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Abstract

Human visual surface perception has neural correlates in early visual cortex, but the extent to

which feedback contributes to this activity is not well known. Feedback projections preferentially

enter superficial and deep anatomical layers, while avoiding the middle layer, which provides

a hypothesis for the cortical depth distribution of fMRI activity related to feedback in early

visual cortex. Here, we presented human participants uniform surfaces on a dark, textured

background. The grey surface in the left hemifield was either perceived as static or moving

based on a manipulation in the right hemifield. Physically, the surface was identical in the left

visual hemifield, so any difference in percept likely was related to feedback. Using ultra-high

field fMRI, we report the first evidence for a depth distribution of activation in line with

feedback during the (illusory) perception of surface motion. Our results fit with a signal

re-entering in superficial depths of V1, followed by a feedforward sweep of the re-entered

information through V2 and V3, as suggested by activity centred in the middle-depth levels of

the latter areas. This positive modulation of the BOLD signal due to illusory surface motion

was on top of a strong negative BOLD response in the cortical representation of the surface

stimuli, which depended on the presence of texture in the background. Hence, the magnitude

and sign of the BOLD response to the surface strongly depended on background properties,

and was additionally modulated by the presence or absence of illusory motion perception in a

manner compatible with feedback. In summary, the present study demonstrates the potential

of depth resolved fMRI in tackling biomechanical questions on perception that so far were only

within reach of invasive animal experimentation.

Introduction

Historically, vision research has focused on the cortical response to boundaries and edges (e.g.

Albrecht & Hamilton, 1982; Hubel & Wiesel, 1968). Perception, however, requires mechanisms

by which areas enclosed by boundaries are ‘filled-in’. As surface perception requires spreading

or integration of information over large distances, these mechanisms have been hypothesized
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to be localized in high-level visual areas (e.g. Dennett, 1991; Gregory, 1972; von der Heydt,

Friedman, & Zhou, 2003). Several studies have indeed claimed that early visual cortex does not

contribute to the processing of surfaces (Cornelissen, Wade, Vladusich, Dougherty, & Wandell,

2006; Friedman, Zhou, & von der Heydt, 2003; Perna, Tosetti, Montanaro, & Morrone, 2005).

Nevertheless, a large number of human fMRI studies (Hsieh & Tse, 2010; Kok & de Lange, 2014;

Mendola, Dale, Fischl, Liu, & Tootell, 1999; Pereverzeva & Murray, 2008; Sasaki & Watanabe,

2004) as well as cat (Rossi & Paradiso, 1999; Rossi, Rittenhouse, & Paradiso, 1996) and

monkey electrophysiological recording studies (De Weerd, Gattass, Desimone, & Ungerleider,

1995; Komatsu, Kinoshita, & Murakami, 2000; Lamme, 1995; Lamme, Rodriguez-Rodriguez,

& Spekreijse, 1999; Lu & Roe, 2007; Roe, Lu, & Hung, 2005; Zipser, Lamme, & Schiller,

1996; reviewed in Lamme & Roelfsema, 2000; and in Komatsu et al., 2000) have demonstrated

retinotopic signals in response to the perception of surface brightness, colour, and texture.

These surface-related neural signals in early visual cortex have raised the question to what

extent they reflect feedback. As feedback projections target predominantly superficial and deep

layers in early visual cortex (Anderson & Martin, 2009; Rockland & Pandya, 1979; Rockland

& Virga, 1989), this leads to a clear prediction for activity distributions across cortical depth

induced by feedback. In the domain of surface perception, only a handful of neurophysiological

studies in animals have successfully tested layer-specific distributions of activity during feedback.

Using texture-defined surfaces, two neurophysiological studies in monkeys (Self, van Kerkoerle,

Supèr, & Roelfsema, 2013; van Kerkoerle et al., 2014) revealed complex temporal patterns

engaging both deep and superficial layers. A single human fMRI study using a static surface

induced in a Kanizsa display (Kok, Bains, van Mourik, Norris, & de Lange, 2016) reported

cortical deep layer activity compatible with a role of feedback in surface perception. These

experiments align with anatomical data indicating that feedback projections can target both

superficial and deep layers. Recent optogenetics studies in mice have moreover confirmed

that the correlates of feedback in V1 causally depend on activity in high-level visual cortex

(Schnabel et al., 2018).

Surface perception is thought to interact tightly with mechanisms of contour reconstruc-
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tion. A number of computational models of surface perception (Grossberg, 1987a, 1987b; see

also Keil, Cristóbal, Hansen, & Neumann, 2005) have proposed that diffusion-like spreading

in a surface feature system is contained within proper retinotopic bounds by local inhibition

delivered by boundary representations. Neurophysiological observations of contour-related

responses in V2 (von der Heydt, Peterhans, & Baumgartner, 1984) and in V1 (Grosof, Shapley,

& Hawken, 1993) and surface related responses in V1, V2 and V3 (De Weerd et al., 1995;

Huang & Paradiso, 2008) have emphasized the role of early visual areas in this interaction

between surface and contour processing.

Separating responses to edges from responses to the interior of a surface is of utmost

importance, as contour responses themselves involve feedback (Lee & Nguyen, 2001), (Wokke,

Vandenbroucke, Scholte, & Lamme, 2013), and may show a depth distribution of activity in

early visual cortex similar to that elicited by responses to surfaces. In the only depth-specific

human fMRI study on surface perception to date, Kok et al. presented participants with

Kanizsa stimuli containing illusory surfaces and contours (Kok et al., 2016). The illusory

stimuli caused a response at deep cortical depths in V1, suggesting feedback originating from

higher cortical areas. However, due to stimulus design and choice of the region-of-interest

(ROI), the feedback related signal could be due to the illusory contour or to the illusory surface,

because the ROI could have captured activity related to both.

Research using visual illusions to study the neural correlates of surface perception has

predominantly used static surfaces with induced percepts of brightness, colour, or texture, while

these features were physically absent in these surfaces. We are aware of only one previous study

that measured responses to induced motion of a uniform surface, i.e. without local changes

in retinotopic input (Akin et al., 2014). In fMRI studies focusing on motion interpolation,

feedback-related responses in V1 were most likely driven by contours rather than surfaces

(Meng, Remus, & Tong, 2005; Muckli, Kohler, Kriegeskorte, & Singer, 2005; Seghier et al.,

2000), and other motion-related V1 responses may have been driven by local elements in a

non-uniform surface (Muckli, Singer, Zanella, & Goebel, 2002).

