or any linear and non-linear relationships captured 

by the first two or three projected vectors of the higher-dimensional feature space into the PCA, t-SNE 

and UMAP transformation spaces. However, the complexity underlying each of the diseases under 

study imposes the exploration of high-dimensional interactions between all features to elucidate the 

complex mechanisms that primarily drive pathogenicity in each case. 

 

Stochastic semi-supervised learning for gene prioritisation 
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mantis-ml seeks to uncover any feature patterns among a collection of known positive-labelled 

disease-associated genes to then prioritise novel genes that share a highly similar feature profile with 

the known disease genes. This problem falls into the broader machine learning area of positive-

unlabelled learning, a semi-supervised learning technique where the only labelled data points 

available are positive. This is important in this context as we often have insufficient information about 

which genes among the remainder of the genome are definitively not associated with that disease 

(i.e., true negatives). There are several approaches aiming to solve positive-unlabelled problems, the 

most popular being: a) to treat unlabelled data as negative and perform learning with a standard 

classifier14, b) the use of bootstrap and bagging to iteratively train on random samples of positive and 

unlabelled data and predict on out-of-bag unlabelled data15 and c) use two-step approaches in which 

the first step tries to identify a confident set of negative points among the unlabelled set and then 

continues learning with a standard classifier16. 

The positively-labelled genes for the gene prioritisation are retrieved by mantis-ml from the Human 

Phenotype Ontology5 (HPO) based on user-provided inclusion and exclusion query terms that are 

relevant to a particular disease (see Methods). The HPO component identifies seed genes based on 

the documentation of gene-disease association in OMIM and additional clinical terminology curated 

by clinicians participating in regular workshops hosted by the HPO team. An important peculiarity for 

this problem derives from the fact that in most diseases, the overall set of known data points (positive 

labels) is typically in the range of approximately 102-103 genes. This makes the entire gene set 

(n=18,626) highly imbalanced, in terms of the overall population of positive and unlabelled data 

points. Additionally, the entire gene space is finite and practically already known so we are not bound 

by the usual machine learning requirement to train a model that can generalise well on unseen data. 

Our end goal is to rank the entire gene set with respect to a diverse pool of disease groups, implying 

that our predictions should not be biased by a single training dataset of a subset of genes assumed to 

be representing the global distribution of all genes. As a result, and in combination with the lack of a 

well-defined negative set, training a model sufficiently generalisable to then predict on a test set 

would not be ideal in this context. 

.To address this issue, we constructed a novel gene prioritisation framework that is based on a 

variation of two of the positive-unlabelled approaches suggested above (a, b): a stochastic semi-

supervised learning technique (L iterations) across multiple random balanced datasets from the entire 

gene set (Fig. 1b and Suppl. Fig 1b) with iterative predictions on out-of-bag data. In each stochastic 

iteration, we create a random partitioning of the unlabelled gene space to form M balanced datasets, 

with positive-to-unlabelled points ratio equal to 1:1.5. Each balanced dataset contains a random X% 

sample of the positive (seed) genes (default X=80%) to reduce bias induced by using the entire positive 

gene pool in each training task. The unlabelled data are treated as negative, since training on positive 

and unlabelled data in general gives scores proportional to the ones retrieved by training on positive 

and negative data14. We then perform stratified k-fold split on each balanced dataset (default k=10) 

and then train with a standard classifier for each possible combination of k-1 folds (training set) 

followed by prediction each time on the out-of-bag kth fold (test set). This process is performed k times 

over each balanced dataset and upon each training cycle, prediction probabilities are retrieved only 

for the genes belonging to the respective test set (out-of-bag kth fold).  

The entire procedure is repeated for L iterations, each one leading to a random set of balanced sets 

to allow inclusion of each gene into out-of-bag sets over multiple times and subsequently lead to more 

unbiased and robust results. mantis-ml does not define a static underlying model but prioritises all 

genes based on the probability prediction they have achieved over multiple iterations that have 

grouped them into random balanced gene groups. Eventually, we aggregate the prediction 
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probabilities assigned to each gene member from out-of-bag sets (either positive or unlabelled) across 

all L * k * M iterations. This forms for each gene a probability distribution regarding association of a 

gene with the disease under examination. The final predictions are ranked based on the mean of their 

probability distribution (results equivalent with median, Pearson’s r > 0.9996, p<2.2x10-308).  

 

Classifier benchmarking for positive-unlabelled learning 

We tested seven different classifiers to be used during positive-unlabelled learning for each balanced 

dataset: Random Forest, Extra Trees (Extremely Randomised Trees – a variation of Random Forest), 

Gradient Boosting, Extreme Gradient Boosting (XGBoost), Support Vector Classifier (SVC), Deep Neural 

Networks (DNN) and a Stacking (Ensemble) classifier with four base classifiers (Random Forest, Extra 

Trees, Gradient Boosting and SVC) followed by a DNN in the second layer (see Methods). We first fine-

tuned each classifier separately using a single random balanced dataset from the CKD disease example 

with 10-fold Cross-Validation and performing Grid Search over a finite parameter space (see 

Methods). We then benchmarked all classifiers by assessing their AUC performance on the same set 

of ten random balanced datasets with 10-fold Cross-Validation. All classifiers performed comparably 

(average AUC: 0.831-0.850) with Random Forest and Extreme Gradient Boosting ranking as the top 

two classifiers, with mean AUC equal to 0.850 ± 0.021 and 0.848 ± 0.021, respectively (Fig. 2 and Suppl. 

Fig. 5). Given the comparable performances across classifiers, we cannot pick yet a single classifier 

that outperforms the rest in the problem of gene prioritisation with positive-unlabelled learning. Thus, 

we are going to apply all classifiers to each disease example examined in this work and then select the 

best performing one within each disease example based on the average AUC scores achieved. 

 

Application on three disease examples: Amyotrophic Lateral Sclerosis, Chronic Kidney 

Disease, Epilepsy and  

We have applied mantis-ml on three major disease categories with complex underlying disease 

mechanisms: Amyotrophic Lateral Sclerosis (ALS), Chronic Kidney Disease (CKD) and Epilepsy (Genetic 

Generalised Epilepsy). We selected these for demonstration of applied utility on hypothesis-free 

exome-wide association statistic results where we have previously published the full exome results. 

The positively labelled gene set for each disease was selected based on a user-defined curated 

dictionary of inclusion and exclusion terms used for automated querying and extraction from the 

Human Phenotype Ontology (HPO). Tissue specific and disease-relevant features were automatically 

extracted based on the same query terms applied to the mantis-ml integrated knowledgebase (see 

Methods). No selection of positive-labelled genes, tissue and disease-relevant features require human 

curation beyond provision of the user-defined curated dictionary of inclusion and exclusion terms. The 

total number of known (seed) positively-labelled genes found to be associated with each disease 

based on HPO where 587, 864 and 77 for CKD, genetic generalised epilepsy and ALS, respectively. We 

then applied all seven classifiers used during benchmarking across L=100 stochastic iterations for each 

disease-specific positive-unlabelled learning task. The total number of training/test tasks performed 

across an equivalent number of random balanced gene samples with cross-validation was 25,000, 

17,000 and 79,500 for CKD, Epilepsy and ALS, respectively. These sizes are inversely proportional to 

the number of seed genes in each case, which directly affects the size of constructed balanced datasets 

across the entire gene pool.  

All classifiers except for Stacking showed comparable performance when applied to the entire gene 

set for each disease case. The Stacking classifier consistently demonstrated slightly lower performance   
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compared to the rest of classifiers (on average 0.05 lower AUC score). This is somewhat expected since 

one of Stacking’s most notable properties is to smooth out predictions from its base classifiers. This 

means that predictions supported by most of its base classifiers are more likely to survive in the end 

thus potentially lowering the total number of correctly identified genes, which is however likely to be 

more robust as compared to the predictions from each individual classifier due to its conservative 

nature. 

XGBoost and Random Forest had the best performance in CKD (average AUC: 0.846) followed by 

Gradient Boosting and Extra Trees (average AUC: 0.843, 0.839, respectively), with some of the most 

well-established CKD genes (PKD1, PKD2, COL4A1, COL4A3, COL4A4 and COL4A5) ranking in the top 

0.2-0.7% of all genes (Suppl. Fig. 6). Notably, Extra Trees classifier ranks PKD1 and PKD2 in positions 5 

and 27 among all ~18K genes. An aggressive prediction probability threshold of 0.5 has been used to 

classify genes as either predicted known or novel.  We observe high concordance between the 

predictions from all classifiers with regards to known disease genes. Specifically, 280 known genes 

(47.7% of all known genes) have been identified by all classifiers and another 64 genes (11% of all 

known genes) by at least five classifiers. In terms of the novel disease-associated genes, again the 

largest group of predicted genes-of-interest (n=1,300) has been predicted by all classifiers, while DNN 

yielded the highest number of novel predictions identified solely by this classifier. However, each 

classifier calculates their predictions with a ranking score (prediction probability) which immediately 

provides a prioritisation scheme for the extracted gene predictions. Having no further knowledge to 

validate mantis-ml predictions at this stage, we choose to consider the gene rankings of the classifier 

with the highest average and individual AUC scores (XGBoost) in that case as the default mantis-ml 

prioritisation scheme for CKD (Suppl. File 2; Table S1). We found that the mantis-ml gene prediction 

rankings were significantly correlated when comparing XGBoost and Random Forests (Pearson’s r = 

0.976; p < 2.2 x 10-308, Suppl. Fig. 20), further demonstrating the robustness of the predictions beyond 

the choice of classifier. 

