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Abstract 24 

The ability to capture the relationship between similarity and functionality would 25 

enable the predictive design of peptide sequences for a wide range of implementations 26 

from developing new drugs to molecular scaffolds in tissue engineering and biomolecular 27 

building blocks in nanobiotechnology. Similarity matrices are widely used for detecting 28 

sequence homology but depend on the assumption that amino acid mutational 29 

frequencies reflected by each matrix are relevant to the system in which they are applied. 30 

Increasingly, neural networks and other statistical learning models solve problems related 31 

to functional prediction but avoid using known features to circumvent unconscious bias. 32 

We demonstrated an iterative alignment method that enhances predictive power of 33 

similarity matrices based a similarity metric, the Total Similarity Score. A generalized 34 

method is provided for application to amino acid sequences from inorganic and organic 35 

systems by benchmarking it on the debut quartz-binder set and 3 peptide-protein sets 36 

from the Immune Epitope Database. Pearson and Spearman Rank Correlations show 37 

that by treating the gapless Total Similarity Score as a predictor of relative binding affinity, 38 

prediction of test data has a 0.5-0.7 Pearson and Spearman Rank correlation. with 39 

respect to size of dataset. Since the benchmarks used herein are from a solid-binding 40 

peptide and a protein-peptide system, our proposed method could prove to be a highly 41 

effective general approach for establishing the predictive sequence-function relationships 42 

of among the peptides with different sequences and lengths in a wide range of 43 

biotechnology, nanomedicine and bioinformatics applications. 44 

 45 
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certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 10, 2019. ; https://doi.org/10.1101/654913doi: bioRxiv preprint 

https://doi.org/10.1101/654913


 

Introduction and Background  47 

The rapid development of target-specific drugs relies on the development of high-48 

throughput and accurate methods of modelling molecular structures. The biology, 49 

pharmacology and bioengineering communities are interested in building widely 50 

applicable methods founded in predictive design of molecules that have specificity for 51 

biological targets, analytes and biomarkers [1-4]. Small peptides (7 to 40 amino acids) 52 

have high potential as both therapeutics [5-7] and high-performance molecular building 53 

blocks [8-10] due their diversity of binding affinity both quantitatively and specifically 54 

across 2D- and nano-materials.  55 

Towards more accurate and fast predictions of affinity or conformation that would 56 

enable high-throughput drug and targeting peptide design, among some of the best 57 

performing methodologies are stochastic models such as NetMHCpan-4.0 [11], 58 

DeepMHC [12] and MHCflurry [13]. These methods use little or no prior information about 59 

the peptides to ensure only random walk identifies relevant patterns. By avoiding 60 

physiochemical properties published in the literature, these models are subject to 61 

inconsistent predictions between test peptide sets even for the same protein target. 62 

Alignment-free neural networks models have shown substantial success in predicting the 63 

binding affinity of the Immune Epitope Database (IEDB, www.iedb.org) datasets [12,14]. 64 

To avoid overfitting, they require hundreds of thousands of sequences and are not 65 

optimized for gaps in the binding domains [15,16].  66 

The current state of the art in modelling tools, e.g., molecular dynamics (MD), 67 

molecular mechanics (MM), and Monte Carlo (MC) based methods, predict overall 68 

conformation from which binding energies may be calculated [9]. These approaches 69 
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utilize knowledge-based force fields [17,18] and energy minimization techniques to 70 

sample the most probable structures [19]. Though solving conformational structures will 71 

likely enable the most accurate predictions of peptide function, to date structural 72 

information is avoided in models requiring large amounts of data. This is mostly due to 73 

the large computational cost associated with calculating molecular structures of these 74 

large molecules, which is a barrier to the development of both highly complex neural 75 

networks and current MD/MC-based methods. The deeper networks rely less on learning 76 

in space constrained by verified physiochemical trends and more on the number of 77 

parameters and computational power. Less complex and more interpretable models 78 

integrate known patterns while leaving space for optimization methods to learn unknown 79 

patterns in the sequences.  80 

Current alignment-based methods for high-throughput prediction functionality of 81 

amino acid sequence information can be separated into two groups; pairwise [20-22] and 82 

multiple sequence [16,23,24]. In general, pairwise alignment is ideal for shorter 83 

sequences due to its higher computational cost per amino acid and is widely accepted to 84 

be the optimal alignment [25]. Multiple sequence alignment is considered more 85 

appropriate for longer sequences with suspected consensus domains. In both methods 86 

