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Abstract 

Marine microorganisms inhabiting nutrient-depleted waters play critical roles in global 

biogeochemical cycles due to their abundance and broad distribution. Many of these microbes 

share similar genomic features including small genome size, low % G+C content, short intergenic 

regions, and low nitrogen content in encoded amino acids, but the evolutionary drivers of these 

characteristics are unclear. Here we compared the strength of purifying selection across the 

Marinimicrobia, a candidate phylum which encompasses a broad range of phylogenetic groups 

with disparate genomic features, by estimating the ratio of non-synonymous and synonymous 

substitutions (dN/dS) in conserved marker genes. Our analysis shows significantly lower dN/dS 

values in epipelagic Marinimicrobia that exhibit features consistent with genome streamlining 

when compared to their mesopelagic counterparts. We found a significant positive correlation 

between median dN/dS values and genomic traits associated to streamlined organisms, including 

% G+C content, genome size, and intergenic region length. Our findings are consistent with 

genome streamlining theory, which postulates that small, compact genomes with low G+C 

contents are adaptive and the product of strong purifying selection. Our results are also in 

agreement with previous findings that genome streamlining is common in epipelagic waters, 

suggesting that genomes inhabiting this region of the ocean have been shaped by strong selection 

together with prevalent nutritional constraints characteristic of this environment.  

Keywords: genome streamlining, purifying selection, evolutionary genomics, dN/dS ratio, 

Marinimicrobia, marine bacterioplankton 
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Main Text 

Bacteria and Archaea play key roles in marine biogeochemical cycles and are a dominant 

force that drives global nutrient transformations (Azam et al. 1983; Falkowski et al. 2008). Our 

understanding of microbial diversity in the ocean has been transformed in the last decades due to 

the discovery of several globally-abundant marine microbial lineages that are among the most 

numerically abundant life forms on Earth (Giovannoni & Stingl 2005). Work on some of these 

abundant lineages succeeded in culturing representatives that could then be studied extensively in 

the laboratory, such as Prochlorococcus marinus (Chisholm et al. 1992) and heterotrophic 

bacterioplankton belonging to the Pelagibacteriales (Rappé et al. 2002) and Roseobacter groups 

(Luo & Moran 2014), but many other dominant microbial lineages have not been brought into pure 

culture and require cultivation-independent methods for analysis (DeLong & Karl 2005).  

Previous research of Prochlorococcus and Pelagibacter genomes provided some of the 

earliest insights into the ecology and evolution of these dominant planktonic microbial lineages 

(Partensky & Garczarek 2010; Giovannoni 2005; Giovannoni et al. 2014). It was quickly noted 

that both groups had small genomes that contained short intergenic regions and encoded among 

the fewest genes of any free-living organism (Giovannoni et al. 2014). These characteristics were 

explained through the proposed theory of genome streamlining, which states that genome 

simplification is an adaptation to consistently oligotrophic conditions, and therefore the loss of 

non-coding DNA and unnecessary genes (and corresponding transcriptional, translational, and 

regulatory burdens) is beneficial (Giovannoni et al. 2014). Genome streamlining theory is 

supported by the observation that many streamlined genomes also have a higher proportion of 

Adenine and Thymine nucleotides (i.e., low %GC content) and their encoded proteins are 

correspondingly enriched in amino acids that have a low nitrogen content, which would be 
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expected to be beneficial in oligotrophic waters (Giovannoni et al. 2014; Grzymski & Dussaq 

2012). More recent cultivation-independent studies of marine lineages have confirmed that 

genomic features consistent with genome streamlining are prevalent in a variety of marine lineages 

in addition to Prochlorococcus and Pelagibacter (Ghai et al. 2013; Swan et al. 2013; Luo et al. 

2014; Getz et al. 2018; Dupont et al. 2012), suggesting that common evolutionary drivers shape 

diverse bacterioplankton groups in the ocean.  