Moving on to the mantis-ml performance on the genetic generalised epilepsy example, we observe 

again XGBoost, Random Forest, Gradient Boosting and Extra Trees performing best among all 

classifiers, ranked in descending order of average AUC scores : 0.821, 0.818, 0.816 and 0.808 (Suppl. 

Fig. 7). We can also observe the preponderance of 360 known genes (41.7% of all known genes)  being 

predicted by all seven classifiers followed by another 67 genes (7.7% of all known genes) predicted by 

at least six classifiers (based on prediction probability threshold of 0.5). Additionally, around 1,600 

novel genes have been suggested by all classifiers, while Stacking and DNN provide the highest 

numbers of novel gene predictions exclusively identified by each of them. We provide as the default 

gene ranking for Epilepsy the mantis-ml predictions acquired when using XGBoost as the standard 

classifier during positive-unlabelled learning, based on its best AUC performance among all classifiers 

(Suppl. File 2; Table S2). 

Finally, with regards to mantis-ml predictions on ALS (Suppl. Fig. 8), Extra Trees followed by XGBoost, 

SVC and Random Forest showed the best performance (average AUC scores: 0.814, 0.805, 0.801 and 

0.798). Moreover, 31 known (40.1% of all known genes) and 1,500 novel genes were predicted by all 

classifiers with Stacking and DNN again providing the highest number of novel predictions with 

support by a single classifier (based on prediction probability threshold of 0.5). We also observe in this 

disease example that a smaller number of seed genes (77) is accompanied by a slight drop in average 

AUC scores. This implies that mantis-ml performance is directly dependent on confidence from an 

increased presence of known genes, able to focus on broader patterns related with a disease that can 

then identify genes with similar feature profiles as known disease genes. We also provide the Extra 

Trees ranking scores as the default mantis-ml predictions for ALS (Suppl. File 2; Table S3). 
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We then sought to examine the importance of the seed genes set for the prediction performance of 

mantis-ml. We thus tested the prediction probabilities across all seed (positively-labelled) genes in the 

three disease examples (CKD, Epilepsy and ALS) when the seed gene set is selected based on either 

the HPO annotation or randomly (Fig. 3a). The size of seed gene sets varies in these disease examples 

(CKD : 587, Epilepsy: 864 and ALS: 77) allowing also exploration of the importance of seed gene lists 

of varying length. We observed that in all three diseases, the prediction probabilities for seed genes 

when using a real seed gene set are skewed towards a probability of ‘1.0’ while the respective 

distribution acquired when using random seed genes of same length is almost uniformly distributed 

across the entire probability spectrum (0.0-1.0). In all cases, the probability distributions significantly 

differ between real and random seed genes (Mann-Whitney U P-value=3.81x10-87, 2.34x10-87, 1.02x10-

08 for CKD, Epilepsy and ALS, respectively). 

 

Mouse model phenotypes, tissue expression and protein-protein interactions recurrently 

among top feature contributors in mantis-ml predictions 

Although mantis-ml focuses on identifying features highly predictive of known seed genes, we expect 

that some features are generally strong predictors agnostic to specific disease. mantis-ml integrates 

more than 1,200 features in total (Fig. 1) that are subset according to the disease under study. A typical 

disease example will be trained on around 100 features from mantis-ml, prior to any pre-processing.  

We sought to explore the contribution of each of the features during stochastic positive-unlabelled 

learning across all three examined disease cases. We employed the Boruta algorithm based on a 

Random Forest classifier, across 100 random balanced gene subsets with 10-fold cross-validation (see 

Methods). The Boruta algorithm provides an unbiased assessment of feature contribution as it 

constructs artefactual features (‘shadow’ features) from random permutations of each of the actual 

features of a dataset and then iteratively confirms or rejects the original features based on their Z-

score distances from the importance levels achieved by the random (shadow) features. We have run 

Boruta for CKD, Epilepsy and ALS and extracted the consensus profile of feature importance in each 

disease case across 100 stochastic iterations (Suppl. Fig 9a-c; see Methods). We then normalised the 

Z-scores among the three disease cases (min-max normalisation) to compare the relative importance 

of each feature in the different diseases and provide a disease-agnostic consensus of feature 

importance profile (Fig. 3b,c).  

The consensus of feature selection across CKD, Epilepsy and ALS reveals mouse model phenotypes 

and tissue-specific expression (Kidney, Brain and Brain/Skeletal Muscle, respectively, based on 

ProteinAtlas and GTEx) as consistently highly important contributors. Specifically, the ‘MGI mouse 

knockout feature’ is the top contributor in all three cases which reflects the high importance of tissue-

specific animal models for validation of disease phenotypes in humans as well. This feature captures 

human genes with mouse orthologs that are associated with a ‘High-level Mammalian Phenotype’ 

(based on MGI) relevant to the disease under study (see Methods). Moreover, human orthologs of 

mouse genes that have been found to be essential for basic developmental functions and/or survival 

in both species (‘MGI essential gene’) are the next top contributors in CKD and Epilepsy and among 

the top contributors for ALS. Tissue-specific expression (‘GTEx tissue specific expression (TPM)’, 

‘ProteinAtlas expression (Not detected)’ and ‘GTEx tissue specific expression Rank’) follow in the order 

of consistent feature importance, with a particularly high contribution to ALS, compared to the other 

two disease cases. A very interesting outcome of the Boruta algorithm is the emergence of protein-

protein interactions-related features (‘Inferred seed genes overlap’, ‘Experimental seed genes 

overlap’) being ranked in the top five important features. We have constructed these features to 
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capture the ratio of known (seed) genes interacting directly with each gene based on either 

‘Experimental’ or ‘Inferred’ prediction from the InWeb_IM resource8 (see Methods). Finally, tissue-

specific Gene Ontology (GO) terms, intolerance scores based on ExAC and GnomAD (‘GnomAD_pLI’, 

‘GnomAD_obs_lof’, ‘GnomAD_oe_mis’, ‘GnomAD_pRec’ and ‘RVIS’), tissue-specific GWAS metrics 

(‘GWAS max P-value’, ‘GWAS max OR’) and gene size complete the picture of the most contributing 

features for classification of disease-associated genes in each of the examined disease examples. 

 

Application of mantis-ml predictions to triage results from exome-wide cohort association 

studies 

The rapid development of next-generation sequencing (NGS) technologies in recent years has led to 

the ubiquitous application of large-scale genomic studies by large genomic and/or healthcare 

institutions for research and diagnostic purposes. Of special interest are large association studies that 

assess the enrichment of rare predicted deleterious variants in a collection of disease-ascertained 

cases compared to an available control population. Depending on the contribution of individual genes 

to disease risk these studies can provide experiment-wide significant results17,18, but more often they 

yield hundreds of highly-ranked genes of interest that do not exceed the genome-wide statistical 

significance thresholds given the available cohort size. Biologically relevant genes will reside among 

those highly ranked genes (lowest p-values but not experiment-wide significant); however, they will 

be surrounded by stochastic signals representing the natural trail of the null distribution. Teasing apart 

the biological signals from stochastic signals among the top ranks is a key challenge for most high-

throughput genomics screens. The importance is that some of the gene candidates are then often 

pursued by downstream bioinformatic analysis often involving laborious post hoc manual or semi-

automated search through existing literature and this process can be biased by a differing filtering 

process designed by each individual researcher based on their prior experience. Thus, different 

researchers adopting different resources will ultimately result in triaging different genes from each 

other. 

mantis-ml eliminates subjectivity and post hoc design from gene prioritisation by using a standardised 
set of community knowledge and collectively assessing all interactions (both linear and non-linear) 
between multiple features that may characterise genes’ behaviour with respect to disease 
phenotypes. Here, we want to demonstrate the utility of leveraging the power of mantis-ml 
predictions to provide orthogonal information to support triaging the candidate genes found among 
results from Whole Exome Sequencing (WES)-based association studies. We selected one study per 
disease category where genes have been previously ranked based on the significant case-enrichment 
of various types of qualifying variants (e.g. putative loss-of-function [pLoF], missense, synonymous, 
etc.) between cases and controls for the respective cohort. Specifically, for CKD we are cross-
referencing a study examining the preponderance of rare pLoF and other types of rare variants across 
a population of 3,150 cases and 9,563 controls19. Another study with 640 individuals with familial 
genetic generalised epilepsy and 3,877 controls has been employed for further triaging based on the 
mantis-ml predictions for the Epilepsy disease case17. Finally, for ALS we are using the results from a 
study looking into the collapsing analysis results of nearly 3,000 ALS patients compared against 6,405 
controls20. 