Point Accepted Mutation (PAM) and Blocks Substitution Matrix (BLOSUM) matrices are 87 

still the most widely used, and there are permutations of these matrices to serve more 88 

specific tasks [17,26,27]. Overall, the limitations of PAM and BLOSUM provided 89 

inspiration and guidance for generating matrices with increased accuracy based on larger 90 

and more complete datasets [11,28-30]. Matrices such the PMBEC [27], have been 91 

generated based on the two models that produce a minor increase in performance but 92 
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ultimately are vulnerable to the same factors as their predecessors [11]. In 2008, for 93 

example, a miscalculation was discovered in the clustering protocol of the BLOSUM 94 

matrix [31]. Despite extensive characterization of the mistake, BLOSUM is still the 95 

standard for one of the largest alignment-capable databases available to date, BLAST 96 

[11]. 97 

In contrast with PAM, BLOSUM, PMBEC [26] and the SAUSAGE Force Field 98 

Matrix [16], the novel OCSimM and 8 property group-derived matrices (A-RMat) were 99 

calculated from 527 physiochemical properties of amino acids [32,33]. AAindex is a vast 100 

resource of high-quality amino acid properties collected from literature dating from the 101 

mid-sixties to today [32,33]. Typically, either variable reduction methods (Principal 102 

Component Analysis [6,34] or Factor Analysis [35]) or heuristic selection is performed to 103 

shrink the huge dataset of over 550 amino acid properties to obtain an interpretable 104 

solution. Variable reduction has significant advantages over a global analysis of 105 

heuristically grouped properties because human error cannot influence the potential 106 

relationships observed [35]. However, these methods still assume the relationship 107 

between high-specificity peptides and low-specificity peptides is described by 108 

physiochemical properties. 109 

Previously, we have successfully used a matrix optimization method to a group of 110 

peptides that were categorized as strong, weak or medium binders based on their binding 111 

affinities to crystalline silica, quartz, using 40 sequences that were originally genetically 112 

selected using M13 phage display peptide library [25]. The novel metric called the Total 113 

Similarity Score (TSSA-B) describes the average Global Alignment score of all peptides 114 

from group-A to all of group-B [25]. The TSS score quantifies the similarity of a peptide to 115 
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a functional peptide set (i.e. affinity for a solid material). By keeping random changes to 116 

a similarity matrix that increased the TSSS-S (TSS of strong binders with strong binders), 117 

and decrease the TSSS-W (TSS of strong binders with weak binders), a similarity matrix 118 

was obtained that could predict the semi-quantitative affinity of quartz-binding peptides 119 

with 70-80% success. Despite its high predictive power, TSS has never been applied to 120 

MHC data. Using the MHC data, here we demonstrate its implementation that strongly 121 

suggests that TSS could be a predictive method for establishing sequence-function 122 

relationships in a variety of large sequence-based data sets.  123 

The reliable prediction of peptide binding affinity has already led to ground-124 

breaking advances in oral health science and will continue to do so in areas requiring a 125 

well-described soft interface between peptides and solid-state inorganic materials 126 

[5,10,36]. Though affinity prediction is not the most descriptive or important 127 

characterization of peptides, understanding the relationship among solid-binding peptides 128 

