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During development and wound healing, cells need to form long-ranged ordered structures to 10 

ensure precise formation of organs and repair damage. This requires cells to locate specific 11 

partner cells to which to adhere. How such cell matching reliably happens is an open problem, 12 

particularly in the presence of biological variability. Here, we use an equilibrium energy model 13 

to simulate how cell matching can occur with subcellular precision. A single parameter – 14 

encapsulating the competition between selective cell adhesion and cell elasticity – can 15 

reproduce experimental observations of cell alignment in the Drosophila embryonic heart. This 16 

demonstrates that adhesive differences between cells (in the case of the heart, mediated by 17 

filopodia interactions) are sufficient to drive cell matching without requiring cell 18 

rearrangements. The model can explain observed matching defects in mutant conditions and 19 

when there is significant biological variability. We also demonstrate that a dynamic vertex 20 

model gives results consistent with the equilibrium energy model. Overall, this work shows 21 

that equilibrium energy considerations are consistent with observed cell matching in 22 

cardioblasts, and has potential application to other systems, such as neuron connections and 23 

wound repair.  24 
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Introduction 25 

 26 

During development, cells interact collectively to form tissues and organs through a series of 27 

morphological transformations, driven by cell proliferation, rearrangements, migration and 28 

death1-4. When these processes fail, the final shape of the tissue can be defective, resulting in 29 

diseases, including cardiomyopathies5 and neurological defects6,7. During organogenesis, cells 30 

often need to identify specific cells to which to adhere. A classic example is formation of 31 

human facial structures6; cells initially undergo long-ranged migration from distinct regions of 32 

the neural plate before forming precise connections to create structures such as the lip. Errors 33 

in this process lead to birth defects such as cleft lip and facial cleft7. During neurogenesis, 34 

neurons also need to form precise linkages to their synaptic partners8-10 with severe 35 

consequences if these processes fail. A range of molecules have been identified that are 36 

involved in cell matching, predominantly from neuronal systems11-14. These molecules include 37 

cytoskeletal, adhesion, and force transducing proteins. However, the underlying mechanisms 38 

by which the information from these different components is integrated by the developing 39 

tissue to form precise connections remain unknown. 40 

 41 

In most tissues, there are multiple cell types with stereotypic spatial positions. For example, 42 

formation of the eye requires precise cell fate determination and positioning15,16, even within a 43 

growing domain17. In the developing heart, cardioblasts take on different fates depending on 44 

expression of (highly conserved) transcription factors18. Periodic patterns of cells can also be 45 

generated from lateral inhibition19,20. Such periodic patterns need to be maintained across large 46 

distances, even as tissues undergo large-scale morphological changes. 47 

 48 

Theoretical modelling of tissue formation has helped increase our understanding of how cells 49 

pack21, form compartment boundaries22, generate complex tissue shapes23-26, and ensure 50 

regulated growth27. Lateral inhibition can create a wide variety of patterns depending on the 51 

feedback mechanisms28. Recently, vertex models have been used to understand cell structure 52 

in epithelia29,30. Although biological systems are inherently dynamic, equilibrium statistical 53 

mechanics can be a powerful tool for understanding suitable biological processes. An example 54 

of such a case is cell packing in the eye, where analogies with soap bubbles provide an effective 55 

tool for understanding formation of the Drosophila retina31.  56 

 57 
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Here, we develop a model of cell matching where differential adhesion energy constraints 58 

between cells drives the process of matching. We apply this to the developing Drosophila 59 

embryonic heart, where the process of cardioblast cell matching has recently been quantified32. 60 

The Drosophila embryonic heart is comprised of two lines of cardioblasts that migrate together 61 

over a period of a few hours, Figure 1A, and they express either Tinman (Tin, the Drosophila 62 

homolog of mammalian Nkx2.5) or Seven-up (Svp), Figure 1B, in a repeating 4-2 pattern33. 63 

As cardioblasts approach each other, the cells adjust position, via filopodia interactions 64 

between cardioblasts, to align accurately with their contralateral partners, Figure 1C-D. 65 

Specific adhesion molecules are expressed within the different cardioblast types: Fasciclin III 66 

(Fas3) in Tin-positive cardioblasts; and Ten-m in Svp-positive cardioblasts, Figure 1E. Cell 67 

matching in the heart, as defined in Figure 2A, depends on the differential spatial expression 68 

of these adhesion molecules32, Figure 2B-C. Motivated by these observations, we construct a 69 

biophysical model of the cell-cell interactions to test whether such differential adhesion is 70 

sufficient to drive cell matching. We then use this model to test how both structural and genetic 71 

perturbations alter cell matching. This model provides a biophysical framework in which to 72 

understand how cells find specific partners during development.  73 

 74 

Results  75 

 76 

Mapping of adhesive interactions between filopodia onto an equilibrium energy state 77 

