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Abstract 

Dysregulation or crosstalk of signal transduction pathways contributes to disease development. 

Despite the initial success of identifying causal links between source and target proteins in simple 

or well-studied biological systems, it remains challenging to investigate alternative pathways 

specifically associated with a disease. We develop a Gene network-based integrative approach 

for Inferring disease-associated signaling Pathways (GIP). Specifically, we identify alternative 

pathways given source and target proteins. GIP was applied to human breast cancer data. 

Experimental results showed that GIP identified biologically meaningful pathway modules 

associated with antiestrogen resistance.  

Introduction  

To address the complexity and heterogeneity inherent in most cancers, effective combinatorial 

drug design requires the development of novel systems biology tools to identify cancer-specific 

signaling pathway. Given the importance of understanding the complex signal transduction 

pathways, computational and integrative methods continue to explore new means to effectively 

integrate multi-platform genomic data with biological knowledge. Gene Set Enrichment Analysis 

(GESA) 1 and  PAthway Recognition Algorithm using Data Integration on Genomic Models 

(PARADIGM) 2 are useful tools being able to capture disease-specific activities of canonical 

pathways. Yet, their ability to discover novel pathway interactions remains debatable.  

 
Growing knowledge about genome-wide protein-protein interactions (PPIs) 3,4 has offered an 

alternative source of information for signaling network identification 5. One major challenge in 

pathway analysis is to infer edge directions based on non-directed PPI interactions. Among limited 

methods 6,7 that specifically tackle the problem of inferring edge directions for pathway 

identification, most of them either reply on protein domain interactions or are not scalable to the 

entire proteome. Notably, Gitter et al. proposed to use maximum edge orientation (EO) on PPI 
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network to determine the most likely signaling directions that fulfil global optimality 8. However, 

the EO approach relies heavily on the assumption that most biological pathways are short 

(length<5) in order to accommodate the requirement of exhaustive enumeration of all possible 

pathways. Neither does EO take into account important biological knowledge such as subcellular 

information, which often yields signal transduction directions that are difficult for biological 

interpretation.  

 
To reconstruct aberrant pathway modules in cancer studies, we develop a Gene network-based 

integrative approach for Inferring disease-associated signaling Pathways (GIP). GIP integrates 

gene expression data with PPI networks in a distribution learning framework to study aberrant 

signal transduction and alternative pathways. The core functionalities of GIP are built upon two 

functional modules: (1) a Gibbs sampler to infer signal transduction and (2) structural organization 

to uncover pathway landscape. Simulation studies reveal that GIP outperformed several existing 

approaches. We applied GIP to two tamoxifen-treated breast cancer patient data sets and 

identified robust signaling pathway networks associated with drug-resistance. Results were 

further validated using two drug-resistant cell line models to confirm the expression change in 

patent samples with or without drug resistance. 

Methods 

Given predefined source proteins and target proteins, a flow network of given length is 

constructed between the sources and targets. Three potential functions, namely node potential, 

edge potential and flow potential, are defined for individual pathways to re-weight the flow network. 

Further, a probabilistic representation is formulated to convert pathway potential into a probability 

distribution. We apply a Gibbs sampling method to draw pathway samples according to the 

conditional distribution, which approximates the joint target distribution when the chain is 

sufficiently long. Finally, the algorithm highlights interconnected linear pathways with the largest 

potentials, where edge directions are inferred by aggregating pathway samples. 

 
We define  1 1 2, ,...,L L   =θ  to denote a linear pathway of length L, where 

i  is a categorical variable 

that represents a specific protein at the ith position of the pathway. 
1  is the source protein and 

L  is the target protein. Let 
i  denote the domain of 

i  and we have 1 2 ... L    , where   

denotes all proteins in the PPI. We also have gene expression data 
n mX , where n denotes number 

of genes and m denotes number of samples. We adopt the terminology of "potential function", 

which originated from physics and was later widely used in image processing 9 to measure 
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abnormality of pathways. We define three potential functions: node potential, edge potential and 

flow potential: 

 
Node potential ( V

1
q
i
;X( ) ): an aggregated z-score calculated from the discriminatory power of 

pathway members in differentiating two groups 10. Specifically, two-sample t-test 

is used to evaluate the differential expression of a member gene in the pathway. 

P-value is then calculated based on Student’s distribution of the t-statistic, and the 

aggregated z-score (node potential) is calculated using a mapping function defined 

by the normal inverse cumulative distribution function.  

Edge potential ( ( )2 1V , ;i i  + X ): an aggregated z-score calculated from the statistical significance of 

Pearson’s correlation between interacting proteins 11.  

Flow potential ( ( )3V θ ): an z-score calculated based on the concordance between a pathway and 

its prior knowledge in order to incorporate the cellular location information.  

 
We then combine the three potential functions as mentioned above linearly into a pathway energy 

function θ  as follows: 

( ) ( ) ( ) ( )
1

1 2 1 3

1 1

U ; V ; V , ; V
L L

i i i

i i

  
−

+

= =

= + + θ X X X θ .    (1) 

The first two potentials are driven by the data, which we refer to as "likelihood potentials". The 

third flow potential comes from knowledge and is referred to as "prior potential". We can obtain 

an optimal pathway by maximizing this function. However, there are many confounding factors 

including noise in gene expression data, tumor sample heterogeneity, false-positives and false-

negatives in PPI, and the uncertainty of subcellular information induced by protein translocation. 