In each example, we sought to ask the question of whether the lowest p-values from the exome-wide 
association statistics (highest ranked from cohort studies) are significantly preferentially enriched for 
genes achieving mantis-ml highest predictions for that corresponding disease. To this end, we apply a 
hypergeometric enrichment test asking whether the top 5% of mantis-ml predictions in each disease 
case are preferentially overlapping with the top signals (lowest p-values) from the cohort-level 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 30, 2019. ; https://doi.org/10.1101/655449doi: bioRxiv preprint 

https://doi.org/10.1101/655449
http://creativecommons.org/licenses/by-nc-nd/4.0/


association studies (i.e., the published rare-variant gene-based collapsing analysis gene lists). To 
strengthen our experimental design with negative control components, we assess this enrichment 
across several differing classes of qualifying variants including synonymous and permutation-based 
gene-ranks, which should represent the expected null to contrast the more biologically interesting 
models, such as the pLoF and ultra-rare deleterious missense collapsing analyses. To highlight whether 
there is significant enrichment among the lowest cohort-level association statistic p-values we are 
focusing our enrichment assessment of the top mantis-ml predictions among the top ranked 
statistically significant genes (P < 0.05) from the respective rare-variant gene-based association study. 
We observed that in all three disease examples, mantis-ml predictions overlap significantly with the 
exome study ranking for LoF variants (Fig. 4a). Notably, the significance of enrichment for LoF signal 
within mantis-ml predictions is the highest compared to all other ranked gene lists that are formed 
based on other type of qualifying variant classes that have been studied (synonymous, common, 
missense and shuffle/random permutation). Enrichment of high mantis-ml predictions (top 5% per 
disease) among LoF-associated genes (P-value < 0.05 from the published collapsing analysis results) is 
always statistically significantly different from a shuffled (randomised LoF-associated gene list) 
enrichment signal (Mann-Whitney U P-value=2.91x10-300, 5.53x10-147, 4.17x10-194 for CKD, Epilepsy and 
ALS, respectively). Moreover, enrichment of high mantis-ml predictions among top ranked LoF-
associated genes is also always statistically significantly different from the enrichment signal from 
genes associated with synonymous variants (Mann-Whitney U P-value=1.34x10-125, 1.60x10-33, 
2.36x10-84 for CKD, Epilepsy and ALS, respectively; considering ‘Dom_coding’ as the comparator class 
in ALS due to lack of a real synonymous collapsing analysis gene list in the published analysis). 

We further quantified the enrichment signal by calculating the ratios of areas under curve between 
the LoF and synonymous collapsing analysis signals for CKD, Epilepsy and the total areas covered by 
the LoF enrichment signal for ALS, due to lack of a synonymous-associated signal in the respective 
published study. The synonymous enrichment signal serves as a negative control (technical baseline) 
since we expect genes prioritised during collapsing analysis based on synonymous variants not to be 
associated with pathogenicity, in general. We sought to explore how each of the seven classifiers 
performed when overlapped with top ranked WES-based gene lists. We observe that the best AUC 
performing classifiers per disease category in mantis-ml also ranked among the top three classifiers in 
terms of area under curve ratios and/or total LoF area (Suppl. Fig. 10-12). Other classifiers also 
perform comparably or slightly better, which is in concordance with the similar AUC performance 
achieved from differing classifiers retrieved from the original mantis-ml training, again, reinforcing the 
consistency and robustness of the framework irrespective of chosen classifier.  

By applying the hypergeometric test for mantis-ml prediction enrichment in published case-control 
association studies, we can eventually extract a consensus list of predicted novel genes-of-highest-
interest that satisfy both the hypergeometric test (p<0.05) and the collapsing analysis statistical 
significance threshold (p=0.05). We can further select the subset of genes that were supported by at 
least five of the seven classifiers in each disease case (Fig. 4b). Eventually, we highlight 19 (CKD), 8 
(Epilepsy) and 13 (ALS) novel (unlabelled) genes-of-highest-interest extracted by overlapping the 
collapsing analysis results with the mantis-ml predictions across multiple classifiers. To validate this 
cross-validation approach we also assessed the results retrieved with regards to known (labelled) 
genes for each disease. For example, in CKD we observe that some of the most well-established CKD-
associated genes (PKD1, PKD2, COL4A1, COL4A3, COL4A4, COL4A5) rank in the top 9 genes among the 
17 known CKD genes that achieved both a collapsing analysis p<0.05 and hypergeometric test p<0.05 
(Suppl. Fig. 13). 

The unlabelled genes-of-highest-interest represent a collection of genes that were not among the HPO 
derived set of seed genes in the initial process of mantis-ml. Given the dependency on OMIM, some 
of these novel genes of highest interest (highly ranked by publish case-control studies and also by 
mantis-ml predictions) might have existing literature support for disease-association to act as a further 
positive control; however, with the caution that some might have been prioritised in literature on 
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basis of similar underlying knowledge leveraged by mantis-ml to predict them as genes-of-interest. 
We looked for references in literature for the top suggested novel genes per disease by mantis-ml and 
have found supporting evidence for several genes. For instance, LAMA5 has been reported in the last 
two years to be co-inherited with COL4A5 in familial hematuria21 and hosting variants that may affect 
pediatric nephrotic syndrome22,23. Moreover, NOS3 and NOS2—although not associated with CKD in 
OMIM —have already been implicated in Chronic Kidney Disease in a fair amount of studies24,25,26,27, 
while MEF2C, a gene typically associated with mental disorders, has also been associated with 
estimated Glomerular Filtration Rate (eGFR) or proteinuria28. SCLT1 deficiency has been linked with 
cystic kidney29 and SMAD genes (including SMAD3) have been reported to affect CKD progression 
when dysregulated30. INPP5B impairment has been associated with severe renal phenotypes, such as 
proximal tubule endocytosis31, while targeting NFE2L2 (NRF2) has been tested for prevention of 
Kidney Disease Progression32. 

With regards to the top novel epilepsy-associated predictions, CACNA1B is associated with voltage-
gated calcium channel which is subsequently implicated in epileptic phenotypes33,34,35. USF1-
deficiency in mouse (in combination with USF2 knockout) has been shown to cause epileptic 
seizures36, suggesting its important role for normal brain function. Furthermore, KDM6B is associated 
with neuronal survival37 and when haploinsufficient it causes severe seizures38. ANK3 has also been 
reported to be involved in epilepsy39,40. Loss-of-Function and Gain-of-Function variants in KCNQ5 have 
been shown to cause epileptic encephalopathy41.  

As for the ALS consensus novel predictions, missense variants in SYNE1 have been reported to be 
associated with a multisystemic neurological phenotypic spectrum that includes amyotrophic lateral 
sclerosis42,43,44. ALDH5A1 is significantly down-regulated in the spinal cord of an ALS murine model45 
while ABCA1 is among the altered genes in frontal cortex of ALS samples46. Finally, motor neurons in 
human ALS show significant abnormalities in DNMT3A, which is also over-expressed in synapses in 
mice with motor neuron degeneration47. 

 

Visualisation of cross-validated mantis-ml predictions and downstream analysis 

Visualising the consensus novel and known genes from the overlap of mantis-ml predictions with rare-

variant collapsing analysis results is an important component to ensure appropriate interpretation and 

accessibility to the data, findings and interpretation. Principal Component Analysis (PCA) performed 

for each of the three disease examples used in this study achieves a slight segregation of positive and 

unlabelled genes, with the consensus novel and know gene predictions tending to differentiate the 

most from the rest of genes (Suppl. Fig. 14). However, PCA fails to capture a high ratio of the total 

variance to be explained by its first 2 or 3 components (the variance explained by the first 3 

components in each disease case is on average about 21%). Since PCA is representing the original 

features as linear combinations of the projected Principal Components, its inability to identify patterns 

of high variability in the entire gene set implies that the associations between the various collections 

of features driving gene predisposition to disease are likely to be non-linear. 

Thus, we then apply two popular dimensionality reduction techniques that can identify non-linear 

patterns in the original high-dimensional feature space for each disease example: t-Distributed 

Stochastic Neighbour Embedding (t-SNE) and Uniform Manifold Approximation and Projection 

(UMAP). We observe that both methods map most of the consensus novel genes-of-highest-interest 

in the neighbour of distinct clusters of known genes (Suppl. Fig. 15). Both techniques capture patterns 

in more localised regions of genes while UMAP may also retain elements from the global structure 

more efficiently than t-SNE. By contrasting the two projections we may identify clusters of genes that 

are more likely to be close (i.e. similar) with each other in absolute terms of distance (similarity). 
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Finally, mantis-ml tool provides interactive visualisations of all three projections (PCA, t-SNE and 

UMAP) for further inspection of gene clusters as well as offers all extracted two-dimensional 

representations of the original data space that allow further extraction of clusters of genes e.g. using 

HDBSCAN for further downstream analysis. 