To simulate cell matching, we developed an energy-based model that accounts for the spatial 78 

constraints between cells and the adhesion competition between different cell types. In the 79 

Drosophila heart, differential adhesion between cells is mediated by filopodia contacts, which 80 

have a spread of contact times32, from a few seconds to over five minutes. As justified below, 81 

the underlying principle of the model is that these differential filopodia adhesion times between 82 

adhering cells can be mapped onto effective adhesion energies.  83 

 84 

At a biochemical level, the time for reactions, 𝜏, are typically related to the Arhennius law: 𝜏 ∼85 

𝜏#𝑒Δ%/'(), where Δ𝐸 is the energy cost of the reaction. It has recently been shown that time 86 

scales in biological systems at macroscopic levels can also follow the Arhennius law, such as 87 

in the developmental time of Drosophila embryogenesis34,35. Here, we apply a mesoscopic 88 

approximation, where we assume that the distribution of binding times of filopodia 𝜏+,-.	can 89 

be related to the effective adhesion energy barrier Δ𝐸0.1	to separate contacting filopodia. 90 
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 91 
 92 
Figure 1. Cell matching in Drosophila embryonic heart. (A) Developmental stages of heart formation. 93 
Cardioblasts (green regions) merge to form a tubular heart. (B) Cardioblasts have distinct expression patterns. 94 
Heart structure at larval stage: the heart is made of a periodic alternation of Tin cells and Svp cells. Staining of 95 
cardioblasts (Spectrin in magenta and Tinman in green). (C) Heart formation is initially driven by global tissue 96 
movement during dorsal closure but active processes align cells in a final adjustment phase. (D) Example of cell 97 
trajectories during the adjustment phase. (E) Cardioblasts express the adhesion molecules Fas3 and Ten-m in an 98 
alternating pattern.   99 
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In the model, the overlap between facing cells results in an adhesion energy Δ𝐸 = −𝜖. 𝑥, where 100 

x denotes the length of the cell contact interface and 𝜖 is the adhesion energy per unit length 101 

between the two cells, Figure 2D. Cellular compressibility for each cell is encoded by an 102 

effective elastic energy 𝐸89 = 𝐾(𝐿=899 − 𝐿#)?, corresponding to the cost of deforming the cells 103 

away from their preferred cross-sectional width; 𝐾 is the effective cell compressibility along 104 

its leading edge, 	𝐿=899  the cell length and 𝐿# the cell rest length, Figure 2D. We only focus on 105 

the apical leading edge of the cells as this is where the process of cell alignment is occurring. 106 

Combining the energy scales, we can express effective energies for two cell types, denoted by 107 

a and b: 108 

 109 

𝐸0 = 𝐾@𝐿=899 − 𝐿#,0B
?
− (𝜖00. 𝑥 + 𝜖0+. 𝑦)      (1) 110 

𝐸+ = 𝐾@𝐿=899 − 𝐿#,+B
?
− (𝜖++. 𝑥 + 𝜖0+. 𝑦)      (2) 111 

 112 

𝜖0+  denotes the adhesion energy per unit length between cells of type a and b, x and y denote 113 

the total alignment overlap with cells of the same and different types respectively, and 𝐿#,0 and 114 

𝐿#,+	represent the equilibrium lengths for the different cell types. 115 

 116 

Filopodia activity results from the interplay between active fluctuations and adhesion 117 

interactions with other filopodia. The active alignment of the heart takes place over a period of 118 

around 30 minutes, whereas the average binding time of filopodia is 1-5 minutes. In the 119 

following, we assume that the heart has enough time during the active alignment process to 120 

reach equilibrium.  121 

 122 

To simulate the evolution and equilibration of configurations of heart cell, we use a Metropolis 123 

algorithm incorporating mechanical fluctuations induced by filopodia activity as an effective 124 

temperature, see Figure 2E and Methods for further details. We define cellular mismatch by 125 

identifying the fraction of cell boundaries that are not correctly aligned with their 126 

corresponding opposite cell, Figure 2A. In this definition, a perfectly aligned tissue has 127 

mismatch of 0, while a fully misaligned system has a mismatch of 1. The tissue mismatch is 128 

then taken as the average over all cell mismatches. 129 
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 130 
Figure 2: Simulating heart matching  (A) Definition of cell mismatch. r=1,2 denotes two contralateral rows of 131 
cardioblasts. (B,C) When different cell types are not present (as in svp-/-), the resulting heart has severe 132 
mismatching defects. (D) Cells can deform elastically from their rest length with a compressibility K and cell-cell 133 
contact is characterized by an adhesion depending of the contact type. (E) Metropolis algorithm is used to find 134 
the final cell alignment after equilibration. At each step, a cell/cell interface is randomly chosen and is displaced 135 
by δx, which follows a Gaussian distribution (see Methods). The probability to accept the displacement follows 136 
the Metropolis algorithm (F) Distribution of leading edge size in different cardioblast types. (G) Simulations with 137 
only one cell type (all Svp or all Tin) and with the alternated pattern of Tin/Svp cells. (H) Predicted mismatch in 138 
hearts with one cell type for different cells number.  139 
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Minimization of interfacial energy constraints are sufficient to explain cell alignment in 140 

the wildtype Drosophila heart 141 

We apply our model to the developing Drosophila heart, where quantitative data for cell 142 

matching is available32. As well as incorporating the effective energy differences, we need to 143 

implement within the simulation a representative pattern of cell types. In the Drosophila heart, 144 