[10] has led to many technologies such as sensors with high sensitivity, [5] assemblers in 129 

nanotechnology, and tiny enzymes in biomineralization [37].  130 

Approach and Methodology 131 

Iterative Alignment (IA) creates a scoring matrix that provides scores correlating 132 

with the positional composition of a peptide when compared to a weak and a strong 133 

binding set. When a sequence of interest has high similarity to these strong binders and 134 

low similarity to the weak binders, the sequence was given a higher TSSSeq-S and lower 135 

TSSSeq-W (TSS of interesting sequence to weak binders). Training the similarity matrix 136 

was done by increasing the differences in TSS to strong binders for two binding affinity 137 

classes, strong and weak.  138 
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First, peptides were sorted by their affinity values shown in Fig 1A. The generated 139 

trend was characterized by the positive correlation TSSSeq-S with binding affinity visualized 140 

in the lower bar chart of Fig 1B. Once training was finished, we calculated the TSS to 141 

strong binders a final time for all peptides in the set. The results from the trained randomly 142 

initialized matrix (RandM) are shown in the scatterplot in Fig 1C. Next, several methods 143 

are used to measure correlation of TSSSeq-S with the experimental affinity including 144 

Pearson and Spearman Rank correlation, Root Mean Square Error and a binary 145 

classification scheme (binder/nonbinder prediction). A sample of these results are 146 

demonstrated in Fig 1D. 147 

Fig 1. Schematic of Iterative Alignment Procedure. The iterative alignment procedure is executed 148 

in four separate steps as show in the flow chart, that include: (A) Classification of MHC-I binding 149 

peptides from the IEDB and the resultant matrices from AAindex; (B) Training the randomly 150 

initialized matrix (RandM) which, before training, was uncapable to demonstrate the trend of 151 

decreasing cross-similarity, but after training it becomes prominent indicating the successful 152 

integration of the information; (C) Demonstration the total similarity score of the full allele set with 153 

respect to the strongest determined binders of HLA-A*02:01 (TSS HLA-A*02:01-S) for trained RandM. 154 

Calculations were performed for all matrices before and after training; (D) Showcase correlation 155 

and accuracy measurements (see details in the text and figures below). 156 
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Data Collection 157 

Peptide sequences with affinity for HLA alleles were obtained from the Immune 158 

Epitope Database (www.iedb.org), a common source of training and benchmark data for 159 

predictive models of peptide function [14]. Quartz binders and the Quartz I matrix were 160 

provided by GEMSEC at the MSE Department of the University of Washington [25]. The 161 

Amino Acid Index (AAindex) is a large database of amino acid properties that were used 162 

to calculate the cluster matrices (A-RMat) [32,33]. Within the site, similarity matrices 163 

calculated by various studies are also provided, and it was from here that the SAUSAGE 164 

force-field matrix was also chosen [17]. The PMBEC scoring-matrix [27] was included as 165 

it was derived directly from binding affinity data from MHC-I. In general, the matrices 166 

chosen are a diverse subsection of the types of information used to describe differences 167 

between amino acids and therefore were an appropriate selection for yielding conclusions 168 

about how the seed matrix would affect the overall result. 169 

Novel Matrix Calculation 170 

To explore the possibility that certain properties, e.g., hydrophobicity, electrical 171 

properties, amino acid composition etc., may make better seed matrices, 9 similarity 172 

matrices were calculated based on clusters optimized by Saha et. al [38]. After grouping 173 

properties by alpha-helix or beta-sheet propensities, composition, electrical, hydrophobic, 174 

and intrinsic characteristics, residue propensity, and physicochemical properties, we 175 

performed Principal Component Analysis (PCA) on each group and all groups combined. 176 

Using a Python library downloaded from scikit-learn.org [39], the principal components 177 

were calculated which were most representative of the internal variation of property 178 

subset. Because these principal components are orthogonal, Euclidean distance was the 179 
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most appropriate for calculating the actual similarity matrix. By calculating the difference 180 

between the principal components of two amino acids, we were able to calculate nine (20 181 

x 20) similarity matrices describing their quantitative physiochemical differences. These 182 

matrices will be referred to for the rest of the work as AMat (Alpha-helix propensity), BMat 183 