By contrast, here we used a stimulus (adapted from Akin et al., 2014, see Supplementary
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Table 1 for a detailed comparison of stimulus parameters) that consisted of a centrally fixated,

luminance-defined disk, of which a sector was removed. The removed sector was limited to the

right hemifield, and rotated clockwise and anticlockwise within the right hemifield, thereby

inducing a motion percept of the disk. In the left hemifield, the entire half of the disk was

static, remained physically identical, and did not contain local elements inducing the movement

percept. Two control conditions that eliminated the illusory motion kept the half of the disk

in the left hemifield identical as well. That is, the three stimuli differed in global and local

perceptual quality, while being physically identical in the left half of the visual field.

These stimuli, hence, provide several advantages: First, because the motion percept

is induced without relying on local elements, an fMRI correlate of surface motion cannot be

reduced to merely a modified processing of local elements. Second, because the retinal image

of illusory and control stimuli was identical in the left hemifield, and because transcallosal

connections are restricted to the vertical meridian in primate early visual cortex (Clarke &

Miklossy, 1990; Essen & Zeki, 1978; Glickstein & Whitteridge, 1976; Wong-Riley, 1974), any

difference between stimulus conditions can be attributed unambiguously to top-down feedback

effects. Third, the stimulus was large enough so that contributions to the fMRI signal from the

surface were separable from contributions from the contour, enabling any feedback signal to be

attributed solely to the surface.

Furthermore, we used ultra-high field (UHF) 7T fMRI to test whether the attribution

of motion to a locally static, luminance-defined surface leads to a depth-resolved pattern of

activity consistent with feedback processing in early visual cortex. While the tools to perform

layer-specific recordings have been available in invasive neurophysiology in animals for decades,

the analysis of depth-specific activity in humans has only recently become within reach thanks

to UHF fMRI and advances in data analysis (Guidi, Huber, Lampe, Gauthier, & Möller, 2016;

Huber et al., 2015; Koopmans, Barth, & Norris, 2010; Koopmans, Barth, Orzada, & Norris,

2011; Marquardt, Schneider, Gulban, Ivanov, & Uludağ, 2018; Olman et al., 2012; Polimeni,

Fischl, Greve, & Wald, 2010; Ress, Glover, Liu, & Wandell, 2007). Our analysis included not

only V1 (as in Kok et al., 2016), but was extended to V2 and V3.
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Notably, in the non-depth resolved fMRI study that inspired our stimulus design, a

negative BOLD response was reported in response to the grey figure region presented on a

dark background. Irrespective of whether the BOLD response to the grey figure was negative

or positive, we hypothesized that the illusory perception of surface motion would be associated

with enhanced activity in superficial and/or deep layers compared to control conditions, in

accordance with a contribution of feedback in early visual cortex.

Methods

Experimental design

Healthy participants (n=9, age between 18 and 44 years, mean (SD) age 27.6 (7.3) years)

gave informed consent before the experiment, and the study protocol was approved by the

local ethics committee of the Faculty for Psychology & Neuroscience, Maastricht University.

Subjects were presented three visual stimuli: The main experimental stimulus was a ‘Pac-Man’

figure rotating around its centre (Figure 1A). There were two control conditions: First, the

same Pac-Man figure as in the main condition was presented statically, i.e. without rotating

around its centre (Figure 1B). Second, the third stimulus consisted of a large, stationary wedge

on the left side, and a smaller, rotating wedge on the right side (at the same location as the

‘mouth’ of the Pac-Man; Figure 1C). We will henceforth refer to these three conditions as

‘Pac-Man dynamic’, ‘Pac-Man static’, and ‘control dynamic’, respectively.

All three stimuli had a diameter of 7.5◦ visual angle. The ‘mouth’ of the Pac-Man

had a circular arc of 70◦ (±35◦ from the right horizontal meridian). In the Pac-Man dynamic

condition, the ‘mouth’ of the Pac-Man rotated clockwise and anticlockwise by ±35◦, at a rate

of 0.85 cycles per second. The angular position of the ‘mouth’ was modulated sinusoidally

in order to create the impression of a smooth, natural movement. In the control dynamic

condition, the right-hand wedge rotated with the same frequency and angular displacement as

the ‘mouth’ of the Pac-Man. The rotating, right-hand wedge had a circular arc of 65◦, and

the stationary, left-hand wedge had a circular arc of 220◦. As a result, the Pac-Man dynamic
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stimulus is perceived to rotate as a whole, whereas the control dynamic stimulus creates the

impression of a rotating wedge on the right and a stationary wedge on the left. Importantly,

the retinal image of all three stimuli is identical in the left visual field.

Figure 1. Stimulus Design. (A) A ‘Pac-Man’ figure rotating about its centre served as the
main experimental stimulus. At the beginning of each stimulus block, the ‘mouth’ was centred
on the horizontal meridian (i.e. mirror-symmetric about the horizontal meridian). The ‘mouth’
had a circular arc of 70◦ (±35◦ from the right horizontal meridian), and rotated clockwise
and anticlockwise by ±35◦ (with respect to the right horizontal meridian), at a rate of 0.85
cycles per second. This experimental condition is referred to as ‘Pac-Man Dynamic’. (B) In
the first of two control conditions, the same Pac-Man figure as in (A) was presented statically,
i.e. without rotating about its centre. This condition is referred to as ‘Pac-Man static’. (C)
In the second control condition, a figure consisting of a stationary wedge on its left side, and
a smaller, rotating wedge on its right side was presented. The movement of the right-hand
wedge was similar to that of the ‘mouth’ of Pac-Man dynamic; i.e. it started of centred of
the horizontal meridian, and rotated with the same frequency and angular displacement as
the ‘mouth’ of Pac-Man dynamic. The rotating, right-hand wedge had a circular arc of 65◦,
and the stationary, left-hand wedge had a circular arc of 220◦. This condition is referred to as
‘control dynamic’. All three stimuli had a diameter of 7.5◦ visual angle. In (A) and (C), the
angular position of the ‘mouth’ and the wedge were modulated sinusoidally, in order to create
the impression of a smooth, natural movement. Importantly, the Pac-Man dynamic stimulus is
perceived to rotate as a whole, whereas the control dynamic stimulus creates the impression
of a rotating wedge on the right, and a stationary wedge on the left. At the same time, the
retinal image of all three stimuli is identical in the left visual field. All stimuli were presented
on a textured random noise background in order to enhance figure-ground segmentation. The
stimuli, including the texture background, were adapted from Akin et al. (2014). Videos of the
stimuli are available online (https://doi.org/10.5281/zenodo.2583017).

All stimuli were presented on a textured random noise background as was done in Akin

et al. . (2014), who included the texture to increase figure ground segregation. The background

texture pattern was static, and was displayed throughout each run (i.e. also during rest periods).