Tin-positive cardioblasts express Fas3 at high levels and Svp-positive cardioblasts express 145 

Ten-m. We translate this into different adhesion energies per unit length between Tin-positive 146 

cardioblasts (𝜖))), Svp-positive cardioblasts (𝜖EE), and between Tin- and Svp-positive 147 

cardioblasts (𝜖E)), similar to the outline given in Figure 1B-E. 148 

 149 

Initial configuration of the cells and initial cell alignment: By the end of dorsal closure, 150 

cardioblasts are brought into close contact. To initiate the cellular arrangement, we assume that 151 

the cells at the two ends of the heart are perfectly aligned and are at their resting length initially. 152 

To model geometric disorder, we take the length of the apical surfaces for Tin-positive and 153 

Svp-positive cardioblasts as 𝐿#,) and 𝐿#,E respectively. These lengths are simulated as Gaussian 154 

variables of mean 𝐿#,)F80- and  𝐿#,EF80- with standard deviation 𝐿#,)GH.	and  𝐿#,EGH., extracted from 155 

experimental quantification of cell size (Figure 2F). We construct the simulated heart as two 156 

rows of cells formed by a succession of four Tin-positive cells and two Svp-positive cells 157 

patterns, with a total number of N1 =52 cells (number of cells in a heart row, Figure 1B and 158 

2G). Each cell length is picked as a random variable according to the rest lengths distributions 159 

(Figure 2F). However, we constrain the total lengths of the two rows to be identical (Methods).  160 

 161 

Initial cell matching without adhesion energy: We first consider the question: are the boundary 162 

constraints alone sufficient to ensure robust cell matching? To answer this, we take initial 163 

conditions that mirror experimentally measured cardioblast size and position (Figure 2F-G) but 164 

with no adhesion energy (i.e.	𝜖)) = 𝜖EE = 𝜖E) = 0), Figure 2D. As we take cells at their initial 165 

rest length, no equilibration is needed and we calculate the mismatch of the initial condition. 166 

We simulate N2 = 30 embryos with confinement of different sizes, and calculate the ensemble 167 

mismatch in cell alignment. This results in a mismatch increasing with system size, Figure 2H. 168 

Interestingly, we find for  N1 =52 cells (the experimental size of the heart) a mismatch around 169 

0.3 which corresponds to the mismatch value experimentally observed in the Svp-/- mutants 170 

where all cells are of the same type, Figure 2C. In summary, geometric disorder, induced by 171 

cell size variability, is too large to enable precise cell matching merely by boundary constraints. 172 
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 173 
 174 
Figure 3: The interplay between differential adhesion, cell compressibility and cell size variability 175 
determines the cell-matching.  (A) Initial configuration randomly sampled for 52 cells (4 Tin/2 Svp alternated 176 
pattern). (B) Cells configuration after convergence of mismatch, cell lengths have changed on the cell/cell 177 
interface while we still represent their initial length and position on the side not touching the interface. (C) 178 
Ensemble averaged (N2 = 30 simulated embryos) mismatch evolution for different values of eSS and K = 1. All 179 
mismatches are calculated at steady state. (D) Final mismatch for different values of eSS and eTT. (E) Final 180 
mismatch for different values of g. Circles correspond to the case eST = 0 and squares to eST ≠0. (F) Spatial variation 181 
of mismatch across different cell types as depicted in the below cartoon (green = Tin positive cardioblasts, 182 
magenta = Svp positive cardioblasts.). (G) Spatial variations of the mismatch in the wildtype (in black) and 183 
comparison with the simulation (blue, purple). (H) Sketch showing how differential adhesion aligns 184 
heterogeneous cell-cell contacts, which generates local confinement of cells. 185 
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Calculating the mismatch with differential cell adhesion: We next investigate how the strength 186 

of selective adhesion impacts alignment. We first explore matching variations with only one 187 

cell type adhering, i.e. we vary ϵKK alone with ϵLL = 0 ϵKL = 0, Figure 3A-C. We compute 188 

mismatch evolution of the embryo as a function of simulation iterations and take its value once 189 

it reaches a steady-state value, Figure 3C. The final mismatch for a single embryo simulation 190 

is averaged over 30 embryos. We find that the final mismatch decreases with increasing 191 

adhesion level. We then explored two cell types with selective adhesion by using different 192 

combinations of ϵKK and ϵLL with ϵKL = 0, Figure 3D. Different combinations of ϵKK and ϵLL 193 

can lead to the same alignment. By systematically varying ϵKK, ϵLL	and ϵKL, we see that the 194 

equilibrium mismatch is determined by the parameter 𝛾 = (NOOPNQO)R(NQQPNQO)
S

, representing the 195 

competition between cells due to differential adhesion and cell compressibility, Figure 3E. 196 