(Beta-sheet propensity), CMat (Composition), EMat (Electric), HMat (Hydrophobicity), 184 

IMat (Intrinsic propensity), PMat (Physiochemical), RMat (Residue propensity) and 185 

OCSim [Orthogonal Component Similarity matrix (all properties)].  186 

Code Implementation 187 

The newest version of the algorithm was written in Python, using a gapless scoring 188 

method to calculate TSS scores. The gap calculation was excluded to rectify the issue 189 

created by the changing gap position in each sequence. Per peptide-peptide scoring 190 

operation (300 strong binders x 9000 peptides for HLA-A*02:01), per iteration (5000 due 191 

to randomly changing mutabilities) the gap is placed in one position. We suspected the 192 

gap made recognizing the consistent amino acids between iterations difficult. The debut 193 

implementation of the method [25] iteratively aligned less than 20 peptides per strong and 194 

weak binding group. The IEDB dataset being substantially larger (i.e., over 9000 peptides 195 

for the largest set) required the inclusion of more peptides per set in order to capture as 196 

many of the features pertaining to binding affinity as possible.  197 

Designation of Affinity Classes 198 

The peptide sequences were first ordered by -pIC50, and then segregated into 199 

groups dependent on their affinity. For example, all peptides within the 3 chosen alleles 200 

(HLA-A*02:01 [9-length], HLA-A*02:02 [10-length] and HLA-A*03:01 [9-length]) with a -201 

pIC50 of 0 were named ‘strong’ (S) binders, creating 3 sets. The ‘weak’ (W) binders for 202 
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the 9-length and 10-length sets were those with a -pIC50 of -5 to -7. From these, 80% of 203 

a strong or weak peptide list was randomly chosen as training sets to obtain cross-204 

validation. To show the flexibility of the method, we chose several groups with differing 205 

distributions to demonstrate the improvements are still achieved when only partial data is 206 

available.  207 

Matrix Training 208 

To begin, two lists of peptide sequences (at least 6 in each) must be obtained, one 209 

with higher ‘internal similarity’ and lower ‘internal similarity’. Critically, peptides with high 210 

binding affinity for the same material will also higher ‘internal similarity’ and those with low 211 

affinity will have low ‘internal similarity’ [25]. Internal similarity refers to the sum of Global 212 

Alignment (GA) scores of each peptide within a list to every other peptide within the same 213 

list. Global Alignment is commonly referred to as the Needleman-Wunsch algorithm or 214 

optimal alignment as it always obtains the optimum number and placement of gaps, 215 

resulting in the most similar domains being recognized and aligned when they are 216 

consensus [20]. It requires a similarity matrix to obtain scores between matches or 217 

mismatches of amino acids, and many of these have been calculated throughout the 218 

literature. For small peptides, it may not be the ideal alignment method considering their 219 

short length makes scoring the entire sequence important.  220 

While guaranteeing the optimal alignment, Global Alignment is computationally 221 

very expensive and therefore impractical to apply to larger groups of sequences than 222 

those used in previous work [25] (10 - 20 sequences per strong and weak group). The 223 

updated method departs from the alignment methodology and scores peptides by their 224 

positional composition only, which is essentially the same score without the gap 225 
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calculation. By greatly expanding the number of peptides used in the strong group, the 226 

significance of GA is reduced due to a wider range of domain types and locations being 227 

represented. In general, scoring with more peptides is just as beneficial as scoring a few 228 

with GA. Global Alignment expands the number of sequences a peptide will have 229 

consensus with; in a way making it appear as many peptides in the strong group. 230 