Simply finding the "best" pathway(s) cannot comprehensively capture signal transduction in the 

complex biological context of a cancer study. Therefore, we translate the optimization task into a 

distribution learning problem. We define an intermediate variable as ( ) ( )S U= −θ θ , and convert ( )S θ  

into a probability using a Gibbs distribution 12 as defined in Eq. (2). 
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where 
( )

1
U ;

TZ e


=
θ X

θ Θ

  is a partition function and Θ  is the set of all possible paths. T is the 

"temperature" that controls the shape of the distribution. To efficiently sample pathways from 

( );P θ X , we use a Gibbs strategy by iteratively drawing samples from a conditional distribution as 

follows: 

q
i

(t+1) ~ P(q
i
q

1

(t+1) ,...,q
i-1

(t+1) ,q
i+1

(t ) ,...q
L

(t );X) ,    (3) 

where t  denotes the tth sampling iteration. In each iteration, we accept probabilistically a new 

sample for 
i  based on the conditional distribution while other proteins 

i−
 in the pathway are 

fixed. Samples drawn from this conditional distribution are theoretically good approximations of 

samples from the joint posteriors distribution.  

 
To sample pathways of length L, we perform both forward and reverse searches from the source 

and target proteins, respectively. Consequently, we obtain a directed network structure of L layers 

(flow network) between the sources and targets. One protein may appear at different layers in the 

flow network. A flow network defines a regularized and directed structure between given source 

proteins and target proteins but uniform weights are assumed on each individual path. We re-

weight the flow network by assigning potentials to individual nodes and edges. Starting from any 

arbitrary initial pathway, GIP iteratively replaces nodes in the ith (1≤i≤L) layer of the current 

pathway by probabilistically sampling one candidate gene from the ith layer.  

 
After accumulating enough samples, GIP pools the samples together to estimate edge directions. 

We introduce a variable 
,i je  , where 

, 1i je =   denotes a directed edge from protein 
i    to protein 

i  . The underlying true probability of 
,i je  is determined by the probability distribution of pathway

θ , which is defined as:   

( ) ( )*

, , ,( 1) 1i j i j i jp P e P e P


= = = =
θ Θ

θ θ ,      (4) 

where ( ), 1 1i jP e = =θ   if 
,i je  corresponds to a connected edge in pathway θ    otherwise .. Eq. (4) 

models the probability of each directed edge as a Bernoulli random variable with a success rate

,i jp  .  A truncated version of 
,i jp  is also made available when users want to focus on top ranked 

pathways with large potentials (Supplementary Material Section A5). Now that we have calculated 

the probability of a directed edge (
,i je ), we define the confidence of edge direction as: 

q e
i, j( ) =

p
i, j

*

p
i, j

* + p
j ,i

*
,   s.t. max p

i, j

* , p
j ,i

*( ) ¹ 0,    (5) 
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where ( )  , 0,1i jq e  . If ( ),i jq e  is close to 1, the signal flows from protein 
i  to 

j  with high confidence, 

while ( ) ( ), , 0.5i j j iq e q e= =  indicates a lack of confidence in the direction of signal flow. Therefore, GIP 

not only assesses the importance of any individual edge, but also provides the confidence 

measure for edge direction. 

Results 

Performance evaluation with synthetic data 

We first evaluated the performance of GIP for pathway identification on synthetic datasets 

generated by two basic pathway structures: type I structure and type II structure 13. Type I 

structure refers to wiring of alternative pathways between a single source protein and single target 

protein, while type II structure is established among multiple sources and targets. PPI data from 

the Human Protein Reference Database 4 and canonical pathways from KEGG 14 were 

downloaded to build simulation network and ground truth pathways. Table 1 summarizes the 

average precision 15 of our GIP method and three competing algorithms (random color coding 16, 

edge orientation 8, and integer linear programming (ILP) 17) on two simulation studies of type I 

and II structures under different noise settings. GIP has the best performance in identifying 

relevant pathway nodes and edges for both type I and type II structures.  

 
Table 1 Average precision for pathway identification under different noise settings. 

Average precision Noise 
Level 

Structure 1 Structure 2 

node edge node edge 

GIP  
0.2 

0.96 0.94 0.90 0.83 

Random Color Coding 0.80 0.70 0.85 0.67 

Edge Orientation 0.80 0.69 0.78 0.47 

ILP 0.40 N/A 0.59 N/A 

GIP  
0.5 

0.91 0.83 0.81 0.69 

Random Color Coding 0.80 0.59 0.77 0.57 

Edge Orientation 0.78 0.57 0.74 0.44 

ILP 0.38 N/A 0.57 N/A 

GIP  
0.8 

0.84 0.70 0.80 0.46 

Random Color Coding 0.75 0.48 0.71 0.41 

Edge Orientation 0.71 0.47 0.68 0.35 

ILP 0.36 N/A 0.48 N/A 

 
We also studied the impact of false positive connections in a PPI network on pathway identification. 