The texture pattern was created by randomly drawing pixel intensity values from a Gaussian

7

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 30, 2019. ; https://doi.org/10.1101/653626doi: bioRxiv preprint 

https://doi.org/10.1101/653626
http://creativecommons.org/licenses/by/4.0/


distribution, and filtering the resulting image with a uniform kernel (kernel size 6 x 6 pixel).

Before applying the uniform filter, the random Gaussian distribution of pixel intensities had

a mean of 40 units and a standard deviation of 60 units (8-bit unsigned integer RGB pixel

intensities, i.e. range 0 to 255). The granularity of the texture pattern is a function of the size of

the filter kernel, and of the width of the Gaussian distribution, from which the pixel intensities

are drawn. The relation between pixel intensity and luminance on our projection system was

given by y = −78.8× x3 + 78.7× x2 + 317.2× x+ 163.3, where x represents the pixel intensity

(in Psychopy convention, i.e. range -1.0 to 1.0), and y corresponds to luminance (in cd/m2).

These values are based on measurements taken with a photometer (Konica Minolta CS-100A),

and subsequent least-squares fitting of several functions, of which a third-degree polynomial

provided by far the best fit. The mean luminance of the texture background was 8 cd/m2, and

the experimental stimuli (‘Pac-Man’ and control stimulus) had a uniform luminance of 163

cd/m2. Videos of the stimuli are available online (https://doi.org/10.5281/zenodo.2583017).

Stimuli were created with Psychopy (Peirce, 2007, 2008) and projected onto a translucent

screen mounted behind the MRI head coil, via a mirror mounted at the end of the scanner

bore. The three stimulus conditions were presented in separate runs and in random order (see

Supplementary Figure 1). Stimuli were presented in a block design with block durations of

10.4 s and variable rest periods in random order (18.7 s, 20.8 s, or 22.9 s). Each run began

with an initial rest period with a fixed duration of 20.8 s, and ended with a rest period of

one of the three possible durations. All lights in the scanner room were switched off during

the experiment, and black cardboard was placed on the inside of the MRI transmit coil in

order to minimise light reflection. Each subject completed six functional runs (two for each

stimulus condition; with the exception of one subject, who completed three repetitions each of

the Pac-Man dynamic and control dynamic conditions, and two for Pac-Man static). The total

duration of a run was 520 s.

Participants were asked to fixate a central dot throughout the experiment and to report

pseudo-randomly occurring changes in the dot’s colour by button press. These targets were

presented for 800 ms, with a mean inter-trial interval of 30 s (range ±10 s). No targets appeared
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during the first and last 15 s of each run. The timing of the colour changes was arranged such

that the predicted haemodynamic responses to the experimental stimulus and to the colour

changes are uncorrelated. To this end, a design vector representing the stimulus blocks and a

design vector containing pseudo-randomly timed target events were separately convolved with

a gamma function serving as model for the haemodynamic responses. The correlation between

the predicted responses to the stimulus blocks and to the target events was calculated, and

if the correlation coefficient was above threshold (r > 0.001), a new pseudo-random design

matrix of target events was created. This procedure was repeated until the correlation was

below threshold, separately for each run.

In an additional run, retinotopic mapping stimuli were presented for population receptive

field estimation, allowing us to delineate early visual areas V1, V2, and V3 on the cortical

surface (Dumoulin & Wandell, 2008). Please see Supplementary Material for details on the

stimulus design of the population receptive field mapping paradigm.

In order to determine whether the responses are sustained or transient (Horiguchi,

Nakadomari, Misaki, & Wandell, 2009; Uludağ, 2008), we acquired an additional experimental

run for the Pac-Man dynamic condition with longer block durations in a subset of subjects

(n=5). The additional run had a duration of 424 s, during which the dynamic Pac-Man stimulus

was presented five times for 25 s, interspersed between rest blocks of 50 s. As in the main

experiment, subjects performed a central fixation task.

Control experiment

A further control experiment was conducted to investigate the role of the stimulus shape

and of the background in the processing of a surface stimulus. Two uniform surface stimuli

were presented: A central disk from which a sector was removed (i.e. identical to the ‘Pac-

Man static’ in the main experiment), and a central square. Both stimuli were identical in

luminance and area. The square had a side length of 6.65◦ visual angle. Both stimuli were

presented under two background conditions: either on a uniform, dark grey background, or

on a random texture background (same as in the main experiment). The two background
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conditions (i.e. uniform/texture) were presented in separate experimental runs, whereas the

two stimulus shapes (i.e. Pac-Man/square) were presented in random order within runs.

Stimulus blocks had a duration of 12.4 s, and were interspersed with variable rest blocks

of 22.9 s, 25.0 s, or 27.0 s. The uniform background and the random texture pattern had

a luminance of 8 cd/m2, and the surface stimuli (Pac-Man & square) had a luminance of

163 cd/m2 (same as in the main experiment). The control experiment was conducted in a

separate session. Two subjects completed six experimental runs each (three with uniform

background, three with texture background). Videos of the stimuli are available online

(https://doi.org/10.5281/zenodo.2583017). As in the main experiment, retinotopic mapping

runs were acquired in the same session.

Data acquisition & preprocessing

Functional MRI data were acquired on a 7 T scanner (Siemens Medical Systems, Erlangen,

Germany) and a 32-channel phased-array head coil (Nova Medical, Wilmington, MA, USA)

using a 3D gradient echo (GE) EPI sequence (TR = 2.079 s, TE = 26 ms, nominal resolution

0.8 mm isotropic, 40 slices, coronal oblique slice orientation, phase encode direction right-to-left,

phase partial Fourier 6/8; Poser, Koopmans, Witzel, Wald, & Barth, 2010). We also acquired

whole-brain structural T1 images using the MP2RAGE sequence (Marques et al., 2010) with

0.7 mm isotropic voxels, and a pair of five SE EPI images with opposite phase encoding for

distortion correction of the functional data (TR = 4.0 s, TE 41 = ms; position, orientation, and

resolution same as for the GE sequence; Feinberg et al., 2010; Moeller et al., 2010; Setsompop

et al., 2012).

