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Abstract

Polygenic prediction has the potential to contribute to precision medicine. Clumping and Thresh-

olding (C+T) is a widely used method to derive polygenic scores. When using C+T, it is common to

test several p-value thresholds to maximize predictive ability of the derived polygenic scores. Along

with this p-value threshold, we propose to tune three other hyper-parameters for C+T. We implement

an efficient way to derive thousands of different C+T polygenic scores corresponding to a grid over

four hyper-parameters. For example, it takes a few hours to derive 123,200 different C+T scores for

300K individuals and 1M variants on a single node with 16 cores.

We find that optimizing over these four hyper-parameters improves the predictive performance of

C+T in both simulations and real data applications as compared to tuning only the p-value threshold.

A particularly large increase can be noted when predicting depression status, from an AUC of 0.557

(95% CI: [0.544-0.569]) when tuning only the p-value threshold in C+T to an AUC of 0.592 (95%

CI: [0.580-0.604]) when tuning all four hyper-parameters we propose for C+T.

We further propose Stacked Clumping and Thresholding (SCT), a polygenic score that results

from stacking all derived C+T scores. Instead of choosing one set of hyper-parameters that maximizes

prediction in some training set, SCT learns an optimal linear combination of all C+T scores by using

an efficient penalized regression. We apply SCT to 8 different case-control diseases in the UK biobank

data and find that SCT substantially improves prediction accuracy with an average AUC increase of

0.035 over standard C+T.
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1 Introduction

The ability to predict disease risk accurately is a principal aim of modern precision medicine. As

more population-scale genetic datasets become available, polygenic risk scores (PRS) are expected to

become more accurate and clinically relevant. The most commonly used method for computing poly-

genic scores is Clumping and Thresholding (C+T), also known as pruning and thresholding (P+T).

The C+T polygenic score is defined as the sum of allele counts (genotypes), weighted by estimated

effect sizes obtained from genome-wide association studies, where two filtering steps have been ap-

plied (Wray et al. 2007; Purcell et al. 2009; Dudbridge 2013; Wray et al. 2014; Euesden et al. 2014;

Chatterjee et al. 2016). More precisely, the variants are first clumped (C) so that only variants that

are weakly correlated with one another are retained. Clumping selects the most significant variant

iteratively, computes correlation between this index variant and nearby variants within some genetic

distance wc, and removes all the nearby variants that are correlated with this index variant beyond

a particular value r2c . Thresholding (T) consists in removing variants with a p-value larger than a

chosen level of significance (p > pT ). Both steps, clumping and thresholding, represent a statistical

compromise between signal and noise. The clumping step prunes redundant correlated effects caused

by linkage disequilibrium (LD) between variants. However, this procedure may also remove inde-

pendently predictive variants in LD. Similarly, thresholding must balance between including truly

predictive variants and reducing noise in the score by excluding null effects.

When applying C+T, one has 3 hyper-parameters to select, namely the squared correlation thresh-

old r2c and the window size wc of clumping, along with the p-value threshold pT . Usually, C+T

users assign default values for clumping, such as r2c of 0.1 (default of PRSice), 0.2 or 0.5 (default of

PLINK), and wc of 250kb (default of PRSice and PLINK) or 500kb, and test several values for pT
ranging from 1 to 10−8 (Purcell et al. 2009; Wray et al. 2014; Euesden et al. 2014; Chang et al. 2015).

Moreover, to compute the PRS, the target sample genotypes are usually imputed to some degree of

precision in order to match the variants of summary statistics. The inclusion of imputed variants with

relatively low imputation quality is common, assuming that using more variants in the model yields

better prediction. Here, we explore the validity of this approach and suggest an additional INFOT

threshold on the quality of imputation (often called the INFO score) as a fourth parameter of the C+T

method.

We implement an efficient way to compute C+T scores for many different parameters (LD, win-

dow size, p-value and INFO score) in R package bigsnpr (Privé et al. 2018). Using a training set, one

could therefore choose the best predictive C+T model among a large set of C+T models with many

different parameters, and then evaluate this model in a test set. Moreover, instead of choosing one

set of parameters that corresponds to the best prediction, we propose to use stacking, i.e. we learn

an optimal linear combination of all computed C+T scores using an efficient penalized regression to

improve prediction beyond the best prediction provided by any of these scores (Breiman 1996). We

call this method SCT (Stacked Clumping and Thresholding). Using the UK Biobank data (Bycroft

et al. 2018) and external summary statistics for simulated and real data analyses, we show that test-

ing a larger grid of parameters consistently improves predictions as compared to using some default
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parameters for C+T. We also show that SCT consistently improves prediction compared to any single

C+T model when sample size of the training set is large enough.