 

Generic Mantis-ML Score for gene disease likelihood  

One of the key requirements for the above three disease-specific applications of mantis-ml is a 

sufficient collection of known OMIM disease-associated genes based on HPO term linkage. A rich 

collection of genes will not always be available for many diseases of interest. Therefore, we wanted 

to further explore the generation of disease-agnostic mantis-ml predictions. To achieve this, we 

trained mantis-ml using all current OMIM disease-associated genes (4,041 in total; see Methods) as 

seed genes to create a Generic Mantis-ML Score (GMS) that can be used as a general estimate of gene 

disease likelihood. Although it does not take full advantage of tissue- and disease-specific features, 

the GMS could be an opportunity to prioritise genes among disorders that currently have insufficient 

knowledge on causal genes. 

We calculated the OMIM-based GMS using six different classifiers: Random Forest, Extra Trees, 

Gradient Boosting, XGBoost, SVC and DNN (here, we excluded Stacking due to its much longer training 

time compared to the other classifiers as well as the resulting slightly lower AUC performance). 

Gradient Boosting was the top performing classifier (average AUC=0.84) followed by Random Forest, 

XGBoost and Extra Trees with comparable AUC scores (Supp. Fig. 16). Similar to the disease-specific 

cases, in the generic disease mantis-ml results, we observe a high concordance between the 

predictions from all classifiers with regards to known disease genes among the out-of-bag test sets. 

Specifically, of the 4,041 known genes, around 1,300 (32.2 %) were consistently identified by all 

classifiers (achieving probability > 0.5). Another 380 known genes (9.4%) were further identified by at 

least five of the six classifiers. With regards to novel disease-associated genes, again the largest group 

of predicted genes (n=600) was predicted by all classifiers, and ~320 novels genes by at least five 

classifiers. In both cases, DNN had the highest number of known and novel predictions identified solely 

by a single classifier (280 and 680 predicted genes, respectively). We provide the average probability 

scores returned by Gradient Boosting as the default ranking for GMS along with the respective 

percentile score for each gene (Suppl. File 2; Table S4). 

Furthermore, we ran again the Boruta algorithm for a single (L=1) stochastic iteration to identify the 

most important features that drive gene classification based on the entire OMIM disease annotation 

and compare it against the respective features (where applicable) extracted from the disease-specific 

cases. We observe that mouse model phenotypes (‘MGI essential gene’ and ‘essential mouse 

knockout’), protein expression (based on GTEx and Protein Atlas), protein-protein interaction features 

(‘Inferred seed genes overlap’ and ‘Experimental seed genes overlap’) are still the top feature 

contributors as in CKD, Epilepsy and ALS (Fig. 5a). Additionally, gene length, Gene Ontology features 

and intolerance scores (RVIS and the scores based on GnomAD) rank highly in the normalised average 

Boruta score scale. 

To validate the Generic disease classifier results, we explored the ability of mantis-ml to correctly 

identify a set of known genes which has not been provided as part of the original seed gene set. Thus, 

we masked a random selection of 40% of the 4,041 seed genes (considering them as unlabelled) and 

then trained the generic mantis-ml algorithm using Gradient Boosting as the standard classifier, for 

L=5 stochastic iterations. Notably, masked OMIM disease genes were predicted as well as the 
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unmasked seed genes with no significant difference (Mann-Whitney U P-value=0.119; Fig. 5b). We 

explored the predictive power of GMS in this case in terms of distinguishing seed genes from 

unlabelled ones and retrieved AUC scores of 0.853 and 0.83 for unmasked and masked (hidden) seed 

genes, respectively (Fig. 5c).  

We then assessed the ability of GMS to efficiently stratify different OMIM- and MGI-based gene 

classes based on prediction probabilities assigned to hidden seed genes only, to avoid any over-

prediction bias from the retained seed genes (unmasked). The gene classes that we used have been 

defined in a previous work9 and the intersection with the hidden genes used in this case are: OMIM 

dominant negative (130 genes), OMIM de novo and haploinsufficient (46 genes), OMIM de novo (168 

genes), OMIM recessive (304 genes), OMIM haploinsufficient  (70 genes) and MGI seizure orthologs 

(25 genes). We also compile the union of these gene classes as the ‘OMIM_MGI_union’ set (510 

genes). We observe a high predictive power in this classification task for GMS with AUC scores ranging 

from 0.82-0.86 across the different OMIM/MGI gene sets and 0.80 of the union of these genes (Fig. 

5d). These scores are considerably higher from similar assessments using other metrics of genic 

intolerance: gnomAD_pLI, gnomAD_mis_z, RVIS_ExACv2, ExAC_cnv.score and LoF_FDR_ExAC. The 

AUC performance of these scores in the task of OMIM/MGI vs non-OMIM/MGI classification (Suppl. 

Fig. 21) were in the range of: 0.58-0.85 (gnomAD_pLI), 0.47-0.79 (gnomAD_mis_z), 0.47-0.70 

(ExAC_cnv.score), 0.50-0.68 (RVIS_ExACv2) and 0.50-0.72 (LoF_FDR_ExAC). The respective AUC scores 

for the classification of the union of OMIM/MGI gene sets vs non OMIM/MGI genes were in the range 

of 0.48-0.60 across all these metrics. It is, however, important to note that these component metrics 

are based on more specific data-types, whereas mantis-ml leverages the information from a wider 

and diverse collection of features. The ability of mantis-ml to correctly classify hidden seed genes 

underlines its power to subsequently correctly identify other unlabelled genes and provide a 

biologically meaningful ranking. 

Finally, we explored how GMS would perform when overlapped with disease-specific rare-variant 

collapsing analyses results, similar to our assessment above using the disease-specific mantis-ml 

predictions (Supp. Fig. 17). We noticed that there is still significant enrichment of the LoF signal in all 

three cases but at a much lower level compared to the disease-specific cases (LoF/synonymous area 

ratios with GMS: 1.18, 0.81, 2.21 and respective scores with disease-specific classifiers: 4.97, 33.95, 

Inf/Not-defined, due to lack a synonymous class). This highlights the added value of leveraging the 

disease-specific classifiers, built on top of disease-specific features, to efficiently identify genes 

associated with a disease when such information (seed genes) is available. At the same time, the 

residual enrichment signal that can still be observed when using the Generic mantis-ml classifier 

predictions provides applied support about the utility of GMS to provide biologically relevant gene 

predictions when coupled with large case-control association statistics in the absence of disease-

specific domain knowledge. 

 

Discussion 

Present day, the genomics community is generating and analysing large volumes of exome and 

genome sequence data to better understand the genetic architecture of rare and common complex 

disorders. Here, we introduce a novel multi-dimensional machine learning framework, mantis-ml, to 

support the triaging of the result of those large-scale exome-wide genetic read-outs to further aide 

the prioritisation of novel disease genes. mantis-ml takes its name from the Greek word 'μάντης' which 

means 'fortune teller'. Given the demonstrable predictive utility of mantis-ml, particularly when 

generated in disease-specific predictions, the gene candidates triaged by mantis-ml in combination 
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with rare-variant association studies from whole-exome sequencing data facilitate a standardised and 

objective prioritisation of genes for further functional validation in in vitro and in vivo models; either 

supplementing existing bioinformatic prioritisation pipelines or its own. As the power of cohort-level 

studies increases through access to larger cohort of sequenced individuals, we expect to be able to 

elucidate even more refined associations of novel genes implicated in complex disease phenotypes. 

One key limitation of mantis-ml, as with most machine learning frameworks, is the dependency on 

existing patterns. As such, mantis-ml is most powerful in identifying new disease-associated genes 

that might cause disease through an existing understood mechanism. Disease genes representing an 

entirely novel disease mechanism might not be as highly prioritised. However, there might be 

opportunities to explore unsupervised approaches by clustering the results from t-SNE and UMAP 

(which are part of the mantis-ml processing workflow) and run pathway enrichment analysis to detect 

clusters of genes with a profile closely associated with the disease under study. Moreover, mantis-ml 

currently supports bespoke disease-specific features only for Chronic Kidney Disease and 

Cardiovascular disease (e.g. CKDdb, GOA, exSNP, etc.). These sets of features could be expanded for 

additional diseases using relevant data resources that might enable even more refined stratification 

of genes in other disease categories. mantis-ml also supports inclusion of additional public or user 

internal features to contribute to the underlying predictions. 