Motion correction was performed using SPM 12 (Friston, Williams, Howard, Frackowiak,

& Turner, 1996), and the data were distortion corrected using FSL TOPUP (Andersson, Skare,

& Ashburner, 2003). Standard statistical analyses were performed using FSL (Smith et al.,

2004), fitting a general linear model (GLM) with separate predictors for the three stimulus

conditions and a nuisance predictor for the target events of the fixation task. In order to

account for both sustained and transient responses, each of the three stimulus conditions
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was modelled with two predictors: one based on a ‘boxcar function’ over the entire stimulus

duration, and the other based on a delta function at stimulus onset and offset. (Only one

predictor was used for the short target events.) All GLM predictors were convolved with a

double-gamma haemodynamic response function. Highpass temporal filtering (cutoff = 35 s)

was applied to the model and to the functional time series before GLM fitting. The parameter

estimates obtained from the GLM were converted into percent signal change with respect to

the initial pre-stimulus baseline (i.e. the first 20.8 s of each run). Population receptive field

mapping (Dumoulin & Wandell, 2008) was performed using publicly available python code

(https://doi.org/10.5281/zenodo.1475439) and standard scientific python packages (Numpy,

Scipy, Matplotlib, Cython; Behnel et al., 2011; Hunter, 2007; Millman & Aivazis, 2011; Oliphant,

2007; van der Walt, Colbert, & Varoquaux, 2011). In order to facilitate reproducibility, the

complete analysis pipeline was containerised within docker images (Halchenko & Hanke, 2012;

Kaczmarzyk et al., 2017).

Cortical depth sampling requires a high level of spatial accuracy. In order to detect

and remove low-quality data based on a quantifiable and reproducible exclusion criterion, we

calculated the spatial correlation between each functional volume and the mean EPI image

of that session after motion correction and distortion correction (see Marquardt et al., 2018,

for details). If the mean correlation coefficient of the volumes in a run was below threshold

(r < 0.95), that run would have been excluded from further analysis. However, no runs were

excluded based on the spatial correlation criterion. Moreover, it was important for subjects

to be awake and to maintain fixation throughout the experiment. Therefore, runs in which

subjects had detected less than 70% of targets were excluded from the analysis. This led to

the exclusion of all runs from one subject. All other subjects had detected more than 70% of

targets on all runs (mean hit rate for all subjects = 93%, standard deviation = 18%; mean hit

rate after exclusion criterion = 98%, standard deviation = 5%).
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Segmentation & cortical depth sampling

Separately for each subject, the anatomical MP2RAGE images were registered to the mean

functional image. In order to avoid downsampling of the anatomical images during registration,

the mean functional image of each subject was upsampled to a resolution of 0.4 mm isotropic

before registration (using trilinear interpolation). Thus, during registration of the anatomical

images to the upsampled mean functional image, the anatomical images were indirectly

upsampled (from 0.7 mm to 0.4 mm isotropic). This upsampling of anatomical images is

beneficial for fine-grained tissue type segmentation, because it allows for better separation

of adjacent sulci (avoiding erroneous grey matter ‘bridges’). The anatomical images were

roughly aligned in a first registration step based on normalized mutual information, followed

by boundary-based registration (Greve & Fischl, 2009; Jenkinson, Bannister, Brady, & Smith,

2002; Jenkinson & Smith, 2001). The registered MP2RAGE images were used for tissue

type segmentation. Initial tissue type segmentations was created with FSL FAST (Zhang,

Brady, & Smith, 2001). These initial segmentations were semi-automatically improved using

the Segmentator software (Gulban, Schneider, Marquardt, Haast, & De Martino, 2018) and

ITK-SNAP (Yushkevich et al., 2006). These corrections of the segmentations obtained from

FSL FAST were based on the T1 image from the MP2RAGE sequence, and aimed to remove

mistakes in the definition of the white/grey matter boundary and at the pial surface.

The final white and grey matter definitions were used to construct cortical depth profiles

using volume-preserving parcellation implemented in CBS-tools (Bazin et al., 2007; Waehnert et

al., 2014). Specifically, the cortical grey matter was divided into 10 compartments, resulting in

11 depth-level images delineating the borders of these equi-volume compartments. The results

from the GLM analysis, the population receptive field estimates, and event-related fMRI time

courses were up-sampled to the resolution of the segmentations (i.e. 0.4 mm isotropic voxel

size) using trilinear interpolation, and sampled along the previously established depth-levels

using CBS-tools (Bazin et al., 2007; Waehnert et al., 2014). The depth-sampled data were

projected onto a surface mesh (Tosun et al., 2004).

12

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 30, 2019. ; https://doi.org/10.1101/653626doi: bioRxiv preprint 

https://doi.org/10.1101/653626
http://creativecommons.org/licenses/by/4.0/


ROI selection

We aimed to define ROIs in an observer-independent, quantifiable way. Only the first step

of the ROI selection, i.e. the delineation of cortical areas V1, V2, and V3, was performed

manually. The visual areas V1, V2, and V3 were delineated on the inflated cortical surface

based on the polar angle estimates from the pRF modelling using Paraview (Ahrens, Geveci, &

Law, 2005; Ayachit, 2015). Subsequently, three selection criteria were applied for each location

on the cortical surface for all cortical depths (i.e. each cortical segment) contained within V1,

V2, or V3. First, only segments with good population receptive field model fits were included

(R2 > 0.15, median across cortical depth levels), excluding regions that are not specifically

activated (e.g. possibly due to responses to a wide range of visual angles). Second, segments

with low signal intensity in the mean EPI image were excluded, in order to avoid sampling

from veins and low intensity regions around the transverse sinus, which may be present due to

slight imprecisions in the registration and/or segmentation. Specifically, segments with a mean

EPI image intensity below 7000 at any cortical depth (i.e. minimum over cortical depths) were

excluded. (The mean EPI image intensity was ∼10.000 for voxels within the brain.) Third,

separate ROIs were defined for the centre of the stimulus, with eccentricities between 1◦ to 3◦

visual angle, and for the edge of the stimulus, at eccentricities between 3.5◦ and 4.0◦ visual

angle (see Figure 2). The eccentricity of a segment was defined as the median eccentricity over

cortical depths. The lower bound of the ROI corresponding to the stimulus centre was set to

1◦ (and not to 0◦) in order to avoid the cortical representation of the fixation dot. Selection

criteria were always applied to all cortical depths in a segment – i.e. either the entire cortical

segment was included or excluded. Because the physically constant half of the stimulus was

located in the left visual hemifield, the analysis was restricted to the right hemisphere (with

the exception of the visual field projections, which were reconstructed from both hemispheres;

Figures 5 & 6). The ROI selection described in this section, and all subsequent analysis steps

were performed using standard scientific python packages (Numpy, Scipy, Matplotlib; Hunter,