Although the term “genome streamlining” implies adaptation under oligotrophic nutrient 

conditions, it remains a possibility that these genomic signatures are non-adaptive and instead the 

result of processes other than strong purifying selection (Batut et al. 2014). For example, it has 

long been known that endosymbiotic bacteria contain small genomes with short intergenic regions 

and low % GC content, but in these cases the drivers are a small effective population size (Ne) and 

consequently high genetic drift, which allows slightly deleterious deletions to become fixed (Kuo 

et al. 2009; Charlesworth 2009; McCutcheon & Moran 2011). While it remains unlikely that 

marine free-living bacteria have small effective population sizes comparable to those of 

endosymbiotic bacteria (Biller et al. 2015), it has been argued that population bottlenecks in the 

distant evolutionary past of some marine lineages may have precipitated their initial gene losses 

(Luo et al. 2017). Moreover, recent work has also shown that weakly deleterious mutations and 

low recombination rates can substantially lower the efficacy of purifying selection in bacterial 

genomes (Price & Arkin 2015), implying that the large abundances of marine bacteria may not 

translate directly into high selection.  

In this study we sought to test whether streamlined marine genomes experience higher 

levels of purifying selection than non-streamlined genomes. This is a key prediction of genome 

streamlining theory that, if correct, would strongly suggest that genomic features associated with 
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genome streamlining are adaptive and not a result of genetic drift. We focused our analyses on 

Marinimicrobia, a diverse marine phylum that comprises globally-abundant lineages involved in 

distinct biogeochemical processes (Hawley et al. 2017; Getz et al. 2018). The Marinimicrobia are 

an ideal group to test genome streamlining theory because genomic traits vary widely across this 

phylum together with its distribution in the water column, with features consistent with genome 

streamlining evolving multiple times independently in different clades (Getz et al. 2018). We 

would expect that Marinimicrobia that live in epipelagic waters and tend  to exhibit features of 

genome streamlining, such as low % GC content, short intergenic spacers, and relatively low 

nitrogen content but carbon-rich encoded amino acids, will therefore show higher levels of 

purifying selection than mesopelagic Marinimicrobia, which generally have opposing  genomic 

characteristics (Getz et al. 2018).  
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Fig. 1: Representation of phylogeny, habitat classification, genomic features, and median 

dN/dS values of the Marinimicrobia phylum. (a) Phylogenetic tree of the 211 genomes 

constructed using amino acids sequences of 120 highly conserved marker genes. (b) Habitat 

classification of Marinimicrobia genomes based on Getz et al. (2018), grey bars represent 

unknown habitat. c) Genomic features of the Marinimicrobial genomes. Abbreviations: GC, % GC 

content (range, 27 to 55%); IGR, mean intergenic region length (range, 30 to 187 nucleotides); 

EGS, estimated genome size (range, 1 to 4.3 Mbp); N-ARSC (range, 0.3 to 0.34); C-ARSC (range, 

3 to 3.2). (d) Median dN/dS values calculated based on two marker genes data sets. Checkm range 

between 0.001 and 0.1912; EMBL range between 0.0161 and 0.2383. Black points on branches 

represent support values of >95%.  

 

In order to test our hypothesis, we estimated the ratio of nonsynonymous and synonymous 

substitutions (dN/dS) of highly conserved marker genes. In general, dN/dS values  <1 are 

indicative of purifying selection, thus the relative selection strength can be compared across groups 

using this metric since lower values imply higher levels of selection strength  (Kryazhimskiy & 

Plotkin 2008). To ensure that our results could be accurately compared across different clades, we 

used two sets of marker genes that are broadly shared among Bacteria, which we refer here to as 

the EMBL and CheckM marker gene sets (Sunagawa et al. 2013; Parks et al. 2015). Our results 

showed that median dN/dS Marinimicrobia values span two orders of magnitude for the CheckM 

data set, between 0.1912 and 0.001, and one order of magnitude when analyzing the EMBL marker 

genes, between 0.2383 and 0.0161 (Fig. 1). The values obtained are far lower than one, which is 

consistent with the expectation that conserved phylogenetic marker genes experience purifying 

selection in order to maintain protein function (Novichkov et al. 2009). We analyzed  the dN/dS 
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values in the context of the Marinimicrobia phylogeny and identified a general pattern in which 

epipelagic genomes exhibiting streamlined features showed lower median dN/dS values than non-

streamlined mesopelagic genomes (Fig. 1). This differentiation was particularly evident within 

clade 2, which encompasses epipelagic and mesopelagic organisms within the same branch (Fig. 