Here, 𝛾 corresponds to the typical length change that adhesion differences can generate for a 197 

single cell. For 𝛾 = 0µ𝑚, there is no energy cost for different cell types  to have a contact 198 

interface. The mismatch corresponds to the random case simulated in Figure 2H; similar to the 199 

Svp-/- mutant, where all cells are of the same type. Mismatch decreases with increasing 𝛾, 200 

reaching a plateau around mismatch of ~ 0.07, dashed line in Figure 3E. This implies that, 201 

beyond a certain level, increasing differential adhesion only weakly improves matching. 202 

 203 

We measure spatial variations of the mismatch, denoted by m, Figure 3F. We find that m is 204 

minimal at the Tin-Svp interface, as any contact between different cell types has some adhesion 205 

energy cost for 𝛾 > 0µ𝑚, Figure 3G. Alignment of cells inside a block of homogeneous cell 206 

types in the high 𝛾 limit is determined by the boundaries imposed by the highly aligned cells 207 

at the interface between different cell types. Within a region of Tin-positive cells, the level of 208 

cell mismatch converges towards the non-adhesive random case with N = 4, Figure 3H. The 209 

mismatch between Svp-positive cells is similar to the random adhesion case with N = 2. The 210 

geometric variability in the lengths of the cell leading edges means that cells never reach zero 211 

mismatch even at very high adhesion values. Interestingly, for small values of 𝛾, the pattern of 212 

cell mismatch is inverted, as geometric variability is higher for Svp cells. 213 

 214 

Comparing the spatial profile of cell matching to the experimental data, we see that for 𝛾 >215 

1µ𝑚 the mismatch profile agrees well with experiment, Figure 3G. Therefore, simple energy 216 

considerations, with a single fitting parameter 𝛾, are sufficient to reproduce the wildtype 217 

matching phenotype. 218 
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 219 
Figure 4: Equilibrium energy description replicates experimental observations in wild type and mutants.  220 
(A,B,C) Distribution of Fas3 (green) and Ten-m (purple) in wildtype and mutant embryos. The value of g for 221 
wild type (grey circle), double mutant (blue small circle), svp-/- mutant (blue circle),  fas3-/- (green circle) , ten-m-222 
/- (purple circle), Svp-Gal4, Fas3-UAS  (green diamond) and Svp-Gal4 > Fas3-RNAi-UAS (black square) 223 
embryos can be inferred from the average mismatch curve.  224 
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Energy scales are just sufficient to ensure robust matching 225 

 226 

Perturbing the expression profiles of Fas3 and Ten-m, results in altering of the cardioblast cell 227 

matching32. We next ask whether the model can reproduce these observations. To that end, we 228 

use Figure 3E to estimate g for wild type and mutants conditions (Figure 4A-C) given the 229 

experimentally measured cell mismatch. We do not know the specific effective energy levels 230 

associated with different adhesion interactions. To relate the values of 𝜖)), 𝜖EE and 𝜖E) to the 231 

underlying dynamics, we assume that they depend on the energy scales of homophilic 232 

interactions of Fas3 (𝜖00X0GY) and Ten-m (𝜖00)8-), e.g. 𝜖)) ≈ 𝜖))X0GY + 𝜖)))8-.  233 

 234 

Our model predicts that mutants erasing the differential pattern of expression of Fas3 and Ten-235 

m lead to  g = 0	µ𝑚 and a mismatch equal to the random case. This is the case for the double 236 

mutant of Fas3-/- and Ten-m-/- and the mutant svp-/- (Figure 4A,B). For the wild type, we find 237 

𝛾[)  ~ 0.5	µ𝑚 which is smaller than the value 𝛾[)  ~ 1 µ𝑚 found by fitting the experimentally 238 

measured spatial variation of mismatch (Figure 3G). However, this difference could be 239 

explained by the shallowness of the mismatch curve for g > 0.5 µ𝑚. Assuming that there is no 240 

interaction between Fas3 and Ten-m, we expect that 	𝛾[) = 	𝛾X0GY + 𝛾)8-F	.	Using the 241 

measured matching in mutants of Fas3 Fas3-/- and Ten-m Ten-m-/-, we estimate the 242 

contributions to	𝛾[) from the different adhesion molecules, and find	𝛾X0GY + 𝛾)8-F~𝛾[) ~0.5 243 