2007; Millman & Aivazis, 2011; Oliphant, 2007; van der Walt et al., 2011). Percent signal

change values were averaged over the ROI, separately for each cortical depth level.
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Figure 2. (A) Activation map for Pac-Man dynamic condition (stimulus shown in (B)), projected
on the inflated cortical surface, for a representative subject (GLM parameter estimates for
sustained response). An extended region of negative signal change (blue) is surrounded by a
band of positive signal change (red). (C) The activation map from (A) is masked for V1, and
the cortical area that retinotopically corresponds to the centre of the Pac-Man stimulus (D) is
highlighted. (E) Same as (C), but the cortical area that contains the retinotopic representation
of the edge of the Pac-Man stimulus (F) is highlighted. The band of positive signal change
corresponds to the retinotopic representation of the edge of the Pac-Man stimulus. The areas
highlighted in (C) and (E) were selected as ROIs for the stimulus centre and edge, respectively.
Discontinuities in the ROIs are due to thresholding of the retinotopic map (R2 > 0.15). The
asterisk marks the approximate location of the cortical representation of the fovea (A, B, C).
The schematic of a right hemisphere next to (A) indicates the approximate location of the
inflated surface in (A, C, E), highlighted in blue.
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Draining effect spatial deconvolution

Cortical depth-specific fMRI using GE sequences is affected by a venous bias caused by

ascending draining veins, resulting in an fMRI signal increase towards the cortical surface

(Koopmans et al., 2011; Markuerkiaga, Barth, & Norris, 2016; see Uludağ & Blinder, 2018 for

a review; Zhao, Wang, & Kim, 2004). In order to remove the effect of ascending veins from the

cortical depth fMRI profiles, we employed leakage weights proposed by Markuerkiaga, et al.

(2016), and employed a spatial deconvolution approach described in detail in Marquardt et al.

(2018). In brief, for each cortical depth level, we subtracted the estimated contribution of all

deeper depth levels to obtain an estimate of the ‘true’ local signal change at that depth level.

Visual field projection

While it is instructive to examine the spatial extent of activation on the inflated cortical surface,

the exact relationship between the visual stimulus and the surface activation map is difficult

to interpret: Cortical magnification and differences in receptive field size across the cortex

complicate the mapping from visual space to the cortical surface. Therefore, we projected

the activation maps into the visual field, based on population receptive field estimates. The

resulting visual field projections reveal the spatial pattern of activation with respect to the

stimulus-space. Population receptive field mapping (Dumoulin & Wandell, 2008) provides three

parameters per vertex: x-position, y-position, and size of the Gaussian population receptive

field model. For each vertex contained in the ROI, the 2D Gaussian population receptive field

model was multiplied with the percent signal change for that vertex. The resulting scaled

2D Gaussians were summed over vertices. The result (a 2D array) was normalised by the

population receptive field density at each visual field location (i.e. divided by the sum of 2D

Gaussian over vertices). More formally, let Mi,j,k be a 3D tensor containing the population

receptive field model for visual field positions i, j for vertices k. The population receptive field

model at each visual field location is a 2D Gaussian function:

Mi,j,k = g(xk, yk, wk)
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where xk, yk, wk are the x-position, y-position, and width (standard deviation) of the 2D

Gaussian for vertex k, respectively. Further, let pk be a vector with percent signal change

values for n vertices contained in the ROI. The visual field projection (Vi,j) of percent signal

change values (pk) was calculated as:

Vi,j =

n∑
k=1

(Mi,j,k � pk)

n∑
k=1

Mi,j,k

where the multiplication and division operations are element-wise. The visual field projection

Vi,j was calculated separately for each ROI and cortical depth level, but together for all subjects

(by concatenating all subjects’ population receptive field models, Mi,j,k, and percent signal

change vectors, pk). In this way, all subjects’ activation maps can be projected into a single

visual space; this is essentially a simple form of ‘hyperalignment’. (The procedure is similar to

that employed by Kok et al. (2016), with the difference that we did not apply any smoothing

to the visual field projection.)

Hypothesis testing

Differences in stimulus-induced activation were investigated by means of a linear mixed effects

model. First, we assessed whether the stimuli differentially activated brain areas V1, V2, and

V3. (In other words, did activation differ between ROIs as a function of condition?) Second, we

tested whether the activation profiles across cortical depth differed between brain areas. Both

tests were implemented by means of a mixed effects model including the fixed factors ROI,

stimulus condition, and cortical depth, and a random slope for subjects. The autocorrelation

structure of cortical depth (within subjects) was modelled as continuous autoregressive of

order one. For the first test, a model with all possible two-way interactions was compared

with a null model, from which the stimulus condition by ROI interaction had been omitted

(because this interaction reflects a differential effect of stimulus condition on brain areas). The

second test compared a model with all possible two-way interactions with a null model without

the cortical depth by ROI interaction (reflecting differences in cortical depth profiles between
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areas). The mixed effects models were fitted based on the percent signal change estimate of

the sustained and transient predictors (for the stimulus centre and edge, respectively) obtained

from the GLM. Comparisons of the respective pairs of models were conducted with a likelihood

ratio tests. Models were fitted and compared using R and the nlme package (Pinheiro, Bates,

DebRoy, Sarkar, & R Core Team, 2017; R Core Team, 2017).

Results

In accordance with a previous report using a similar stimulus (Akin et al., 2014), but contrary

to what could be the generally expected positive response to a luminance increase, we observed

widespread negative signal change in the retinotopic representation of our stimuli in early

visual cortex of the right hemisphere. This is illustrated here for the experimental condition

inducing the illusory motion percept (‘Pac-Man dynamic’, Figure 2, see also Supplementary

Figure S2). A band of positive activation was observed at the cortical representation of the

stimulus edge (Figure 2 E, F). The pattern of negative responses to the surface interior and

positive activation at the stimulus edge was similar across stimulus conditions (Figure 5; and

Supplementary Figure S5).

In the cortical representation of the surface (Figure 2C), we found increased activity

due to the illusory percept of motion in the experimental condition, compared to the control

conditions where this percept was absent. In particular, the experimental and control conditions

showed differential activity with a magnitude that differed among brain areas V1, V2, and V3,

as confirmed by a significant ROI (V1, V2, V3) by condition (Pac-Man dynamic, Pac-Man

static, control dynamic) interaction (likelihood ratio (df): 39.6 (4), p < 0.0001). Moreover,

cortical depth profiles of the activity increase were significantly different between brain areas

(likelihood ratio (df) of model comparison with/without cortical depth by ROI interaction:

30.2 (2), p < 0.0001). Figure 3 shows the cortical depth profile of the signal gain corresponding

to the induced motion effect for the cortical representation of the stimulus centre (using the

difference between Pac-Mac dynamic and control dynamic). The peak of the apparent motion

effect was located at ∼25% in V1, ∼50% in V2, and ∼40% in V3, relative to the pial surface
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(where 100% cortical depth corresponds to the white/grey matter boundary).