Opportunities for future technical expansion of this approach include exploring integrating 

autoencoders for fully feature agnostic dimensionality reduction as well as applying Graph 

Convolutional Networks to better leverage information from protein-protein interaction networks. 

Our multi-dimensional gene prioritisation framework has demonstrable value when used together 

with results from any gene-based burden or collapsing analysis and is agnostic to the disease cohort, 

provided there is already ample knowledge of disease-associated genes. In the absence of such known 

disease gene lists, we also provide a GMS that could be adopted. We propose use of mantis-ml as an 

objective, standardised, fully quantitative and automated gene-prioritisation tool for disease-specific 

or disease-agnostic studies. Additionally, we provide it as a complementary tool when assessing 

putative disease genes extracted from completely orthogonal genetic studies; thus, reducing the 

required time for triaging top gene candidates from what is often a weeks-to-months process down 

to just a couple of hours. 

 

 

Methods 

Data availability & pre-processing 

- Generic Resources 
ExAC 

Exome Aggregation Consortium (ExAC) data are available at: 

http://exac.broadinstitute.org/downloads (last accessed on 06/03/2019). We integrate all data from 

CNV Counts and Intolerance Scores (‘exac-final-cnv.gene.scores071316’) and the ‘GeneSize’ feature 

from the Functional Gene Constraint Scores (‘fordist_cleaned_exac_r03_march16_z_pli\_ 

rec_null_data.txt’).  

Essential mouse genes 

We integrate data from Georgi et al. (2013) that contain annotation for human orthologs of mouse 

genes that have been found to be essential for basic developmental functions and/or survival in both 
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species (available at: https://doi.org/10.1371/journal.pgen.1003484.s022, last accessed on 

06/03/2019). Both genes that have been identified as essential or non-essential are recorded and 

used as features by mantis-ml. 

Genic-intolerance scores 

We integrate two types of genic-intolerance scores: Residual Variation Intolerance Score (RVIS) and 

Missense Tolerance Score (MTR). RVIS scores (applied to EVS, ExAC and ExAC v2) are publicly 

available at http://genic-intolerance.org while MTR scores are publicly available at http://mtr-

viewer.mdhs.unimelb.edu.au (both last accessed on 06/03/2019). 

GnomAD 

Genome Aggregation Database (GnomAD) data are publicly available at 

https://gnomad.broadinstitute.org/downloads (release 2.1, last accessed on 06/03/2019). We 

integrate all gene constraint scores in the mantis-ml framework. We retain for each gene all 

associated constraint scores that correspond to the canonical transcript, choosing the longest one in 

case there are more than one canonical transcript annotated for a gene. Aforementioned ExAC is a 

subset of GnomAD; however, both versions of the associated constraint scores are adopted. 

GWAS (used both in the generic and disease-specific models) 

Genome Wide Association (GWAS) data are publicly available at: 

https://www.ebi.ac.uk/gwas/docs/file-downloads (last accessed on 06/03/2019). We integrate data 

from ‘All associations’ (v1.0.2). For the disease-specific model we select all entries that contain any 

of the ‘seed_include_terms’ and ‘additional_include_terms’ and do not contain any of the 

‘exclude_terms’ from config.yaml in their ‘DISEASE/TRAIT’ field. For the generic model we include all 

entries. In both cases, however, we filter out any entry with a p-value over the genome-wide 

significance threshold (p-value threshold: 5x10-8). Then, both for the disease-specific and generic 

model, we assign a True boolean flag to every gene that has at least one GWAS hit for any of the 

query terms specified. We also record the total number of GWAS hits per gene as well as the 

min/max p-values and min/max Odds Ratios associated with each gene. 

MGI (generic) 

Mouse Genome Informatics (MGI) data are publicly available at: 

http://www.informatics.jax.org/downloads/reports/index.html (last accessed on 06/03/2019). We 

are integrating data from three files: Genotypes and Mammalian Phenotype Annotations for Marker 

Type Genes excluding conditional mutations (‘MGI_GenePheno.rpt’), Mouse/Human Orthology with 

Phenotype Annotations (‘HMD_HumanPhenotype.rpt’) and Mammalian Phenotype Vocabulary in 

OBO v1.2, tab-delimited and OWL Formats (‘VOC_MammalianPhenotype.rpt’). We combine all data 

from these files to link human with mouse orthologs and their associated high-level mammalian 

phenotype descriptions and IDs. Gene labelling for this feature is performed by string matching of 

the ‘include_terms’ and ‘additional_include_terms’ from the given config.yaml file with the ‘High-

level Mammalian Phenotype ID’ field in hmd_human_pheno.processed.rpt. Finally, we also annotate 

all genes that are associated with a ‘Lethal’ phenotype with a True boolean flag. The MP IDs 

associated with a ‘Lethal’ phenotype are: 0002058, 0002080, 0002081, 0002082, 0002083, 0006204, 

0006205, 0006206, 0006207, 0006208, 0008527, 0008569, 0008762, 0009850, 0010768, 0010769, 

0010770, 0010831, 0010832, 0011083, 0011084, 0011085, 0011086, 0011087, 0011088, 0011089, 

0011090, 0011091, 0011092, 0011093, 0011094, 0011095, 0011096, 0011097, 0011098, 0011099, 

0011100, 0011101, 0011102, 0011103, 0011104, 0011105, 0011106, 0011107, 0011108, 0011109, 

0011110, 0011111, 0011112, 0011400, 0013292, 0013293, 0013294. 
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- Resources filtered by tissue/disease 
GTEx 

Genotype-Tissue Expression (GTEx) data are publicly available at: 

https://gtexportal.org/home/datasets (V7, last accessed on 06/03/2019). We integrate RNA-Seq 

data that contain the median TPM expression values by tissue (‘GTEx_Analysis_2016-01-

15_v7_RNASeQCv1.1.8_gene_median_tpm.gct’, last accessed on 06/03/2019). For the tissue-specific 

model case, we subset the GTEx tissues that match the strings defined in the ‘tissue’ and 

‘additional_tissues’ fields in config.yaml and then aggregate all values by gene across all tissues. 

Additionally, we assign a rank for each gene based on the aggregate expression across all matching 

tissues (ranks = {1, 2, 3, …} in order of decreasing expression). Genes with overall expression less 

than the median among all genes are assigned the same rank, equal to the total number of genes, to 

increase signal-to-noise ratio for the most highly-expressed genes. As for the disease-generic model 

case, we keep expression values across all tissues and retain them for each gene as separate 

features, while no rank is computed in that case. 

Human Phenotype Ontology 

The Human Phenotype Ontology (HPO) data are publicly available at: http://www.human-

phenotype-ontology.org. We are using Build #154 from HPO to annotate disease-associated genes 

(last accessed on 04/03/2019). We are using by default the ‘ALL_SOURCES_FREQUENT_FEATURES_\ 

genes_to_phenotype.txt’ file (provided by the HPO consortium), as our reference annotation file to 

exclude phenotypic features that are observed occasionally (present in 5–29% of the cases), rarely 

(present in 1–4% of the cases) or not at all (present in 0% of the cases). Annotation is performed by 

selecting genes whose ‘HPO-Term-Name’ contains any of the ‘seed_include_terms’ and does not 

contain any of the ‘exclude_terms’ from the config.yaml configuration file. 

Human Protein Atlas 

Human Protein Atlas data are publicly available at: https://www.proteinatlas.org/about/download 

(version 18.1, last accessed on 06/03/2019). We integrate two types of data from Human Protein 

Atlas: Normal tissue data (normal_tissue.tsv), which contain levels of expression for each gene in 

different tissues and cell types (categorical variable: ‘Not detected’, ‘Low’, ‘Medium’, ‘High’) and 

RNA gene data (rna_tissue.tsv), which contain TPM expression values for each gene by Sample 

(where ‘Sample’ in this case is similar with the ‘Tissue’ field from Normal tissue data).  

We initially filter out all entries that have an ‘Uncertain’ value in the ‘Reliability’ field. For the 

disease-specific model case, we select all genes which contain any of the strings from ‘tissue’, 

‘seed_include_terms’ and ‘additional_include_terms’ and do not contain any of the ‘exclude_terms’  

from config.yaml file in their Tissue/Sample fields for Normal tissue and RNA gene data, respectively. 

Normal tissue data contain in general multiple values (levels of expression) per gene for the different 

cell types under each tissue type. We collapse all values for each gene by selecting the highest level 

found in a cell type within each tissue (‘Not detected’ < ‘Low’ < ‘Medium’ < ‘High’). With regards to 

RNA gene data, we aggregate all TPM values for each gene. 

As for the generic disease model, expression levels from Normal tissue data are retrieved across all 

tissues, the highest level is retained for each gene and eventually we convert the four original levels 

into two: ‘Not detected’ and ‘Low’ are both considered as ‘Low’ and ‘Medium’ and ‘High’ are both 

considered as ‘High’. This transformation is performed to increase signal-to-noise ratio on this 

feature when looking at expression across all tissues. Finally, RNA gene data are aggregated by gene 

for each Sample. 