However, the domains being aligned and the values scoring the alignments are different 231 

from one iteration to another, resulting in a lack of consistent scoring between sequence 232 

domains. Therefore, we justify the departure from GA as both a necessity and a benefit 233 

to ensure the method runs within a practical time constraint. 234 

The procedure for one iteration can be described in 6 steps (see Fig 2). After the 235 

affinity classes have been designated (Fig 2, Step 2), a seed similarity matrix is used to 236 

calculate TSSS-S and TSSS-W (same as internal but to separate group of peptides) 237 

similarity for each peptide (Fig 2, Step 3). External similarity is calculated by aligning the 238 

strong binders to each in the low internal similarity group. Within each list, the average is 239 

found and form the cost functions for IA, the Total Similarity Score Strong-Strong (TSSS-240 

S) and Total Similarity Score Strong-Weak (TSSS-W), respectively.  241 

Mathematically, the expression for general TSS calculation is given by Equation (1) as 242 

 𝑇𝑆𝑆𝐴−𝐵[|𝐴| 𝑥𝑎
𝑦𝑎

− |𝐵| 𝑥𝑏
𝑦𝑏

] = 1/[𝑥𝑎 × (𝑥𝑏 − 𝛿𝐴𝐵)] × ∑ 𝑃𝑆𝑆 𝑖𝑗(1 − 𝛿𝑖𝑗𝛿𝐴𝐵
𝑥𝑎,𝑥𝑏
𝑖=1,𝑗=1 ) 243 

          (1) 244 

where, TSSA-B is the Total Similarity Score (TSS) between peptide sets A and B, PSSij is 245 

the pairwise similarity score (PSS) between sequences i and j of sets A and B 246 

respectively, xa and xb are the total number of sequences in sets A and B, and δ is the 247 

Kronecker delta function (δij = 1 if i = j, otherwise  δij = 0). 248 
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After the values of TSSS-S and TSSS-W have been calculated and saved for the first 249 

time, the similarity matrix is perturbed by making random changes (1-20) to the matrix 250 

values by either adding 1 or subtracting 1 (Fig 2, Step 3). Using the new matrix, TSSS-S 251 

and TSSS-W are calculated again and compared with the previous TSS (Fig 2, Step 4). A 252 

change to the matrix is considered beneficial if TSSS-S,NEW is greater than TSSS-S,OLD and 253 

TSSS-W,NEW is less than TSSS-W,OLD. Beneficial changes are saved for the next round (Fig 254 

2, Step 5). If the change is not beneficial, then the previous matrix (before mutation) is 255 

perturbed again and the process repeats (Fig 2, Step 5). The algorithm could continue 256 

indefinitely but we considered the matrix converged when over 5,000 iterations occurred 257 

without a beneficial change (Fig 2, Step 6). 258 

Fig 2. Schematics of matrix training procedure. Peptides were first downloaded and classified 259 

by their affinity. The similarity matrix is perturbed randomly and then TSS scores are calculated. 260 
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Depending on the outcome, changes to the matrix were either saved or discarded. The matrix 261 

was considered ‘converged’ after 5000 beneficial changes total, or 5000 negative changes in a 262 

row, occur. 263 

Benchmark with the Previous Work 264 

To prove the updated methodology was up to par with the original implementation 265 

of the procedure, we obtained the Quartz I matrix and silica binding peptides used by 266 

Oren et. al [25] The same procedure was followed by mutating PAM250 and training on 267 

the same strong and weak groups. After training, IA converged on a matrix capable of 268 

predicting binding affinity with similar accuracy to the debut implementation [25]. Using a 269 

Pearson correlation of the external similarity to affinity of any silica binding peptide to the 270 

group of strong binders designated by [25], we calculated a 51% correlation with our 271 

matrix. Previous work obtained a 46% correlation with Quartz I, demonstrating the 272 

equivalent capabilities of the updated method. P-values for these correlations were less 273 

than 0.0005.  274 

Application to MHC Data 275 

To test whether the modified methodology would perform on organic materials, we 276 

needed a set of peptides with affinity for a biological target. The IEDB provides high quality 277 

sequence data including binding affinities for multiple Major-Histocompatibility 278 