Figure 3. Cortical depth profiles of the apparent motion effect for the cortical representation of
the stimulus centre (see Figure 2 B & E). The apparent motion effect was defined as the relative
signal change associated with the condition contrast ‘Pac-Man dynamic’ (Figure 1 A) minus
‘control dynamic’ (Figure 1 C). Shading represents the standard error of the mean (across
subjects). See Supplementary Figure S3 for the same results for all experimental conditions,
and Supplementary Figure S4 for the cortical depth profile of the apparent motion effect at
the representation of the stimulus edge.

For the cortical representation of the stimulus edge, the stimulus conditions also

caused differential activation among visual areas (likelihood ratio (df) of model comparison

with/without ROI by condition interaction: 22.8 (4), p < 0.0001). However, there was no

evidence for differences between stimulus conditions in the cortical depth profiles at the

stimulus edge (likelihood ratio (df) of model comparison with/without cortical depth by

condition interaction: 1.6 (2), p = 0.46); see Supplementary Figure S4 for cortical depth profiles

of apparent motion effect at stimulus edge). This is likely due to the strong feedforward drive

due to local contrast at the figure’s edge, which may engage neurons about equally across

cortical depth.

Temporal response pattern

In areas V1, V2, and V3, the central region of interest for all conditions exhibited a sustained

negative response, whereas the edge region responded with a transient positive signal change

at stimulus onset and offset (Figure 4). Separately for the sustained and transient responses,

we determined response onset time as the first time point at which the signal was significantly
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different from zero (one-sample t-test, p < 0.05, Bonferroni corrected). Interestingly, this

revealed that the onset of the transient response at the cortical representation of the stimulus

edge preceded the onset of the sustained response in the surface representation by one MRI

acquisition time point (i.e. ∼2 s; Figure 4). The pattern of positive transient and negative

sustained responses at the stimulus edge and centre, respectively, was consistent across areas

and conditions (Supplementary Figure S5). An additional control experiment was performed to

investigate whether the temporal dynamics of the responses were similar for a longer stimulus

duration (Supplementary Figure S6). The results indicate that this was indeed the case, and

that the negative response to the centre of the PacMan surface was sustained over long stimulus

durations (25 s, compared to ∼10 s in the main experiment).

Figure 4. Response onset times in V1. (A) Event-related fMRI timecourses for regions of
interest corresponding to the stimulus centre (blue line) and the edge of the stimulus (orange
line). The dotted vertical lines indicate the response onset, defined as the first time point at
which the signal was significantly different from zero (one-sample t-test, p < 0.05, Bonferroni
corrected). The positive response at the stimulus edge precedes the negative response at the
stimulus centre by one volume (i.e. by about 2 s), suggesting that the negative response is
not caused by the onset of the stimulus, but by its prolonged presentation. The response is
shown for area V1 of the right hemisphere, averaged (mean) over subjects, stimulus conditions,
and cortical depth levels. The horizontal grey bar marks the duration of the stimulus block.
Error shading represents the standard error of the mean (across subjects). (See Supplementary
Figure S5 for same results separately for all areas and conditions.)
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Spatial response pattern

The spatial distribution of positive and negative signal change is directly visible in the visual

field projections (Figure 5). As expected for a moving stimulus, the dynamic parts of the

stimulus (i.e. the rotating ‘mouth’ of the Pac-Man, and the rotating wedge of the dynamic

control stimulus) caused a positive signal change in their cortical representations in V1, V2,

and V3 (Figure 5 A, C, D, F, G, I). All three stimuli caused a negative signal change in the

surface’s representation in the right hemisphere in V1, V2 and V3 (Figure 5 A–I). The band of

positive signal change seen on the inflated brain (Figure 2 E) is also apparent in the visual

field projections (particularly in Figure 5 D, E, F). Especially for the static Pac-Man stimulus,

the shape of the stimulus is visible in the visual field projections (Figure 5 B & E), evidence

for a high accuracy of the visual field projections across the subjects. The spatial extent of the

negative signal change was similar across conditions, but differed across regions; from V1 over

V2 to V3, the visual field projections are more blurred, likely due to the increasing neuronal

receptive field size in higher-order areas (Gattass, Gross, & Sandell, 1981).

Background dependence of the negative response

A control experiment was conducted to investigate the effect of the background and of the

stimulus shape on the processing of a surface stimulus. The results revealed that the direc-

tionality and temporal course of the response is heavily affected by the type of background,

but not by the shape of the stimulus. A negative surface response was only observed when

the stimuli were presented on a texture background, irrespective of the stimulus shape (Figure

6 B & D). When presented on a homogenous background, as luminance stimuli are usually

presented, the interior of the surface and its edges evoke a positive response (Figure 6 A & C).

The temporal dynamics of the response in the texture background condition (Figure

7, green and blue lines) closely resembled the results from the main experiment (Figure 4);

showing a transient positive response at the edges and a sustained, delayed, negative response at

the surface interior. In contrast, the response to both the interior of the surface and to its edges

was positive and sustained in case of a uniform background (Figure 7, red and orange lines).
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Interestingly, these results imply that the temporal shape of the edge response changed as a

function of the background condition; in other words, whether the edge response is sustained

or transient depends on whether the stimuli are presented on a texture pattern or on a uniform

background.

Figure 5. Projection of GLM parameters into visual space. The parameter estimates for the
three stimulus conditions (Pac-Man dynamic (A, D, G), Pac-Man static (B, E, H), and control
dynamic (C, F, I)) were projected into a model of the visual space based on their retinotopic
location, and the size of their respective population receptive fields. The dashed white circles
correspond to an eccentricity of 3.75◦, i.e. the radius of the Pac-Man stimulus. In all three
stimulus conditions, there is a negative response to the left half of the stimulus. Visual field
projections are averaged over depth levels (mean).
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Figure 6. Visual field projections of GLM parameter estimates from control experiment with
texture background and uniform background, for V1. A ‘Pac-Man’ figure and a square were
presented either on a uniform background (A & C) or on a random texture background (B &
D). When presented on a uniform background, the stimuli caused a positive response, especially
at the retinotopic representation of the edges (A & C). In stark contrast, the response to the
interior of the stimuli was negative when presented on a random texture background (B & D).
At the edges of the stimuli, a small band of positive activity can still be observed (B & D).