2 Material and Methods

2.1 Clumping and Thresholding (C+T) and Stacked C+T (SCT)

We compute C+T scores for each chromosome separately and for several parameters:

• Threshold on imputation INFO score INFOT within {0.3, 0.6, 0.9, 0.95}.

• Squared correlation threshold of clumping r2c within {0.01, 0.05, 0.1, 0.2, 0.5, 0.8, 0.95}.

• Base size of clumping window within {50, 100, 200, 500}. The window size wc is then com-

puted as the base size divided by r2c . For example, for r2c = 0.2, we test values of wc within

{250, 500, 1000, 2500} (in kb). This is motivated by the fact that linkage disequilibrium is

inversely proportional to genetic distance between variants (Pritchard and Przeworski 2001).

• A sequence of 50 thresholds on p-values between the least and the most significant p-values,

equally spaced on a log-log scale.

Thus, for individual i, chromosome k and the four hyper-parameters INFOT , r2c , wc and pT , we

compute C+T predictions

V
(k)
i

(
INFOT , r

2
c , wc, pT

)
=

∑
j∈Sclumping(k, INFOT , r2c , wc)

pj<pT

β̂j ·Gi,j ,

where β̂j (pj) are the effect sizes (p-values) estimated from the GWAS, Gi,j is the dosage for in-

dividual i and variant j, and the set Sclumping(k, INFOT , r
2
c , wc) corresponds to first restricting to

variants of chromosome k with an INFO score ≥ INFOT and that further result from clumping with

parameters r2c and wc.

Overall, we compute 22× 4× 7× 4× 50 = 123200 vectors of polygenic scores. Then, we stack

all these polygenic scores (for individuals in the training set) by using these scores as explanatory

variables and the phenotype as the outcome in penalized regression (Breiman 1996). In other words,

we fit weights for each C+T scores using an efficient penalized logistic regression available in R

package bigstatsr (Privé et al. 2019). This results in a linear combination of C+T scores, where C+T

scores are linear combinations of variants, so that we can derive a single vector of variant effect sizes

to be used for prediction in the test set. We refer to this method as “SCT” in the rest of the paper.

From this grid of 123,200 vectors of polygenic scores, we also derive two C+T scores for compar-

ison. First, “stdCT” is the standard C+T score using some default parameters, i.e. with r2c = 0.2, wc =

500, a liberal threshold of 0.3 on imputation INFO score, and choosing the p-value threshold (≥ 10−8)

maximizing the AUC on the training set (Wray et al. 2014). Second, “maxCT” is the C+T score max-

imizing the AUC on the training set among the 5600 (123200 / 22) C+T scores corresponding to all

different sets of parameters tested. Note that stdCT and maxCT use the same set of parameters for all
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chromosomes, i.e. for one set of the four hyper-parameters, they are defined as V (1) + · · ·+V (22). In

contrast, SCT uses the whole matrix of 123,200 vectors.

2.2 Simulations

We use variants from the UK Biobank (UKBB) imputed dataset that have a minor allele frequency

larger than 1% and an imputation INFO score larger than 0.3. There are almost 10M such variants,

of which we randomly choose 1M in two different ways. First, we randomly sample 1M from these

10M variants, so we use variants that are mainly well imputed (Figure S1a). Second, we sample

variants according to the inverse of INFO score density, so we use variants that are globally not as

well imputed as before (Figure S1b).

To limit population structure and family structure, we restrict individuals to the ones identified

by the UK Biobank as British with only subtle structure and exclude all second individuals in each

pair reported by the UK Biobank as being related (Bycroft et al. 2018). This results in a total of

335,609 individuals that we split into three sets: a set of 315,609 individuals for computing summary

statistics (GWAS), a set of 10,000 individuals for training hyper-parameters and lastly a test set of

10,000 individuals for evaluating models.

We read the UKBB BGEN files using function snp_readBGEN from package bigsnpr (Privé

et al. 2018). For simulating phenotypes and computing summary statistics, we read UKBB data as

hard calls by randomly sampling hard calls according to reported imputation probabilities. For the

training and test sets, we read these probabilities as dosages (expected values). This procedure enables

us to simulate phenotypes using hard calls and then to use the INFO score (imputation accuracies)

reported by the UK Biobank to assess the quality of the imputed data used for the training and test

sets.