1, in red). The observation of lower dN/dS values in epipelagic Marinimicrobia was strongly 

supported by statistical analyses of both the CheckM and the EMBL marker gene sets (P<0.0001 

and P<0.0001, respectively; Fig. 2).  Our findings suggest that Marinimicrobia found in different 

habitats exhibit distinct selection strength, with epipelagic Marinimicrobia experiencing stronger 

purifying selection.  
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Fig. 2: Plot representing median dN/dS values of epipelagic and mesopelagic Marinimicrobia. 

Bars show standard error. Statistical significance of differences between dN/dS values groups 

according to a non-paired, one-sided Mann Whitney-Wilcoxon test is denoted by: (***) for 

P<0.0001.  

 

We additionally explored the correlation between the strength of selection represented by 

the dN/dS ratio and several genomic features associated with streamlining. It was found that 

genomes showing the lowest % GC content have the lowest dN/dS values (Spearman’s rho = 0.41, 

P<0.0001; Fig. 3a), and thus the higher selection strength. The same trend was obtained when 

correlating the dN/dS ratio with the estimated genome size (Spearman’s rho = 0.29, P= 0.0002; 

Fig. 3b) and intergenic spacers length (Spearman’s rho = 0.52, P<0.0001; Fig. 3c). To analyze the 

carbon and nitrogen content of encoded proteins we estimated the carbon and nitrogen atoms per 

residue side chain (C-ARSC and N-ARSC, respectively), which have previously been used for this 

purpose (Grzymski & Dussaq 2012; Getz et al. 2018; Mende et al. 2017). The correlation between 

C-ARSC and dN/dS showed a negative relationship (Spearman’s rho = -0.30, P< 0.0001; Fig. 3d), 

whereas N-ARSC correlation showed an increase along dN/dS values (Spearman’s rho = 0.26, P= 

0.0005; Fig. 3e). This observation is consistent with previous findings that carbon-rich proteins 

with respect to nitrogen are prevalent in surface waters and suggests that this feature may be 

advantageous under the conditions found in this environment (Mende et al. 2017).  
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Fig. 3: Scatter plots showing the relationship between median dN/dS values and streamlined 

genomic features of the Marinimicrobia genomes. Median dN/dS values were calculated 

including both data sets. Orange and blue points denote epipelagic and mesopelagic genomes, 

respectively.  (a) Median dN/dS vs. %GC content. (b) Median dN/dS vs. Log10 estimated genome 

size. (c) Median dN/dS value vs. median spacers length. (d) Median dN/dS vs. C-ARSC. Spearman 

correlation was performed for each variables pair and details can be consulted on the main text.  

 

Because we evaluated multiple genomic features that have been identified as indicators of 

streamlining (Giovannoni 2005; Giovannoni et al. 2014), we performed a multivariate analysis to 
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explore the effect of such genomic variables on streamlined and non-streamlined genomes 

differentiation. The first two main axes obtained from our principal component analysis (PCA) 

explained 71% of the variance (Fig. 4a). Additionally, we observed a tight clustering of 

Marinimicrobia genomes when environment was included as variable (Fig. 4b). These findings 

suggest that the strength of selection is consistently different between epipelagic and mesopelagic 

Marinimicrobia, and that strong purifying selection is correlated with genomic characteristics 

associated with genome streamlining. It is important to note that these results do not imply that 

strong selection will always lead to low % GC content or high C-ARSC, however, since the 

genomic changes that result from strong selection depend on prevailing environmental factors. For 

example, strong selection in mesopelagic waters would not necessarily lead to an increase in amino 

acid carbon content since carbon is relatively more limiting in deep waters compared to other 

macronutrients. The disparate genomic features of epipelagic and mesopelagic Marinimicrobia are 

therefore likely the result of differential nutrient availability along the water column; surfaces 

waters have long been characterized as nutrient-depleted (i.e., nitrogen and iron) but carbon-rich 

due to photosynthetic activities (Grzymski & Dussaq 2012; Mende et al. 2017) in comparison to 

the mesopelagic zone, where photosynthesis is limited but particulated organic matter 

remineralization occurs, thus nitrogen is relatively more abundant (Karl 2002; Moore et al. 2013; 

Grzymski & Dussaq 2012). 
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Fig. 4: PCA analysis displaying the Euclidean distance among Marinimicrobial genomes. (a) 

PCA excluding Environment as variable. (b) PCA including Environment as variable. 