Figure 7. Event-related time courses from control experiment with texture background and
uniform background, separately for regions of interest corresponding to the retinotopic repre-
sentation of the centre of the stimulus (A) and to its edges (B). Irrespective of the shape of the
stimulus (square or ‘Pac-Man’), there is a positive response to the centre of the stimulus when
the background is uniform (A, red & orange lines), and a negative response when the stimuli
are presented on a random texture pattern (A, green & blue lines). Interestingly, the positive
response has a shorter latency than the negative response. The response to the edges of the
stimuli is positive under all conditions (B). However, the response amplitude is much stronger
when the stimuli are presented on a uniform background. Moreover, the temporal dynamics
changes as a function of the background; the response is sustained when the background is
uniform (B, orange & red lines), but transient for the texture background (B, green and blue
lines). The horizontal grey bar marks the duration of the stimulus.
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Discussion

We have studied neural correlates of perceived surface motion induced in a locally static grey

surface on a dark, textured background (Figure 1). The motion percept was caused by local

edge movement in the contralateral hemifield and spread over the entire surface in the ipsilateral

hemifield. We report three main findings: First, the induced percept of surface motion was

associated with an fMRI signal increase in the representation of the surface in areas V1, V2

and V3 (Figure 3). As the enhanced signal was measured far away from the location where

the perceived motion was induced, this signal likely derives from feedback. In addition, the

differences in the cortical depth distribution of motion-percept related signal gain among visual

areas also supported a feedback origin. Second, we found that the response to the edge preceded

the response to the surface by approximately 2 s (Figure 4). Third, we observed a negative

BOLD signal in the figure representation (Figure 5), which depended on the presence of a

textured background and was eliminated when the background texture was removed (Figure

6). Hence, the signal gain due to the motion percept represented an increase in signal from a

negative BOLD signal in the control condition to a less negative BOLD signal in the illusory

movement-condition.

Top-down feedback

The main and control stimuli were ‘physically’ identical in the left visual field, while the global

perceptual quality of the stimulus depended on the right half of the stimuli (Figure 1; videos of

the stimuli are available online: https://doi.org/10.5281/zenodo.2583017). This stimulus design

offers three advantages: First, the surface itself was homogenously grey and did not contain

local moving elements, thereby avoiding the interpretative question whether enhanced fMRI

activity during surface perception reflects enhanced processing of local elements or an integrated

surface motion percept. Second, any changes in activity correlating with a perceptual change

from static to moving in the left hemifield were induced by the right hemifield. Anatomical

investigations have shown that transcallosal, interhemispheric connections are restricted to the

proximity of the vertical meridian in primate early visual cortex (Clarke & Miklossy, 1990;
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Essen & Zeki, 1978; Glickstein & Whitteridge, 1976; Wong-Riley, 1974). This, combined with

the fact that the surface motion percept in the left hemifield was induced in the absence of

physical changes to the left-hemifield stimulus, renders top-down feedback from higher areas,

rather than within-area horizontal interactions, the most plausible source of the motion percept

and associated depth distributions of activity. Third, the cortical region that retinotopically

represents the physically constant left side of the stimulus and the one which induces the

motion percept (i.e. the ‘mouth’ of the Pac-Man) were far apart. Thus, it is very unlikely that

imprecisions in the retinotopic maps could confound our results. By the same token, the size

of our stimulus enabled us to separate responses to the surface from responses to the contours.

The cortical depth profiles of the enhanced response due to the illusory motion effect

in V1, V2, and V3 suggests that top-down signals may have re-entered at superficial layers

in V1, where most of the signal gain due to motion perception is concentrated (Figure 3).

Re-entrant connections via superficial V1 have been reported in neurophysiological (McManus,

Li, & Gilbert, 2011), anatomical (Martinez-Conde et al., 1999), and high-field fMRI studies

(Muckli et al., 2015). This re-entrant information may have propagated to V2 and V3 via

feedforward pathways, in line with anatomical evidence that the strongest forward projections

from V1 to V2 originate in superficial V1 layers 3B and 4B, and arrive across the full extent of

layer 4 in V2 (Douglas & Martin, 2004; Felleman & Van Essen, 1991). Furthermore, forward

projections originating in superficial V1 layers and superficial V2 layers also target layer 4 in

V3 (Rockland & Pandya, 1979; Van Essen, Newsome, Maunsell, & Bixby, 1986). This pattern

of forward projections may explain the activity peak at intermediate depths of areas V2 and

V3 (Figure 8A). Therefore, although our data do not permit a direct test of the directionality

and precise temporal dynamics of information flow, re-entrant feedback at the level of V1 is a

plausible interpretation of the present results.

An additional contribution to the depth-pattern of activity observed in extrastriate areas

may have originated from the pulvinar, and possibly other subcortical structures (Standage &

Benevento, 1983; Trojanowski & Jacobson, 1977). The middle layers of extrastriate cortex are

the target of projections from the pulvinar (Benevento & Rezak, 1976; Figure 8B Benevento,
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Rezak, & Bos, 1975; Ogren & Hendrickson, 1977; Rezak & Benevento, 1979), a structure

that is sometimes referred to as a ‘higher-order relay’ because of its role in cortico-cortical

interaction (Sherman & Guillery, 2002). The pulvinar has been shown to regulate cortico-

cortical communication in the visual system based on attentional demands (Saalmann, Pinsk,

Wang, Li, & Kastner, 2012). Experiments in humans (Villeneuve, Kupers, Gjedde, Ptito, &

Casanova, 2005; Villeneuve, Thompson, Hess, & Casanova, 2012) and cats (Merabet, Desautels,

Minville, & Casanova, 1998) have demonstrated a role of the pulvinar in higher-order motion

processing (i.e. coherent motion of entire objects, as opposed to local motion). In line

with this, Shimono et al. have found evidence for an involvement of the pulvinar in the

interhemispheric integration of motion information (2012). In summary, both cortical and

subcortical sources of re-entrant feedback in lower-level visual areas may have contributed to

the observed depth-resolved responses (see Figure 8).

The positive BOLD contribution associated with the illusory percept of surface motion

is in line with other fMRI studies for a range of surface illusions (Hsieh & Tse, 2010; Kok

& de Lange, 2014; Mendola et al., 1999; Pereverzeva & Murray, 2008; Sasaki & Watanabe,

2004). Compared to (Kok et al., 2016), who reported a fMRI response enhancement limited

to the deepest cortical layers during the percept of an illusory Kansiza triangle, the signal

gain we found was focused on superficial to middle layer compartments. Our results resemble

somewhat more the superficial activity reported in (Muckli et al., 2015) in response to the

completion of occluded visual scenes. These differences in activity depth profiles could reflect

fundamental differences in feedback mechanisms engaged in the stimulus paradigms in the

different studies, which is a possibility that should be investigated further. Irrespective of the

differences in observed activity profiles over depth, they all support re-entrant feedback signals,

which is in line with mounting evidence that, even for the simplest displays, feedback from the

highest level of the visual system plays a role (Lamme & Roelfsema, 2000; McManus et al.,