µ𝑚 (Figure 4B).  244 

 245 

Our simple additive model of energies is consistent with other mutant observations. When Fas3 246 

is overexpressed in Svp cells using Svp-Gal4, Fas3-UAS expressing embryos, we expect g to 247 

be the same than for the mutant Fas3-/-, which is the case (Figure 4B-C). When the level of 248 

Fas3 in Svp-positive cells is reduced using embryos expressing Svp-Gal4 > Fas3-RNAi-UAS,  249 

𝜖EE is reduced compared to wildtype, but so is 𝜖E) as direct interactions between filopodia with 250 

Fas3 is reduced between different cell types. We find a g similar to the wild-type case showing 251 

that 𝜖E) is  small compared to 𝜖EE and 𝜖)).  252 
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 253 
Figure 5: Matching correction of local defects. Various types of experimentally observed cell number defects 254 
in wild type embryonic hearts. Differential adhesion can partially compensate these defects by deforming cells in 255 
the range of  g ≈ 0.5 found in Fig.4. 256 

 257 

Robustness of cell matching to perturbations 258 

 259 

Here, we probe the robustness of the system to perturbations in cell number by considering 260 

variations in cell type specification. Within wildtype embryo populations, we observe 261 

variability in the spatial pattern of cardioblast specification. For example, we have observed 262 

embryos with three and five Tin-positive cardioblasts in a sector, as well as a solitary Svp-263 

positive cardioblast, and an additional one (Figure 5). Even when cell number is perturbed, we 264 

observe that the boundaries between different cell types are typically well defined. To test the 265 

model, we implemented different initial patterns of cardioblasts but otherwise kept parameters 266 

identical to the wildtype scenario with g = 0.5 µ𝑚. The system equilibrates to a state with clear 267 

boundaries between the different cell types and cells deform to align boundaries. This 268 

demonstrates that having two complementary adhesion processes is robust to perturbations in 269 

the structure of the heart as it develops.  270 
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 271 
 272 
 273 
Figure 6: Simulating cell matching dynamics  (A) Vertex model implementation of interface dynamics. Each 274 
cell-cell lateral boundary on a row is defined by a vertex point. Elastic forces are represented in red/blue depending 275 
if cells are stretched/compressed. Each cell-cell interface section between the two facing rows has a negative 276 
tension which acts on the vertices applying forces represented in magenta/green/grey depending on the interface 277 
type. The sum of these contributions divided by a friction coefficient, ξ, gives the vertex velocity. (B) We evolve 278 
the system (Methods) and compute the ensemble averaged mismatch over time (N = 30). We vary the tension 	𝑡# 279 
between 0 and 2000 while K is fixed to 100 and ξ = 1000. (C) Spatial alignment for 0 min, 30 min, 60 min for 280 
	𝑡#	 	= 2000,	K= 100 and ξ = 1000 (D) Adhesion-independent cell alignment between cells of the same type 281 
depends on the friction coefficient ξ. Results shown for two different tensions, t0.  282 

 283 

Dynamic vertex model of cell matching 284 

 285 

To evaluate how differential adhesion modulates cell matching dynamics, we used a vertex 286 

approach to model the time evolution of vertices at the interface between the two facing rows 287 

of cells, Figure 6A (see Methods). By analogy with the equilibrium energy model used 288 

previously, vertices are submitted to elastic forces corresponding to effective elasticity and 289 
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adhesion forces in the cell. We assume that adhesion produces a negative tension, which 290 

extends cell-cell contact interfaces. The sum of these contributions results in a force which, 291 

when divided by an effective friction coefficient, gives the vertex velocity. We explore the 292 

simple case of equal tensions, 	𝑇KK	= 𝑇LL = 	−𝑡# and 	𝑇KL = 0 with a fixed 𝐾	 and friction 293 

coefficient, ξ.  Varying 𝑡#, keeping other parameters fixed, shows a lower limit to cell matching 294 

accuracy, as the time evolution of cell matching collapses onto a single curve for large 𝑡#, 295 

Figure 6B. This limit is consistent with our equilibrium model. At high adhesion differences, 296 

the cell mismatch first undergoes a rapid decrease, which is adhesion-dependent. This 297 

corresponds to the phase of heterogeneous cell types boundaries shrinking. Below a mismatch 298 

of ~0.2, the boundaries between cell types are perfectly aligned, Figure 6C. The mismatch 299 

between cells of the same type decreases with slower, adhesion independent, dynamics that are 300 

friction dependent, Figure 6D. Overall, we see that dynamically incorporating differential 301 

adhesion gives similar results to our equilibrium approach, supporting our above assumptions. 302 