Abbreviations: GC, %GC content; NARSC, N-ARSC; IGR, mean intergenic region length; dNdS, 

median dN/dS ratio based on both marker gene data sets; EGS, estimated genome size; CARSC, 

C-ARSC.  

 

An important caveat of dN/dS ratio is that it only provides insight into the strength of recent 

selective pressure and therefore cannot be used to infer the selective strength experienced by 

lineages in the distant past. Other streamlined lineages such as the Pelagibacterales and 

Prochlorococcus are thought to have underwent genome reduction in the distant past, and it is 

therefore difficult to assess the strength of selection on these ancestral genomes during these 

transitions. Some studies have suggested that genetic drift due to possible population bottlenecks 

drove these genomic changes (Luo et al. 2017), while other studies have suggested strong purifying 
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selection was the primary driver (Sun & Blanchard 2014). In contrast, Marinimicrobia appear to 

have experienced multiple independent genome transition events more recently in their  

evolutionary history (Getz et al. 2018), and comparison of the selective pressures across disparate 

clades with similar genomic features therefore provides insight into the selective regimes that led 

to current genomic architectures. Our finding of consistently higher purifying selection in 

streamlined epipelagic Marinimicrobia from multiple different clades therefore suggests that 

streamlining is an adaptation and therefore not a product of high genetic drift.  

Materials and Methods 

Marinimicrobia genomes collection  

We analyzed a set of 211 Marinimicrobia genomes that was previously compiled (Getz et al. 

2018). This  data set included all genomes in GenBank classified as Marinimicrobia according to 

the NCBI Taxonomy available until 15 October 2017 (Sayers et al. 2019), as well as 

Marinimicrobia genomes from the Integrated Genomes system (IMG (Markowitz & Kyrpides 

2007)), and from two different studies in which metagenome-assembled genomes (MAGs) were 

generated (Tully et al. 2018; Delmont et al. 2018). We quality-filtered the genomes based on the 

results of CheckM (Parks et al. 2015), with only those genomes with contamination levels of <5% 

and completeness of >40% were considered for further analyses. Additionally, in order to remove 

genomes incorrectly classified and redundant, a second filtering step was performed based on a 

preliminary multilocus phylogenetic tree (Getz et al. 2018). The data set employed by Getz et al. 

was complemented with the genomes SCGC_AD-604-D17, SCGC_AD-606-A07, SCGC_AD-

615_E22, TOBG_RS-419 (Tully et al. 2018; Delmont et al. 2018).    
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Phylogenetic reconstruction 

To reconstruct the Marinimicrobia phylogeny, we predicted proteins from genomes using Prodigal 

v2.6.2 (Hyatt et al. 2010) and identified phylogenetic marker genes using HMMER3 (Eddy 2011). 

We constructed a phylogeny from an amino acid alignment created from the concatenation of 120 

marker genes that have been previously used for phylogenetic reconstruction of Bacteria (Parks et 

al. 2015). The trusted cutoffs were used in all HMMER3 searches with the “cut_tc” option in 

hmmsearch. We used the standard_fasttree workflow included in the ETE Toolkit which includes 

ClustalOmega for alignment (Sievers & Higgins 2018), trimAl for alignment trimming (Capella-

Gutierrez et al. 2009), and FastTree for phylogenetic estimation (Price et al. 2010). The different 

branches obtained were classified into clades based on previously published results (Getz et al. 