2011; Roelfsema, Lamme, Spekreijse, & Bosch, 2002; Schnabel et al., 2018).
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Figure 8. Schematic illustration of two possible interpretations of the present results. (A)
Higher cortical areas may integrate the global motion percept across hemispheres, and send
feedback projections to superficial layers of V1. Subsequently, this re-entrant feedback would
be sent to V2 and V3 via feedforward connections. (B) Alternatively, the pulvinar may act as a
‘higher-order relay’, and send feedback from higher cortical areas to V2 and V3. See discussion
section for details.
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Edge responses preceding surface responses

Psychophysical experiments (Paradiso & Nakayama, 1991) and neurophysiological experiments

(Huang & Paradiso, 2008) have suggested that surface brightness may fill in from the edge

over a time period of ∼100 ms, depending on the size of the surface. This interpretation of

the reported data is in line with computational models that propose a primary analysis of

the visual scene to delineate contours, followed by a secondary analysis that is initiated by

and interacts with these contours to reconstruct the visible aspect of the surfaces (Grossberg

& Hong, 2006; Pessoa, Mingolla, & Neumann, 1995). Although these models have proposed

diffusion-like processes in retinotopic visual areas as a neural correlate for surface perception,

feedback processes related to surface processing also display a delayed modulation of activity

in early visual cortex of >100 ms (Lamme et al., 1999; Self et al., 2013). In addition, low-level

aspects of the stimulus, such as the enhanced contrast at the edge and the absence of contrast

inside the grey figure, can induce faster response latencies in early visual cortex at the edge

representation compared to inside the homogeneous figure (Albrecht, Geisler, Frazor, & Crane,

2002). Conceptually, an initial analysis of edges can also be seen as generating predictions

for the presence of surfaces and their features, in line with the predictive coding hypothesis

(Rao & Ballard, 1999). Hence, the earlier response to the edge compared to the surface is

generally in line with a range of existing concepts and data about surface perception, but the

question is whether and how this small temporal difference in neuronal responses translates

into a ∼2 s difference in BOLD response onset (see Figure 4). It is possible that the apparent

delay in the onset of the BOLD response to the surface may be the result of competing positive

and negative BOLD effects (Uludağ & Blinder, 2018). In the surface cortical representation,

positive (due to luminance increase) and negative (due to lateral inhibition) BOLD responses

may occur equally quickly and strongly, and hence may balance each other at the beginning of

the stimulation. As time passes, the negative response may appear due to a more sustained

negative response paired with a more transient or adaptive positive response. Thus, even

though both the positive and negative BOLD responses may have similar latencies as the

edge response, the sum of both centre responses may initially cancel out and lead to a larger
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apparent latency of the negative response emerging later on.

Negative BOLD response

In contrast to an expected increase of the BOLD signal in response to a local luminance

increase, but in line with a previous study (Akin et al., 2014), the surfaces yielded strongly

negative BOLD responses in V1, V2 and V3, irrespective of whether they were perceived as

static or moving (Figure 5). The negative response was located at the cortical retinotopic

representation of the interior of the surface and was sustained throughout the presentation

period (Figure 4, and Supplementary Figures S5 & S6). Note that the effect of the background

on the fMRI signal related to the surface area is very strong. A change in the background from

texture to homogeneous dark background resulted in a 4% signal change (from -3% to +1%

BOLD). It is quite remarkable that a subtle change in the background leads to such a strong

decrease in BOLD signal and presumably reduction in metabolism and excitatory neuronal

activity. In comparison, Kok et al. observed a response amplitude of approximately 0.7% to

1.4% at the retinotopic representation of a centrally presented contrast-reversing checkerboard

(using a similar MRI pulse sequence and the same spatial resolution as in the present study,

Kok et al., 2016 , see their Figure S2 B). Previous studies have linked negative BOLD with a

inhibitory competition between large, juxtaposed stimulated and unstimulated regions (Shmuel,

Augath, Oeltermann, & Logothetis, 2006; Shmuel et al., 2002).

In our experiment, we speculate that at the boundary, as well as within the figure

and the textured background region, there is a competition between inhibitory and excitatory

processes that results in the observed patterns of positive and negative BOLD responses.

Although at present we do not understand the underlying mechanisms, the fact that extreme

changes in the patterns of negative and positive BOLD signals depend on the presence of a

very subtle texture in the background, suggests a determining influence of feedback signals.

The fact that the response to the edge of the figure rises faster than the response to the surface

(Figures 4 and 7) may reflect differences in the speed at which the hypothesized competition is

settled at the figure’s edges and within its interior.
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Spatial deconvolution

A complicating factor in the analysis of the layered distribution of fMRI signal is related to

the anatomy of ascending draining veins, which leads to a strong bias for the BOLD signal

to be stronger in superficial cortical layers, even if the neuronal activity is stronger in deeper

layers (Koopmans et al., 2011; Markuerkiaga et al., 2016; see Uludağ & Blinder, 2018 for

a review). To use the BOLD signal as a realistic estimate of underlying neural activity in

high-resolution data, it is therefore crucial to take this effect into account (Markuerkiaga et al.,

2016). We have previously employed a spatial deconvolution to remove signal spread due to

ascending veins (Marquardt et al., 2018). The exact parameters of the spatial deconvolution are

difficult to determine, and our parameter choices may not be exact. Nevertheless, simulations

have shown that the spatial deconvolution is relatively robust against deviations in its model

parameters (see Marquardt et al., 2018, Figure 8, and Supplementary Figures S4 & S5 therein).

Although the exact shape of the resulting cortical depth profiles is contingent on the model

parameters of the spatial deconvolution, the results do not differ qualitatively in case of different

model parameters within physiologically plausible ranges (Marquardt et al., 2018). Thus, we

stress the importance of data analysis, in general, and spatial deconvolution, in particular, for

high-resolution fMRI to obtaining accurate representation of neuronal activity across cortical

depths.

Summary

Our study provides the first evidence that a motion percept in a surface region of a stimulus far

removed from the local information inducing the motion percept produces a small increase in

activity in the retinotopic representation of the figure. At the same time, our study reports a

negative BOLD signal in the figure representation of an unexpected magnitude, and in contrast

to standard expectation, following a luminance increase. This shows that subtle low-level

aspects of the stimulus can have pronounced effects not only on the magnitude but even on

the sign of the BOLD signal. It is an open question whether the neural mechanisms behind

the negative response have a functional role in surface perception. In spite of the negative
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BOLD response, the perceptual assignment of a surface feature to a visual field region (where

that feature was physically absent) yielded a signal enhancement, in line with other studies.

While different surface features or displays may result in distinct depth resolved patterns of

fMRI activity, possibly suggesting various sources of feedback, the consistent finding of signal

enhancements during induced or illusory surface perception also suggests common aspects to

the mechanisms of surface perception independent of the displays or features.
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