Complexes which provided a perfect opportunity to test performance [14]. By designating 279 

peptides with -pIC50 (negative logarithm of IC50) of 0 as strong-binders peptides and weak-280 

binders having -pIC50 of -5 to -7 (Fig 2, Step 2) from three alleles (HLA-A*02:01, HLA-281 

A*03:01, and HLA-A*02:02), we optimized 14 similarity matrices capable of ranking 282 

peptides by their binding affinities via their total similarity to strong binders. Matrices were 283 
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optimized by iteratively perturbing a seed similarity matrix and keeping those changes 284 

which ultimately increased the self-similarity of the strong binders and cross-similarity of 285 

the strong with weak binders. 286 

Results and Discussions 287 

Cross-Similarity Analysis. Fig 3 shows the cross-similarity results of 5 subsets 288 

of peptides deemed Strong (S; -pIC50:0), Less Strong (LS; -pIC50:-1 to -2), Medium (M; -289 

pIC50:-2 to -3), Medium Weak (MW; -pIC50:-3 to -4) and Weak (W; -pIC50:-5 to -7) based 290 

on their binding affinity to alleles MHC-I HLA-A*02:01 for all matrices before and after 291 

training. Each set of bars per matrix was normalized by the largest value of both before 292 

and after results. In addition, these bars are the results of 5 average TSS subsets (80% 293 

randomly chosen from each affinity class). Previous work showed the TSS of a peptide 294 

with high similarity to the peptides that are strong binders of a solid-state material 295 

indicates that the peptide in question likely also has strong binding capability [25]. 296 

Therefore, the average TSS of peptides with an affinity for a protein should decrease with 297 

their experimental affinity. Fig 3 shows that before training (yellow bars) the trend is 298 

somewhat present but not very defined (Strong x Weak is comparable to Strong x Less-299 

Weak) but after training (blue bars) the trend is very pronounced. For each matrix and 300 

across all three alleles (see S1 and S2 Figs) we observe average TSS when grouped by  301 

affinity class to strong binders correlated with experimental affinity. Most notably, the 302 

randomly initialized matrix RandM despite having no initial correlation was able to show 303 

the trend as definitively as the others after matrix training. 304 
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Fig 3. External similarity results for matrices before and after training with HLA-A 305 

02:01 binders. Five subsets of peptides were created from the full list from each allele. Blue 306 

bars represent after training and yellow before training. The TSS for each group to strong binders 307 

(TSSS-LS,M,MW,W) was calculated in addition to each group to itself (TSSS-S, TSSLS-LS, TSSM-M, 308 

TSSMW-MW, TSSW-W). The y-axis for each bar chart denotes the matrix, the x-axis is the normalized 309 

TSSS-S,LS,M,MW,W values. The results show, especially in RandM’s case, that we can improve 310 

similarity matrices to predict a trend correlated to binding affinity. This trend is characterized by 311 

decreasing TSSS-S,LS,M,MW,W correlating with decreasing binding affinity. 312 

Correlations with experimental affinity. In the previous work, binding affinity was 313 

predicted by placing peptides into semi-quantitative groups of strong, medium and weak 314 

by their total similarity score to the strong binding peptide sequences of quartz [25]. The 315 

trend of decreasing TSSSeq-S was correlated with experimental affinity by using TSSSeq-S 316 
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as a threshold to determine whether a peptide would fall into an affinity class (binary 317 

classification) [25]. Though significant predictability (70-80%) was obtained using the 318 

semi-quantitative scoring method, it falls short of the trend prediction needed to be 319 

comparable with MHCFlurry, NetMHC and DeepMHC [12,13,37]. To enable more direct 320 