InWeb_IM 

InWeb_IM data (human protein-protein interaction network data, Li et al. 2017) are publicly 
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available at: https://www.intomics.com/inbio/map.html#downloads 

(‘inBio_Map_core_2016_09_12.zip’, last accessed on 06/03/2019). Protein-protein interactions are 

characterised as ‘inferred’ or ‘experimental’ based on the validation degree recorded for each 

interaction in the original analysis. We untangle all interacting genes for each gene by validation type 

(‘inferred’ or ‘experimental’) and during analysis we record the ratio of interacting genes that belong 

to the seed genes (positively labelled genes) in each disease-specific run. 

MGI 

Data compilation is performed as described at the ‘MGI’ section in ‘Generic Resources’. For the 

disease-specific model, annotation is performed by selecting all genes whose linked phenotypes 

contain any of the strings from ‘seed_include_terms’ and ‘additional_include_terms’ and do not 

contain any of the ‘exclude_terms’ from config.yaml. 

MSigDB 

Molecular Signatures Database (MSigDB) data are publicly available at: 

http://software.broadinstitute.org/gsea/downloads.jsp (v6.2, last accessed on 06/03/2019). We 

integrate data from the c5 gene set (gene ontology sets). For the disease-specific model case, we 

select all gene ontology terms that contain any of the strings from ‘tissue’, ‘seed_include_terms’ and 

‘additional_include_terms’ and do not contain any of the ‘exclude_terms’ from config.yaml. As for 

the disease-generic model, we retain all gene ontology terms. In both cases, gene ontology terms 

with less than 150 associated genes (0.08% of all genes) are filtered out to reduce the number of 

features with near-zero variance. In the current dataset this leaves 1,009 of 5,917 gene ontology 

terms. 

OMIM 

Online Mendelian Inheritance in Man (OMIM) data are available under licensing at: 

https://www.omim.org (‘genemap2.txt’, last accessed on 06/03/2019). We have restricted OMIM 

data to the subset of entries where the field ‘Phenotypes’ contains ‘(3)’, which reflects entries where 

the ‘molecular basis for the disorder is known; a mutation has been found in the gene’. OMIM 

annotation data are used only for extracting a disease-generic gene ranking. By default, all genes 

which contain ‘(3)’ in their ‘Phenotypes’ field are annotated as disease-associated genes (value ‘All’ 

in ‘generic_classifier’ parameter in the config.yaml file). Additional filtered layers of positive gene 

data are available by specifying different values for the ‘generic_classifier’ in config.yaml: a) ‘AD’ for 

selecting only genes that include ‘Autosomal dominant’ annotation in their ‘Phenotypes’ field, b) ‘AR’ 

for selecting only genes that include ‘Autosomal recessive’ annotation in their ‘Phenotypes’ field, c) 

‘AD_only’ for selecting only genes that include ‘Autosomal dominant’ annotation and at the same 

time do not contain ‘Autosomal recessive’ annotation in their ‘Phenotypes’ field, d) ) ‘AR_only’ for 

selecting only genes that include ‘Autosomal recessive’ annotation and at the same time do not 

contain ‘Autosomal dominant’ annotation in their ‘Phenotypes’ field.  

All string-matching operations are case insensitive. 

 

- Disease-specific Resources (currently supported) 

i. Chronic Kidney Disease (CKD): 

CKDdb 

Data from the Chronic Kidney Disease database (CKDdb) are available at: 

http://www.padb.org/ckddb (last accessed on 08/03/2019). We annotate each gene that has 
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been associated with a renal disease with a True boolean flag and also record the total number 

of studies in CKDdb that support this evidence. 
 

nephQTL 

eQTL data for the glomerular and tubulointerstitial tissues (NephQTL) are available at: 

http://nephqtl.org. This database contains cis-eQTLs of the glomerular and tubulointerstitial 

tissues of the kidney found in 187 participants in the NEPTUNE cohort. For each gene and tissue, 

we record the expected number of eQTLs, the probability of not having eQTLs and the False 

Discovery Rate (FDR). 

 
ii. Cardiovascular Disease: 

exSNP 

Data from the database of expression associated SNPs (exSNP) are available at: 

http://www.exsnp.org/Download (last accessed on 08/03/2019). We are integrating disease 

associated high confidence (r2 > 0.8) eQTLs for Coronary Artery Disease and Hypertension and 

record the total number of eQTLs associated for each gene in each condition. 
 

Adipose eQTLs 

Data for adipose eQTLs identified at GWAS loci for cardiometabolic diseases and traits were 

retrieved from Civelek et. al, 2017 (Table S8). We record for each gene the total number of 

GWAS loci and cis eQTLs that have been associated for cardiometabolic traits. 

 
Platelet eQTLs 

Data for platelet eQTLs were retrieved from Simon et. al, 2016 (Table S2). Platelets have been 

shown to contribute to ischemic cardiovascular events48. We record for each gene the total 

number of heterozygous coding sites with a marginal eQTL effect (p < 10-4) and with 10 or more 

reads. 

 

Feature pre-processing 

mantis-ml performs automatic feature pre-processing which includes filtering highly correlated 

features (parameter eda_parameters -> high_corr_thres in config,yaml; default value: 0.8). 

Additionally, features with a number of missing data over a certain threshold are discarded (parameter 

eda_parameters -> missing_data_thres in config,yaml; default value: 0.25). The remaining features 

with missing data ratio below the cut-off threshold are imputed with either a zero value or the median 

of the respective feature. Imputation with zero is performed either due to most of the genes 

representing a binary flag (‘non-existent’ or 0 for missing data, e.g. 'MGI_mouse_knockout_feature', 

'GOA_Kidney_Research_Priority', etc.) or having extracted these features from computational or 

experimental studies that retrieve a biologically-relevant signal only from a specific set of genes, 

associated with the hypothesis under examination (e.g. 'platelets_eQTL', 'adipose_GWAS_locus' 

features, etc.). The features that are imputed with a median value are all GWAS and ExAC CNV-

associated features, RVIS, MTR and gene-length. The selection of the median value for imputation in 

that case is due to different studies and/or resources being based on different global reference sets 

of genes, which requires extrapolation of these features to genes with missing values, since penalising 

them with a zero value would most likely not be representative of the actual gene behaviour with 

respect to these features. Finally, features are standardised to have mean zero value and unit variance. 
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Stochastic positive-unlabelled prediction with standard classifier 

The input data for mantis-ml are all coding genes, labelled based on known/unknown annotation for 

a disease, and accompanied with a large set of gene-level features extracted from public databases. 

To explore the potential of correctly classifying disease-associated genes, we initially set up a 

controlled environment with a single balanced dataset of positive and unlabelled data points from the 

CKD disease example. This dataset included over 1,000 genes (with positive:unlabelled ratio = 1:1.5). 

Within this balanced dataset we ran 10-fold Cross-Validation to assess mantis-ml’s predictive power 

in the out-of-bag dataset. Training was performed with seven different classifiers to assess their 

relative performance (Random Forests, Extra Trees, Gradient Boosting, Extreme Gradient Boosting, 

Support Vector Classifier, Deep Neural Net and Ensemble Stacking method consisted of a combination 

of these base classifiers). Fine-tuning of each of the classifiers was performed using Grid-Search with 

10-fold Cross-Validation on a single random balanced dataset from CKD. We then streamlined this 

process across 10 random balanced datasets to perform a moderate size benchmarking test. 

Performance across all classifiers was comparable leading us to the choice to keep all classifiers as an 

option to be used by mantis-ml in each run. Eventually, we scaled up the positive-unlabelled learning 

task to the entire gene space, which is covered by a random partitioning of the unlabelled genes in 

combination with a random subset of the positive (seed) genes each time. The final ranking is 

extracted by averaging the prediction probabilities assigned to each gene from all the generated out-

of-bag sets. This approach allows genes to ‘compete’ in a stochastic semi-supervised manner with 

each other and perform self-sorting considering that their respective features can capture enough 

variance of truly disease-relevant characteristics. 

 

Optimal classifier parameters selection with Grid Search Cross-Validation 

Fine tuning for all scikit-learn based classifiers (Random Forest, Extra Trees, Gradient Boosintg, SVC) 

and for XGBoost was performed using GridSearchCV from scikit-learn’s model_selection module, over 

a pre-defined finite parameter grid space and tested on a single random balanced dataset from the 

CKD disease example. With regards to keras-based Deep Neural Networks, we developed a module 

that performs Grid Search with cross-validation (dnn_grid_search_cv.py), including tuning of 

parameters such as size and number of hidden layers. This module currently supports simultaneous 

fine-tuning of up to 2 features but can otherwise fine-tune any DNN-related parameters in a single 

run, with sequential steps of optimisation that progressively select near-optimal features in a heuristic 

manner. Below are given the optimal features returned from each Grid Search with Cross-Validation 

run per classifier. 