We simulate binary phenotypes with a heritability h2 = 0.5 using a Liability Threshold Model

(LTM) with a prevalence of 10% (Falconer 1965). We vary the number of causal variants (100, 10K,

or 1M) in order to match a range of genetic architectures from low to high polygenicity. Liability

scores are computed from a model with additive effects only: we compute the liability score of the

i-th individual as yi =
∑

j∈Scausal
wjG̃i,j+εi, where Scausal is the set of causal variants, wj are weights

generated from a Gaussian distribution N(0, h2/|Scausal|), Gi,j is the allele count of individual i for

variant j, G̃i,j corresponds to its standardized version (zero mean and unit variance), and ε follows a

Gaussian distribution N(0, 1− h2).
We explore three additional scenarios with more complex architectures. In scenario “2chr”, 100

variants of chromosome 1 and all variants of chromosome 2 are causal with half of the heritability

for both chromosomes; it aims at assessing predictive performance when disease architectures are

different for different chromosomes. In scenario “err”, we sample 10,000 random causal variants but

10% of the GWAS effects are reported with an opposite effect in the summary statistics; it aims at

assessing if methods are able to partially correct for errors or mere differences in effect sizes between

GWAS and the target data. In scenario “HLA”, 7105 causal variants are chosen in one long-range LD

region of chromosome 6; it aims at assessing if methods can handle strong correlation between causal
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variants.

To compute summary statistics, we use Cochran-Armitage additive test (Zheng et al. 2012). Given

that we restricted the data to have minimal population structure, this test based on contingency tables

is much faster than using a logistic regression with 10 principal components as covariates (a few

minutes vs several hours) while providing similar effect sizes and Z-scores (Figure S2).

In simulations, we compare four methods: stdCT, maxCT, SCT (defined in section 2.1) and las-

sosum (Mak et al. 2017). Each simulation scenario is repeated 10 times and the average AUC is

reported. We prefer to use AUC over Nagelkerke’sR2 because AUC has a desirable property of being

independent of the proportion of cases in the validation sample; one definition of AUC is the proba-

bility that the score of a randomly selected case is larger than the score of a randomly selected control

(Wray et al. 2013). An alternative to AUC would be to use a better R2 on the liability scale (Lee et al.

2012; Choi et al. 2018).

2.3 Real summary statistics

We also investigate predictive performance of C+T, SCT and lassosum using the UK Biobank. We

first pick existing external summary statistics from published GWAS of real diseases (Buniello et al.

2018). We then divide the UK Biobank dataset into one training set and one test set. The training set is

used to choose optimal hyper-parameters in C+T and lassosum and to learn stacking weights in SCT;

the test set is used to evaluate the final model. Training SCT and choosing optimal hyper-parameters

for C+T (stdCT and maxCT) and lassosum use 63%-90% of the UK Biobank individuals reported in

table 1. Therefore, the training set can contain as many as 300K individuals. To assess how sample

size affects predictive performance of methods, we also compare these methods using a much smaller

training set of 500 cases and 2000 controls only.

As in simulations, we restrict individuals to the ones identified by the UK Biobank as British with

only subtle structure and exclude all second individuals in each pair reported by the UK Biobank

as being related (Bycroft et al. 2018). Table 1 summarizes the number of cases and controls in the

UKBB after this filtering and for each phenotype analyzed, as well as the number of individuals and

variants used in the GWAS. For details on how we define phenotypes in the UKBB, please refer to our

R code (Section 2.4). Briefly, we use self-reported illness codes (field #20001 for cancers and #20002

otherwise) and ICD10 codes (fields #40001, #40002, #41202 and #41204 for all diseases, and field

#40006 specifically for cancers).

We keep all variants with a GWAS p-value lower than 0.1 except for prostate cancer (0.05) and

asthma (0.5). This way, we keep around 1M variants for each phenotype, deriving all C+T scores and

stacking them in SCT in less than one day for each phenotype, even when using 300K individuals

in the training set. To match variants from summary statistics with data from the UK Biobank, we

first remove ambiguous alleles [A/T] and [C/G]. We then augment the summary statistics twice: first

by duplicating each variant with the complementary alleles, then by duplicating variants with reverse

alleles and effects. Finally, we include only variants that we match with UKBB based on the combina-

tion of chromosome, position and the two alleles. Note that, when no or very few alleles are flipped,
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Table 1: Number of cases and controls in UK Biobank (UKBB) for several disease phenotypes, along
with corresponding published GWAS summary statistics. Summary statistics are chosen from GWAS
that did not include individuals from UKBB. For depression, we remove UKBB individuals from the
pilot release since they were included in the GWAS from which we use summary statistics.