comparisons the Pearson correlation coefficient (linear, Fig 4C) and Spearman rank 321 

correlation coefficient (nonlinear, Fig 4B) were calculated, which can determine whether 322 

the predicted binding affinity trend (TSS to strong binders) matches the experimental 323 

binding affinity trend. In addition, a classifier scheme is included that can recognize 324 

whether a peptide is a strong or weak binder by the magnitude of its TSSSeq-S. Further, a 325 

root mean square error (RMSE) is calculated from the normalized trend of TSS and RMSE 326 

to get an idea of close the TSS scores are to the experimental affinity (Fig 4A). 327 
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Fig 4. RMSE (A), Spearman Rank (B), and Pearson (C) correlations for TSS trends 328 

calculated using trained and untrained matrices. The TSSSeq-S of the HLA-A*02:01 list was 329 

calculated by aligning each peptide with the top binders of the allele and correlating the list of 330 

values with the list of experimentally determined binding affinities using linear (Pearson, Fig 4C) 331 

and nonlinear (Spearman Rank, Fig 4B) methods. RMSE (Fig 4A) is calculated by obtaining the 332 

root mean square of the difference between the normalized (0-1) -pIC50 and TSSSeq-S. Error bars 333 

are 1 standard deviation from the average of each set. The data shows the method can improve 334 

literature and calculated matrices, most significantly that a trained randomly initialized matrix 335 

(RandM) is more reflective of mutability information in the MHC-I context than all literature and 336 

calculated matrices before training. 337 

TSSSeq-S were then correlated with those of the experimental affinity. The values 338 

of TSSSeq-S served as the predicted binding affinity ranking and was correlated with the 339 

experimentally determined binding affinity using Pearson and Spearman Rank functions. 340 

Fig 4 shows the score of each correlation for trained matrices and untrained matrices. 341 

The error bars are one standard deviation from the average of these scores. All p-values 342 

were less than 0.0005, except for in the case of RandM. Considering the substantially 343 

less amount of data used (~350 peptide sequences for HLA-A*02:01) compared with 344 

DeepMHC and NetMHC (80% of the full set;~7200 sequences for HLA-A*02:01), the 345 

range of 0.5-0.7 is significant and is reflective of mutability information being captured. In 346 

addition, the RMSE scores show that in general one TSS score is insufficient to describe 347 

the exact binding affinity. While it is clear from the improvement in Pearson and Spearman 348 

Rank correlation that these matrices are capturing some similarity information using the 349 

method, no matrix alone can produce a TSS ranking exactly correlating with the rest of 350 

the set. The integration of several TSS rankings into a single score could prove to be a 351 
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relevant predictor if they are capturing diverse similarity information unique to their matrix 352 

values. 353 

Binary Classification. Sensitivity and specificity were also recorded as a measure 354 

of binary prediction accuracy, shown in Fig 5A and Fig 5B respectively. A 355 

binder/nonbinder classification was performed via observing peptides conserved as 356 

binders through the magnitude of their TSSS-Seq. The sequences having greater than 500 357 

IC50
 [12] were considered binders. Therefore, peptides given a predicted ranking above 358 

the TSSS-Seq threshold correlating with the 500 IC50
 [12] bar were considered predicted 359 

binders. True positives and negatives, and false positive and negatives were calculated 360 

by observing which predicted binders were also in the actual binder group.  361 
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Fig 5. Results of classification analysis. Sensitivity (A) and specificity (B) measures 362 

calculated from the results of binary classification of binding. In general, these results show the 363 

training function did not improve the predictive ability of any matrix besides RandM, providing 364 

evidence that TSS is a relevant predictor while noting the training operation is an ineffective 365 

application of TSS.  366 

Across all the matrices a similar specificity/sensitivity was observed before and 367 

after training. This indicates the cost function did not improve the ability of the 368 

calculated/literature matrices to classify peptides based on TSS values. RandM showed 369 

marked improvement across all the alleles but yields lower accuracies than other 370 

matrices. This demonstrates that information can be integrated into a similarity matrix up 371 

to a limit. In general, the prediction metrics show that the separation of TSSS-S and TSSS-372 