In Table 2, we summarized the average precision of all four methods for both type I and II pathway 

structures. It can be found that the performance of all four methods degrades as more false 
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positive connections are introduced into the PPI network. However, GIP consistently maintains a 

comparable or better performance in all cases.  

 
Table 2 Average precision for pathway identification under different proportion of false positive 

connections (PFC) in PPI network. 

Average precision PFC Structure 1 Structure 2 

node edge node Edge 

GIP  
10% 

0.83 0.63 0.77 0.66 

Random Color Coding 0.69 0.42 0.72 0.52 

Edge Orientation 0.67 0.42 0.74 0.49 

ILP 0.37 N/A 0.52 N/A 

GIP  
25% 

0.63 0.31 0.77 0.54 

Random Color Coding 0.44 0.13 0.76 0.43 

Edge Orientation 0.42 0.18 0.70 0.38 

ILP 0.35 N/A 0.47 N/A 

GIP  
50% 

0.49 0.18 0.68 0.52 

Random Color Coding 0.42 0.11 0.66 0.41 

Edge Orientation 0.38 0.14 0.59 0.32 

ILP 0.32 N/A 0.47 N/A 

 

Aberrant signal transduction identified from Tamoxifen treated patient data  

We applied the GIP to a gene expression dataset 18 (termed Loi data here) to identify Tamoxifen 

resistance-related pathways in breast cancer. A 5-year cut-off on distant-metastasis-free-survival 

(DMFS) was used to divide samples into ‘early recurrence’ group (DMFS ≤ 5 years) and ‘late 

recurrence’ group (DMFS > 5 years), which finally yielded 88 ‘early recurrence’ samples and 92 

‘late recurrence’ samples in the Loi dataset 19. We used GIP to reconstruct signaling pathways 

related to estrogen receptor signaling, which connect source protein (ESR1) and functioning 

transcription factors identified using CRNET 20. An estrogen signaling pathway network between 

ESR1 and nuclear transcription factors was inferred by assembing the top 200 linear pathway 

samples. In total, there are 79 proteins in the pathway network, seven of which are transcription 

factors (JUN, FOS, STAT1, STAT3, STAT5A, ELK1, ETS1). We found complex wiring of 

alternative pathways going through frequently sampled cytoplasmic proteins of IRS1/2, JAK1, 

YWHAZ, CSNK2A1, MAPK1 and HSP90AA1. These proteins may play critical roles in 

exchanging messages among different functional modules; activate or suppress alternative 

pathways and/or initiate pathway crosstalk. We applied GIP to another Tamoxifen treated dataset 

21 (termed Symmans data here) containing 47 ‘early recurrence’ samples and 56 ‘late recurrence’ 

samples using a 5-year survival cutoff. Results showed that for ER associated signaling pathway 

network, 72.5% (29/40) proteins identified from Symmans data overlapped with the proteins from 

Loi data.  
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Validation using Tamoxifen-resistant breast cancer cell line model 

We used breast cancer cell lines MCF7-STR, MCF7RR-STR, LCC1, LCC2 22 growing in 

vitro to validate aberrant pathway modules identified from patient datasets, where 

MCF7RR-STR and LCC2 are Tamoxifen resistant cells, while MCF7-STR and LCC1 are 

antiestrogen sensitive. For ER signaling, a subset of genes and their expression levels 

were confirmed by both cell line studies including IRS1/2, FOS and JUN. Breast cancer 

relevant genes (BRCA1, BRCA2, CCNA2, E2F1, CDC25A, CDC25C, TOP2A, CDC2, 

CHUK) show dominant up-regulation in both the ‘early recurrence’ group of patient data 

and in the resistant cell line data, while transcription factors JUN, FOS, and STAT3 are 

down-regulated. We found that STMN1, PBK, CCNB1 and HSP90AA1 were 

overexpressed in early recurrence/resistant groups, while IRS1, IRS2, IGF1R and TSC2 

were overexpressed in the late recurrence/non-resistant groups. The concordance 

between patient and cell line data supports the use of cell lines to study molecular 

signaling associated with the responsiveness to Tamoxifen and risk of breast cancer 

recurrence.  

Discussion 

We have developed an integrative approach, GIP, to explore intracellular signal 

transduction and pathway landscape by integrating multi-omics data. GIP incorporate 

biological knowledge such as cellular location information, which makes the identified 

pathways more biologically interpretable. GIP also allow users to incorporate domain 

knowledge such as subcellular compartment by emphasizing signal transduction either in 

the nucleus, cytoplasm, or plasma membrane. The sampling framework has the felxibility 

to incorporate other genomic signals or other types of gene interactions to identify 

dysregulated signaling pathways. For example, many breast cancer genes carry somatic 

mutations 23,24. Such information can be integrated with mRNA expression to refine our 

pathway identification. Moreover, as transcription factors play a key role in signaling 

pathways and its binding to target gene is highly context-specific 25,26. Their functional 

interactions to target genes in a specific disease condition can facilitate disease-

associated signaling pathway identification, too.  
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