2018). We visualized the resulting tree as well as genomic features and median dN/dS values for 

each genome in the interactive Tree of Life (iTOL(Letunic & Bork 2016); 

https://itol.embl.de/tree/45372154390391554311793).  

dN/dS ratio calculation and filtering 

To estimate the strength of purifying selection we used the ratio of nonsynonymous and 

synonymous substitutions (dN/dS) ratio, which has been widely used for this purpose. Although 

the absolute value of the dN/dS ratio will vary depending on the gene used, in general lower values 

are a sign of higher purifying selection while higher values are a sign of higher genetic drift (low 

purifying selection). To calculate genome-wide dN/dS ratios we used two sets of conserved marker 

genes that would be expected to be found in most genomes. The first one consists of 120 

phylogenetic marker genes that is highly conserved in Bacteria, which we refer to as the Checkm 

set due to its use in the CheckM tool (Parks et al. 2015). The second set consists of 40 phylogenetic 

marker genes that has been used in inter-domain phylogenetics, which we refer to as the EMBL 
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set due to its development in several papers published at the European Molecular Biology 

Laboratory (Sunagawa et al. 2013).  

For both marker gene sets, we predicted proteins from each genome using Prodigal and 

then annotated the marker genes of interest using the hmmsearch tool of HMMER3 with the 

recommended cutoffs (Eddy 2011). We aligned the amino acid sequences for each annotated gene 

coming from Marinimicrobia genomes separately using ClustalOmega (Sievers & Higgins 2018), 

and the resulting alignments converted into codon alignments using PAL2NAL (Suyama et al. 

2006). Maximum-likelihood approximation (codeML) within the PAML 4.9h package (Yang 

2007) was used through Biopython in order to perform dN/dS pairwise comparison within the 

clades previously established (Getz et al. 2018). We removed dN/dS values with dS > 2 and dS < 

0.01, which implies saturation of synonymous substitutions and highly dissimilar sequences that 

provide unreliable estimates, respectively (Ran et al. 2014). Additionally, we discarded all dN/dS 

values > 10 on the grounds that these were largely artefactual.   

Calculation of genomic features associated to streamlining  

We estimated GC content, intergenic regions length, C-ARSC, and N-ARSC through code 

previously developed (Mende et al. 2017). For genome length estimation, the following equation 

was used: 

𝑆 =
𝛼(1− 𝛽)

𝛾
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 30, 2019. ; https://doi.org/10.1101/653261doi: bioRxiv preprint 

https://paperpile.com/c/Gq7hSt/yeEgO
https://paperpile.com/c/Gq7hSt/AlOii
https://paperpile.com/c/Gq7hSt/VLkrx
https://paperpile.com/c/Gq7hSt/VLkrx
https://paperpile.com/c/Gq7hSt/T8uTY
https://paperpile.com/c/Gq7hSt/T8uTY
https://paperpile.com/c/Gq7hSt/Unihj
https://paperpile.com/c/Gq7hSt/Unihj
https://paperpile.com/c/Gq7hSt/HFFF
https://paperpile.com/c/Gq7hSt/5rz8f
https://paperpile.com/c/Gq7hSt/lvj85
https://doi.org/10.1101/653261
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 

Where α is the number of base pairs in the genome assembly, β is the estimated level of 

contamination, and γ is the estimated level of completeness. Contamination and completeness for 

each genome were determined using CheckM (Getz et al. 2018). 

Marinimicrobia genomes distribution and statistical analyses 

The ratio of non-synonymous and synonymous substitutions is a widely used metric that estimates 

the evolutionary pressure on protein-coding genes (Kryazhimskiy & Plotkin 2008). In order to 

investigate the strength of selection acting on epipelagic and mesopelagic Marinimicrobia, 

genomes were classified into epipelagic and mesopelagic based on their biogeographic distribution 

(Getz et al. 2018). For statistical analysis, we loaded the filtered dN/dS for both data sets and each 

genome into R and performed mean comparisons analysis through Mann-Whitney U test using the 

“wilcox.test” function. Additionally, in order to investigate the relationship between median dN/dS 

and genomic features associated to each genome, we applied the “cor.test” function with the 

Spearman method. Mean comparisons and correlation plots were visualized through the ggplot2 

package (Wilkinson 2011). Also, we explored the distance between epipelagic and mesopelagic 

Marinimicrobia genomes employing the genomic features and median dN/dS values through a 

PCA analysis with the “prcomp” function available on R. Euclidean distance was visualized using 

the “ggbiplot” function within the ggplot2 package (Wilkinson 2011). 
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