Table 1. Optimal parameters for each classifier calculated with Grid Search and 10-fold Cross-Validation. 

Classifier Parameters selected with Grid Search 

Deep Neural Network 
(DNN) 

• hidden layers: 2 

• nodes per layer: [32, 32] 

• dropout ratio: 0.3 

• L2 regularisation parameter: 0.01 

• optimizer: ‘Adagrad’ 

• epochs: 50 

• batch_size: 128 
 

Extreme Gradient Boosting 
(XGBoost) 

• learning_rate: 0.01 

• n_estimators: 300 

• max_depth: 5 
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• min_child_weight: 3 

• gamma: 0 

• subsample: 0.8 

• colsample_bytree: 0.8 

• objective: 'binary:logistic' 

• scale_pos_weight: 1 
 

Extra Trees 

• n_estimators: 100 

• max_features: ‘auto’ 

• max_depth: 15 

• min_samples_leaf: 2 

• min_samples_split: 5 
 

Gradient Boosting 

• n_estimators: 500 

• max_features: ‘sqrt’ 

• max_depth: 20 

• min_samples_leaf: 4 

• min_samples_split: 5 
 

Random Forest 

• n_estimators: 100 

• max_features: ‘auto’ 

• max_depth: 15 

• min_samples_leaf: 2 

• min_samples_split: 4 

• warm_start: False 

 

Support Vector Classifier 
(SVC) 

• C: 0.01 

• kernel: 'linear' 

• gamma: 'auto' 

• probability: True 

• shrinking: True 
 

 

Optimal selection of number L stochastic iterations in PU-learning 

We examined the number of known and novel genes predicted for different numbers of stochastic 

iterations of PU learning using an Extra Trees classifier on a disease-specific example (Suppl. Fig. 19). 

We observed that the number of predicted known genes is practically insensitive to the number of 

stochastic iterations. However, the number of novel genes requires a certain number of iterations 

until it reaches a stable state, which is around 1000 genes. Specifically, novel genes count enters an 

oscillation zone around the stable state after L=50 iterations which is further stabilised after L=100 

iterations. Eventually, we choose L=100 iterations as the default value for use with all PU-learning 

tasks with mantis-ml to increase the confidence level of gene probabilistic predictions. 

In a more rigorous testing, we assessed the correlation of mantis-ml average prediction probabilities 

when run for different number of stochastic iterations. Ideally, a robust algorithm should capture the 

same average profile for each gene irrespective to the number of iterations mantis-ml has been 

trained on. Specifically, we ran mantis-ml for the following numbers of stochastic iterations: 1, 10, 30, 

50, 70, 100, 150, 200. Pearson’s r correlation of the average mantis-ml prediction probabilities 

extracted from just one iteration compared to all other numbers of iterations is always > 0.984 

(p<2.2x10-308). For any other pair of stochastic iterations > 1, Pearson’s correlations are in the range 

of 0.9976-0.999 (p<2.2x10-308). These predictions demonstrate the robustness of mantis-ml 
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predictions irrespective to the number of stochastic iterations used. Thus, we suggest using L=10 

iterations for an exploratory run on a disease-specific case and only run for L=100 in production to 

retrieve the final slightly more refined results.  

 

Dictionary of inclusion/exclusion query terms for the disease examples studied 

Table 2. Query terms per disease category used in the configuration file for mantis-ml (config.yaml). All query 

terms are case insensitive and follow regular rules of wild card pattern matching. Cells with ‘-‘ should be given 

an empty list ‘[]’ as their value in the config.yaml file. 

 tissue 
additional

_tissues 
seed_include_terms exclude_terms 

additional_include
_terms 

Chronic Kidney 
Disease (CKD) 

Kidney - 
[renal, kidney, nephro, 
glomerul, distal tubule] 

[adrenal] - 

Epilepsy Brain - 
[epilepsy, epileptic, 

seizure] 
- 

[nerve, nervous, 
neuronal, 

cerebellum, cerebral, 
hippocampus, 
hypothalamus] 

Amyotrophic 
Lateral Sclerosis 

(ALS) 

Brain 
[Muscle - 
Skeletal] 

[Amyotrophic lateral 
sclerosis, Degeneration 

of the lateral 
corticospinal tracts, 

Dysfunction of lateral 
corticospinal tracts, 

Atrophy of the spinal 
cord, Progressive distal 

muscular atrophy, 
Spinal muscular 

atrophy, First dorsal 
interossei muscle 

atrophy, Cervical spinal 
cord atrophy, 

Corticospinal tract 
atrophy, Corticospinal 

tract hypoplasia, 
Atrophy/Degeneration 

involving the spinal 
cord] 

[heart muscle, 
cardiac muscle, 
smooth muscle, 
striated muscle, 
heart_muscle, 

cardiac_muscle, 
smooth_muscle, 
striated_muscle] 

[nerve, nervous, 
neuronal, spine, 

spinal, cerebellum, 
cerebral, 

hippocampus, 
hypothalamus, 

muscular dystrophy, 
muscular fitness, 
muscle function, 

muscle, 
neuromuscular] 

 

Feature importance extraction with the Boruta algorithm 

The Boruta algorithm has been ran on top of a Random Forest classifier trained on 100 random 

balanced datasets with 10-fold cross-validation and ran internally for 100 iterations. Boruta is 

assessing the importance of each feature by comparing its contribution with the one from random 

permuted features and eventually provides Z-scores that quantify the distance from that comparison. 

Upon each Boruta training cycle on a random balanced dataset, features are characterised as 

‘Confirmed’, ‘Tentative’ or ‘Rejected’ and the full distribution of Z-scores is provided for each of them.  

Due to the stochastic nature of the positive-unlabelled learning implemented by mantis-ml, features 

may be characterised by different labels in different runs of the Boruta algorithm. We have thus 

defined a decision threshold to classify each feature as ‘Confirmed’, ‘Tentative’ or ‘Rejected’ based on 

its extracted labels across all Boruta runs. Specifically, for CKD and Epilepsy, features are eventually 

classified as ‘Confirmed’ when receiving this label across at least 90% of all Boruta runs. The decision 

threshold for the ‘Confirmed’ features classification has been set to 60% for ALS to compensate for 
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the higher variance of extracted feature importance labels across all iterations, most likely due to the 

smaller set of seed genes in that case. In all three cases, features labelled as ‘Rejected’ in at least 90% 

of the cases are eventually classified as such, while the remaining features are characterised as 

‘Tentative’ on the consensus labelling. 

We have also added an option for mantis-ml to be trained using only the set of ‘Confirmed’ features 

extracted by the Boruta algorithm (parameter ‘supervised_filters -> feature_selection: boruta’ in 

config.yaml). We then tested mantis-ml’s performance with each of the standard classifiers, 

separately, when using different configuration of features: using only Boruta confirmed features or 

using all features that survived after the feature pre-processing step (Suppl. Fig. 18). Training and 

prediction were performed using a set of 15 random balanced datasets from the CKD disease example. 

mantis-ml performed slightly but non-significantly better when using the entire feature set (average 

AUC: 0.817 vs 0.815; two sample t-test: P=0.515). However, since Boruta does not need to be run by 

default as part of the mantis-ml workflow, the default configuration retains the entire processed 

feature space and allows the user for further exploration by explicitly specifying ‘boruta’ as the feature 

selection algorithm in ‘supervised_filters’ field in config.yaml. We also tested the performance of 

Stacking classifier when fed with only the base classifier predictions vs employing the original feature 

space on top of the extracted base classifier predictions. Stacking classifier’s performance was 

considerably better when retaining the original feature space at the second layer of the ensemble 

training/prediction and this is the default configuration used by mantis-ml. 

 

mantis-ml package structure and code availability 

Our mantis-ml framework has been built using Python on top of the sckit-learn and keras libraries. We 

have also employed the Boruta R package for feature selection based on the Boruta algorithm. The 

main components of mantis-ml are the pre_processing, unsupervised_learn, supervised_learn, 

post_processing and validation modules. The pre_processing module implements the functionality for 

compilation of the input feature table, which contains three classes of features: generic features 

(tissue/disease-agnostic), filtered by tissue and disease-specific features. Compilation of 

tissue/disease-specific features is performed using a curated dictionary of relevant query terms. 

Following data compilation, the pre_processing module implements the rest of its main functionality 

around feature pre-processing, exploratory data analysis and visualisation of features distribution. The 

unsupervised_learn performs dimensionality reduction on the processed feature set for visualisation 

purposes and extraction of 2-dimensional representations of the data for downstream analysis, such 

as clustering and pathway enrichment analysis. Processed feature tables are then passed on to the 

supervised_learn module for feature selection with Boruta and the stochastic positive-unlabelled 

learning task, which is the core of the mantis-ml workflow. Prediction probabilities extracted from this 

step are fed to the post_processing module for results aggregation and optionally overlapping with 

third-party studies (e.g. rare-variant cohort studies or any independently-generated ranked gene list) 

using the validation module. 