W may not be the appropriate cost function to improve a predictive model. However, 373 

TSSSeq-S is a highly relevant predictor of affinity. Though the model was trained on only 374 

the dominant features of the peptide set represented by strong binders, the affinity trend 375 

was generally conserved by TSSS-Seq scoring. 376 

Conclusions and Future Work 377 

The predicted correlation range of 0.5-0.7 determined by Pearson and Spearman 378 

Rank of the similarity matrix methodology demonstrates similarity matrices can predict 379 

functionality (i.e. solid substrate binding specificity) of peptides using the Total Similarity 380 

Score. Previous work provided definitive evidence concluding the average similarity score 381 

(TSS) of a peptide towards strong binding peptides of an inorganic solid material is 382 

positively correlated with the binding affinity of that peptide. Using the Total Similarity 383 

Score, we modified a computational method and applied it to a substantially larger dataset 384 
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to demonstrate that across organic and inorganic materials the metric applies. Though 385 

we use substantially lower training data than other methods, similarity matrices were 386 

obtained that recognize the dominant features of the strongest binding peptides, which in 387 

turn describe those of the weaker binders. Therefore, the strongest binders of the full set 388 

can adequately describe the behavior of the remaining peptides Though the training 389 

method is insufficient to produce a trend capable of ranking affinity with comparable 390 

accuracy to other MHC predictors, we postulate that based on the diversity of the matrices 391 

trained that they are capturing different subsections of the total similarity information. 392 

Therefore, integrating the trends of multiple matrices into a single score would produce 393 

comparable accuracy even when trained on substantially less data. In this work, we show 394 

that we can capture similarity information using different matrices and that TSS to strong 395 

binders is a relevant predictor of affinity in both organic and inorganic systems.  396 

To uncover the relationship between TSSSeq-S and the experimentally measured 397 

affinity, the future work would involve integrating the TSS score with recent statistical 398 

learning techniques. If the matrix cannot be optimized, then the value of TSSSeq-S may not 399 

be the highest achievable even if the sequence is a strong binder. The sequences with 400 

amino acids in similar positions to the strong binding group will, however, tend to give the 401 

same average score. Therefore, if the goal is to predict the similarity of sequences based 402 

on their positional composition, conserving the common score range will also retain their 403 

sequence information. An additional problem may also arise when considering the 404 

diversity of the strong binding group. If a given peptide is a strong binder having a 405 

completely unique sequence compared to those of the other strong-binding peptides, it 406 

will have a low TSSSeq-S. TSS scoring assumes that weak and medium binders are 407 
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mutations of stronger binders. Future methods will capitalize on the information hidden 408 

within weak/medium binders and use it to describe the full strong binding space. The full 409 

results, gapless Iterative Alignment Python program for calculating similarity matrices, 410 

and all the data used to train the matrices are located online on GitHub 411 

(https://github.com/Sarikaya-Lab-GEMSEC/Iterative-Alignment-Gapless).  412 
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Supporting Information 543 

S1 Fig. Cross-similarity results for the HLA-02:02 allele. Each bar chart shows the 544 

average normalized TSS of the “Strong” affinity class with itself and each other class. The 545 

decreasing trend similarity of “Strong” peptides with those of decreasing affinity 546 

demonstrates the successful optimization of each matrix for the HLA-A*02:02 allele. 547 

S2 Fig. Cross-similarity results for the HLA-03:01 allele. Each bar chart shows the 548 

average normalized TSS of the “Strong” affinity class with itself and each other class. The 549 

decreasing trend similarity of “Strong” peptides with those of decreasing affinity 550 

demonstrates the successful optimization of each matrix for the HLA-A*03:01 allele.  551 
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