 303 

Discussion 304 

 305 

Even though biological systems are inherently out-of-equilibrium, we have demonstrated that 306 

an equilibrium energy argument is consistent with experimental observation of cell matching 307 

in the heart. This is consistent with the rapid dynamics of filopodia compared to the time of 308 

heart cells final alignment. The filopodia dynamics relate to the system effective temperature. 309 

The idea of effective temperatures in developing systems has also recently been used to 310 

describe jamming transitions during zebrafish development36. Our model shows that cell 311 

matching results from the interplay between cell-cell interactions (mediated by filopodia and 312 

specific adhesion molecules) and cell deformability. According to our model, the level of 313 

differential adhesion found in the wildtype heart is close to the minimal level required to obtain 314 

a well-aligned heart as the value g = 0.5 corresponds to the point where the mismatch curve in 315 

function of g starts to flatten. We find that Fas3 and Ten-m contribute almost equally to the 316 

matching process. Furthermore, we demonstrate than increasing differential adhesion 317 

indefinitely does not accelerate the matching process beyond a certain point as the final 318 

alignment phase is adhesion independent. 319 

 320 

A key result of our model is that short-ranged constraints (i.e. adhesion differences between 321 

two cell types) can propagate long-ranged order. We show that generating periodic segments 322 
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of different adhesion molecules (i) aligns these segments at their interfaces and (ii) alignment 323 

inside each segment is due to geometric confinement and decreases with the segment size.  324 

 325 

Our work has potential application to other biological systems. During neurogenesis - where 326 

precise connections between neurons are required - Notch signalling (involve in lateral 327 

inhibition) has recently been shown to regulate neuronal wiring10. Formation of the vasculature 328 

requires cell migration to precise locations and this is mediated by filopodia protrusions and 329 

lateral inhibition37. During wound healing, cells need to repair wounds by forming precise 330 

connections. However, how processes at a single cell level are integrated to ensure long-ranged 331 

precise cell matching remains an open question38. In our model, we do not consider 332 

heterogeneities in the mechanical properties. In other systems such as the brain, tuning of tissue 333 

stiffness ensures precise cell matching39. More generally, coordinated cell migration can be 334 

directed by tissue stiffening40. It would be possible to test the role of mechanical feedback in 335 

our model by adding viscoelastic relaxation of the cell lengths within a vertex model 336 

framework as described in Figure 6. 337 
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Methods 349 

 350 

Experiments 351 

 352 

Experimental data collected as described in Zhang et al. 32. 353 

 354 

Modelling 355 

 356 

One-dimensional interface, and mismatch ratio definitions 357 

The model system consists of two rows of equal number of cells interacting on a one-358 

dimensional interface defined as vertices 𝑥. Each cell 𝑖 on a row 𝑟 is represented by a pair of 359 

vertices (𝑥,
(a), 𝑥,Rb

(a) ) on this interface with 𝑥,
(a) ≤ 𝑥,Rb

(a)  (i = 1, 2,… , N + 1, and r ∈ {1, 2} for N 360 

cells occupying each row), with cell length 361 

𝐿,
(a) = 𝑥,Rb

(a) − 𝑥,
(a).                  (SE1) 362 

The total length of a model system is kept constant by fixing first 𝑥b
(b) = 𝑥b

(?), and last 𝑥kRb
(b) =363 

𝑥kRb
(?)  vertices throughout the simulation. The overlap interval length between cells 𝑖 and 𝑗 364 

located on two different rows is calculated as: 365 

𝐿(𝑖 ∩ 𝑗) = n
0	, if	maxs𝑥,

(b), 𝑥t
(?)u > mins𝑥,Rb

(b) , 𝑥tRb
(?) u

mins𝑥,Rb
(b) , 𝑥tRb

(?) u − maxs𝑥,
(b), 𝑥t

(?)u ,			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
                    (SE2) 366 

The mismatch ratio 𝑚,
(a) of a cell 𝑖 on a row 𝑟 is defined as a proportion of length of overlap 367 

with cells other than its sister cell 𝑖{, and the total cell length of 𝑖: 368 

𝑚,
(a) = |}

(~)P|@,∩,�B

|}
(~) ; 	𝑚,

(a) ∈ [0,1],                 (SE3) 369 

where the sister cell is defined as a cell 𝑖{	with same index as 𝑖 but located on a different row 370 

(i.e. 𝑖{ = 𝑖), an average mismatch ratio of two sister cells is then calculated as (𝑚,
(b) + 𝑚,�

(?))/2. 371 

 372 

Calculating net change in energy 373 

All vertices 𝑥,
(a) are assumed to be coupled with harmonic springs, with each cell having an 374 

elastic energy E��,�
(�) = K · s𝐿,

(a) − L#,�
(�)u

?
, where L#,�

(�) is the equilibrium length for a given cell 375 

(kept constant throughout the simulation), and K is a spring constant. Then, the total elastic 376 

energy for the whole system is just a sum of elastic energies over all cells: 377 
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E��,����� = ∑ ∑ K · s𝐿,
(a) − L#,�

(�)u
?
.�

��b
?
��b                 (SE4) 378 

In the model, two rows of cells interact along the one-dimensional interface by adhesion of 379 

cells along segments of the interface shared by the same cell type cells, or by cohesion of cells 380 

of two different cell types along interface segments occupied by cells of two different types. 381 

We implemented the interface by defining interface vertices 𝑥t
(,-H) with 𝑥t

(,-H) ≤ 𝑥tRb
(,-H), which 382 

could be obtained by concatenating both rows of 𝑥,
(a) vertices into single vector and then 383 

sorting them. Similar to cell vertices (𝑥,
(a)), pair of interface vertices	(𝑥t

(,-H), 𝑥tRb
(,-H)) represents 384 

an interface segment 𝑗. The total adhesion energy for the whole system is then the sum of 385 

adhesion energy contributions of all interface segments: 386 

𝐸0.1,H�H09 = ∑ 𝜖t ⋅ (𝑥tRb
(,-H) − 𝑥t

(,-H))?kRb
t�b 	,               (SE5) 387 

where 𝜖t is the cell type specific adhesion energy-per-unit length of a segment 𝑗: 388 

𝜖t = n
𝜖00, 𝑗	is	interface	between	type	𝑎	and	𝑎
𝜖++, 𝑗	is	interface	between	type	𝑏	and	𝑏
𝜖0+, 𝑗	is	interface	between	type	𝑎	and	𝑏

              (SE6) 389 

Since vertices of 𝑥t
(,-H) are from both rows of cells, changing position of a single cell vertex 390 

𝑥,
(a) could result in cases with 𝑥t

(,-H) ≥ 𝑥tRb
(,-H), thus 𝑥t

(,-H) needs to be sorted before calculating 391 

total adhesion energy during simulation. 392 

The total energy of the system as a function of location of cell vertices 𝑥,
(a) is calculated as the 393 

sum of elastic and adhesive energies: 394 

E(𝑥) = E��,����� + 𝐸0.1,H�H09                  (SE7) 395 

and the nett change in total energy due to change in the configuration of 𝑥 → 𝑥 + Δ𝑥 is 396 

calculated as a difference in total energy between the two configurations 397 

ΔE → R¡  = E(𝑥 + Δ𝑥) − E(𝑥)                 (SE8) 398 

 399 

Sampling initial configuration and equilibrium lengths of cells 400 

Randomness in cell shape geometry was modelled as a random initial configuration of cells, 401 

which was set to be equal to the equilibrium lengths of the cells throughout the simulation. The 402 

random initial configuration of cells, and thus the equilibrium lengths (L#,�
(�)) for each cell were 403 

sampled from a normal distribution with cell type specific mean and standard deviation using 404 

a MATLAB function normrnd. In order to construct a random configuration, we implemented 405 

random sequential deposition41 of two rows onto each other with a constraint that enforces 406 
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equal length of two rows within ε = µ ⋅ 10PY, where µ is the smallest of the two type-specific 407 

average lengths of the cells in the given configuration. 408 

 409 

For the row of cells with m� type a cells and N −m� type b cells, m� equilibrium lengths (L#,�
(b)) 410 

for the top row are sampled from a normal distribution with mean 𝐿#,0F80- and standard deviation 411 

𝐿#,0GH., and N − m� equilibrium lengths (L#,�
(b)) are sampled from normal distribution with mean 412 

𝐿#,+F80- and standard deviation 𝐿#,+GH.. 413 

L#,�
(b)~ ¤

𝒩@𝜇 = 𝐿#,0F80-, σ = 𝐿#,0GH.B	for	type	a	
𝒩@𝜇 = 𝐿#,+F80-, σ = 𝐿#,+GH.B	for	type	b

 414 

where the mean and standard deviation for different cell types are experimentally determined 415 

parameters. Next, the bottom row equilibrium lengths (L#,�
(?)) were sampled in the same manner 416 

until the constraint ∑ L#,�
(b)

� − ε < ∑ L#,�
(?)