The mantis-ml tool along with instructions to run can be found at the mantis-ml-release GitHub 

repository: 

https://github.com/astrazeneca-cgr-publications/mantis-ml-release 
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Supplementary Data 

Supplementary File 1. List of features used for disease-agnostic gene prioritisation in the mantis-ml 

machine learning framework.  

Supplementary File 2. Tables with mantis-ml gene prioritisation scores (both raw prediction 

probabilities and percentile scores) for Chronic Kidney Disease, Epilepsy, Amyotrophic Lateral 

Sclerosis and the Generic Mantis-ML Score (GMS). 
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Fig. 1. Generic overview of mantis-ml workflow. a. Data resources used by mantis-ml for feature extraction. 

Three data type resources are integrated: generic (i.e. non-tissue/disease specific), filtered by tissue-specific and 

also filtered by disease-specific features (currently including disease-specific features for Chronic Kidney Disease 

and Cardiovascular Disease). All features are compiled automatically based on user-provided disease-associated 

query terms and pre-processed, ready to be fed for the learning tasks. b. Illustration of the stochastic semi-

supervised approach followed by mantis-ml over L iterations: i) positive (seed) genes are annotated using the 

Human Phenotype Ontology (static for each stochastic iteration), ii) the entire gene pool is split into random 

balanced sets, each of them including a random sample (default: 80%) of seed genes, iii) each balanced dataset 

is split with stratified k-fold, training is performed for each combination of k-1 folds followed by prediction on 

the kth out-of-bag fold each time, iv) prediction probabilities are aggregated for each gene across all L * k * M 

iterations. 
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Fig. 2. Benchmarking of seven different classifiers during the positive-unlabelled learning step of mantis-ml: 

Random Forest, Extra Trees, Gradient Boosting, Extreme Gradient Boosting (XGBoost), Support Vector Classifier 

(SVC), Deep Neural Network (DNN) and a Stacking (Ensemble) classifier with four base classifiers (Random 

Forest, Extra Trees, Gradient Boosting and SVC) followed by a DNN. mantis-ml was run on 10 random balanced 

datasets with 10-fold Cross-Validation based on the Chronic Kidney Disease example. a) Mean ROC curves from 

stochastic Positive-Unlabelled learning using one of the seven classifiers. ROC curves from all runs are also shown 

for the best performing classifier during benchmarking (Random Forest). b) Distribution of AUC scores across 

the seven classifiers tested. All classifiers showed comparable performance (AUC:0.83-0.85) with tree-based 

methods ranking at the top.  
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Fig. 3. Mantis-ml performance sensitivity on seed genes and consensus of top feature contributors across 

different disease examples based on the Boruta algorithm. a) Prediction probability distributions from positively 

labelled (seed) genes across the three disease examples, when selected from Human Phenotype Ontology vs 
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random assignment. Random seed genes are predicted with almost uniform probability distribution, while real 

seed genes successfully get ranked to the top of the spectrum (probability values close to 1). b) Top feature 

contributors per disease example based on sum of normalised average Z-scores returned by Boruta. Features 

are ranked merely based on their Z-scores without checking if they reach significance level in each disease case 

to be considered as ‘Confirmed’ features. c) Intersection of confirmed Boruta features across the three disease 

examples (CKD, Epilepsy and ALS) and the Generic disease classifier. Features with black font text correspond to 

the top-20 features shown above, based on the aggregate normalised Boruta scores. 
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Fig. 4. Cross-validation of mantis-ml predictions with cohort-level rare-variant association studies. a)  

Hypergeometric test enrichment of disease-specific mantis-ml predictions with collapsing analysis results from 

CKD (i), Epilepsy (ii) and ALS (iii) cohorts. The horizontal dashed red line corresponds to the significance threshold 
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of p=0.05 for the hypergeometric tests. Where the plot(s) go above this line highlight significant enrichment of 

mantis-ml top gene predictions being enriched for among the population genomic collapsing analyses. The 

vertical dashed lines, coloured based on the different classes of qualifying variants, indicate where the last of 

top ranked genes from the collapsing analyses that achieved a p-value < 0.05. The highlighted areas (light green 

and grey) represent the magnitude of enrichment signal for Loss-of-Function and synonymous variants identified 

both from the collapsing analyses (p < 0.05) and the hypergeometric enrichment test against mantis-ml 

predictions (p < 0.05). b) Consensus of genes-of-highest-interest (novel) satisfying the significance threshold 

criteria in both the collapsing analysis results and the hypergeometric and supported by five out of seven 

classifiers used by mantis-ml in the CKD (i), Epilepsy (ii) and ALS (iii) disease examples. 
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Fig. 5. Generic disease mantis-ml classifier for estimation of gene disease likelihood. a) Comparison of consensus 

top feature contributors from CKD, Epilepsy and ALS with Generic Mantis-ML Score (GMS) feature importance 

scores. The consensus of disease-specific case is calculated as the mean of the normalised average Z-scores 
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returned by Boruta for each disease case. b) Generic mantis-ml prediction probabilities across different gene 

classes. The ranking has been performed using 60% of the original seed genes set with the rest 40% of seed 

genes treated as unlabelled. The ‘unlabelled sample’ class includes a random sample from the unlabelled genes 

of equal size with the hidden genes set. Mann-Whitney U tests have been performed between the prediction 

probability distributions of all pairs of gene classes (p-values shown at the box on the right) to quantify their 

similarity degree. c) Predictive power of GMS to distinguish seed genes (unmasked and hidden) from unlabelled 

genes using a logistic regression classifier. d) Predictive power of GMS to distinguish different OMIM- and MGI-

based hidden seed genes from unlabelled ones. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 30, 2019. ; https://doi.org/10.1101/655449doi: bioRxiv preprint 

https://doi.org/10.1101/655449
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 30, 2019. ; https://doi.org/10.1101/655449doi: bioRxiv preprint 

https://doi.org/10.1101/655449
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 30, 2019. ; https://doi.org/10.1101/655449doi: bioRxiv preprint 

https://doi.org/10.1101/655449
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 30, 2019. ; https://doi.org/10.1101/655449doi: bioRxiv preprint 

https://doi.org/10.1101/655449
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 30, 2019. ; https://doi.org/10.1101/655449doi: bioRxiv preprint 

https://doi.org/10.1101/655449
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 30, 2019. ; https://doi.org/10.1101/655449doi: bioRxiv preprint 

https://doi.org/10.1101/655449
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 30, 2019. ; https://doi.org/10.1101/655449doi: bioRxiv preprint 

https://doi.org/10.1101/655449
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 30, 2019. ; https://doi.org/10.1101/655449doi: bioRxiv preprint 

https://doi.org/10.1101/655449
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 30, 2019. ; https://doi.org/10.1101/655449doi: bioRxiv preprint 

https://doi.org/10.1101/655449
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 30, 2019. ; https://doi.org/10.1101/655449doi: bioRxiv preprint 

https://doi.org/10.1101/655449
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 30, 2019. ; https://doi.org/10.1101/655449doi: bioRxiv preprint 

https://doi.org/10.1101/655449
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 30, 2019. ; https://doi.org/10.1101/655449doi: bioRxiv preprint 

https://doi.org/10.1101/655449
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 30, 2019. ; https://doi.org/10.1101/655449doi: bioRxiv preprint 

https://doi.org/10.1101/655449
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 30, 2019. ; https://doi.org/10.1101/655449doi: bioRxiv preprint 

https://doi.org/10.1101/655449
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 30, 2019. ; https://doi.org/10.1101/655449doi: bioRxiv preprint 

https://doi.org/10.1101/655449
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 30, 2019. ; https://doi.org/10.1101/655449doi: bioRxiv preprint 

https://doi.org/10.1101/655449
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 30, 2019. ; https://doi.org/10.1101/655449doi: bioRxiv preprint 

https://doi.org/10.1101/655449
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 30, 2019. ; https://doi.org/10.1101/655449doi: bioRxiv preprint 

https://doi.org/10.1101/655449
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 30, 2019. ; https://doi.org/10.1101/655449doi: bioRxiv preprint 

https://doi.org/10.1101/655449
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 30, 2019. ; https://doi.org/10.1101/655449doi: bioRxiv preprint 

https://doi.org/10.1101/655449
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 30, 2019. ; https://doi.org/10.1101/655449doi: bioRxiv preprint 

https://doi.org/10.1101/655449
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 30, 2019. ; https://doi.org/10.1101/655449doi: bioRxiv preprint 

https://doi.org/10.1101/655449
http://creativecommons.org/licenses/by-nc-nd/4.0/