� < ∑ L#,�
(b)

� + ε was satisfied. Afterwards, L#,�
(�) are 417 

converted into cell vertices 𝑥,
(a) in the same sequence as the L#,�

(�) was produced by normrnd 418 

function. 419 

 420 

Implementation of Markov-chain cell configuration sampling using Metropolis algorithm 421 

In order to simulate evolution of the cell boundaries by moving cell vertices 𝑥 and sample cell 422 

configurations, we used Monte Carlo Markov-chain (MCMC) sampling by implementing 423 

Metropolis algorithm in MATLAB42. At each MCMC sampling step a vertex 𝑥,
(a) is selected 424 

randomly and a random move is proposed 𝑥,
(a) → 𝑥,

(a) + Δ𝑥,
(a), Δ𝑥,

(a) is a Gaussian random 425 

variable with mean 0	 and standard deviation 𝛿𝑋, the value of 𝛿𝑋 determines magnitude of the 426 

random movement (interpreted as random fluctuations in the model). In our implementation 427 

Δ𝑥,
(a) was sampled using normrnd(0, 𝛿𝑋) function in MATLAB. Afterwards, Metropolis 428 

probability of accepting the proposed move, 𝑝(𝑥,
(a) → 𝑥,

(a) + Δ𝑥,
(a)) is calculated using 429 

𝑝(𝑥,
(a) → 𝑥,

(a) + Δ𝑥,
(a)) = min­1, 𝑒𝑥𝑝 ®−

¯°
±}
(~)→±}

(~)²³±}
(~)

%´
µ¶            (SE9) 430 

where ΔE }(~)→ }(~)R¡ }(~)
 is a nett change in total energy of the system due to movement of vertex 431 

𝑥,
(a) by amount Δ𝑥,

(a), and 𝐸# is the effective temperature (“thermal energy”) of the cells. Then, 432 

𝑝(𝑥,
(a) → 𝑥,

(a) + Δ𝑥,
(a)) is compared to a uniformly distributed random variable 𝛿· in the 433 
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interval 𝛿· ∈ (0,1) produced by rand function in MATLAB. If the statement 𝛿· <434 

𝑝s𝑥,
(a) → 𝑥,

(a) + Δ𝑥,
(a)u is true, then the move is accepted, and otherwise the move is rejected. 435 

 436 

Overall, the probability of movement 𝑥,
(a) → 𝑥,

(a) + Δ𝑥,
(a) of a vertex at position 𝑥,

(a) is:  437 

𝑃(𝑥,
(a) → 𝑥,

(a) + Δ𝑥,
(a)) = 	

1
2 ⋅ (𝑁 − 1) ⋅ 𝑝(𝑥,

(a) → 𝑥,
(a) + Δ𝑥,

(a)) 438 

where the first term on the right-hand-side refers to the probability of selecting vertex 𝑥,
(a) from 439 

two rows, and 𝑁 − 1 vertices in each row (two end vertices on each row are assumed to be 440 

fixed throughout the simulation, and have 𝑃 = 0). In order to avoid flipping of cells, and 441 

overlapping of cells on a single row, we forbid such movements by setting 𝑝s𝑥,
(a) → 𝑥,

(a) +442 

Δ𝑥,
(a)u = 0 for movements with Δ𝑥,

(a) > 0 that exceed cell length of cell 𝑖 (i.e. Δ𝑥,
(a) >443 

0	AND	Δ𝑥,
(a) > 𝐿,

(a)), and for movements with Δ𝑥,
(a) < 0 that exceed cell length of cell 𝑖 − 1 444 

(i.e. Δ𝑥,
(a) < 0	AND	|Δ𝑥,

(a)| > 𝐿,Pb
(a) ). 445 

 446 

Implementation of vertex model 447 

Cell initial geometries are constructed using the same functions as with the equilibrium energy 448 

model above. Each vertex is described by its position 𝑥,
(a)(𝑡),and follows the equation :  449 

𝜉 ¾ }
(~)(H)
¾H

= 	 (𝑇0.1,Rb -𝑇0.1, +	𝐾 *log(𝐿,Rb
(a) (𝑡)/𝐿,Rb,#

(a) )-	𝐾 *log(𝐿,
(a)(𝑡)/𝐿,,#

(a)) with 𝑇0.1 = 𝑇EE for a 450 

S-S  interface, 𝑇0.1 = 𝑇)) for a T-T interface, and  𝑇0.1 = 𝑇E) for a S-T interface. Here we 451 

use the elastic force form 𝐾 *log(𝐿,
(a)(𝑡)/𝐿,,#

(a)) instead of 𝐾 * (𝐿,
(a)(𝑡) − 𝐿,,#

(a)) to avoid 452 

numerical artefacts at big cell deformation. These two definitions are the same for small cell 453 

deformations. Time is discretized in time steps dt = 0.01 min and the parameter 𝜉 order of 454 

magnitude is tuned to observe the dynamics of the system evolution on the minute/hour 455 

timescale. Our previous equilibrium model predicts that matching will occur when 𝐾	 ∽ 𝑇0.1  456 

and on the hour timescale when 𝑇0.1/𝜉 ∽ 1	µ𝑚	/	𝑚𝑖𝑛.	In Figure 6, 𝑇0.1 and	𝐾 are expressed 457 

in pN and 𝜉 in pN *min /	µ𝑚. The vertices positions are calculated at each simulation step and 458 

allow to calculate the mismatch evolution in time.  459 
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