Trait UKBB size GWAS size GWAS #variants GWAS citation
Breast cancer (BRCA) 11,578 / 158,391 137,045 / 119,078 11,792,542 Michailidou et al. (2017)
Rheumatoid arthritis (RA) 5615 / 226,327 29,880 / 73,758 9,739,303 Okada et al. (2014)
Type 1 diabetes (T1D) 771 / 314,547 5913 / 8828 8,996,866 Censin et al. (2017)
Type 2 diabetes (T2D) 14,176 / 314,547 26,676 / 132,532 12,056,346 Scott et al. (2017)
Prostate cancer (PRCA) 6643 / 141,321 79,148 / 61,106 20,370,946 Schumacher et al. (2018)
Depression (MDD) 22,287 / 255,317 59,851 / 113,154 13,554,550 Wray et al. (2018)
Coronary artery disease (CAD) 12,263 / 225,927 60,801 / 123,504 9,455,778 Nikpay et al. (2015)
Asthma 43,787 / 261,985 19,954 / 107,715 2,001,280 Demenais et al. (2018)

we disable the strand flipping option and therefore do not remove ambiguous alleles; this is the case

for all phenotypes analyzed here. For example, for type 2 diabetes, there are 1,408,672 variants in

summary statistics (p < 0.1), of which 215,821 are ambiguous SNPs. If we remove these ambigu-

ous SNPs, 1,145,260 variants are matched with UKBB, of which only 38 are actually flipped. So,

instead, we do not allow for flipping and do not remove ambiguous alleles, then 1,350,844 variants

are matched with UKBB.

2.4 Reproducibility

The code to reproduce the analyses and figures of this paper is available as R scripts at https://

github.com/privefl/simus-PRS/tree/master/paper3-SCT (R Core Team 2018). To

execute these scripts, you need to have access to the UK Biobank data that we are not allowed to

share (http://www.ukbiobank.ac.uk/). A quick introduction to SCT is also available at

https://privefl.github.io/bigsnpr/articles/SCT.html.

3 Results

3.1 Simulations

We test 6 different simulations scenarios. In all these scenarios, maxCT –that tests a much larger

grid of hyper-parameters values for C+T on the training set– consistently provides higher AUC values

on the test set as compared to stdCT that tests only several p-value thresholds while using default

values for the other parameters (Figure 1). The absolute improvement in AUC of maxCT over stdCT

is particularly large in the cases of 100 and 10,000 causal variants, where causal effects are mostly

independent of one another. In these cases, using a very stringent r2c = 0.01 threshold of clumping

provides higher predictive performance than using a standard default of r2c = 0.2 (Figures S6a and

S6b). However, r2c = 0.2 provides best predictive performance when simulating 1M causal variants.

Still, using a large window size wc of 2500 kb increases AUC as compared to using default values of

either 250 or 500 kb (Figure S6c).
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Figure 1: Results of the 6 simulation scenarios with well imputed variants: (100) 100 random causal
variants; (10K) 10,000 random causal variants; (1M) all 1M variants are causal variants; (2chr) 100
variants of chromosome 1 are causal and all variants of chromosome 2, with half of the heritability for
both chromosomes; (err) 10,000 random causal variants, but 10% of the GWAS effects are reported with
an opposite effect; (HLA) 7105 causal variants in a long-range LD region of chromosome 6. Mean
and 95% CI of 104 non-parametric bootstrap replicates of the mean AUC of 10 simulations for each
scenario. The blue dotted line represents the maximum achievable AUC for these simulations (87.5%
for a prevalence of 10% and an heritability of 50% – see equation (3) of Wray et al. (2010)). See
corresponding values in table S1.

As for SCT, it provides equal or higher predictive performance than maxCT in the different sim-

ulation scenarios (Figure 1). In the first three simple scenarios simulating 100, 10K or 1M causal

variants anywhere on the genome, predictive performance of SCT are similar to maxCT. In the “2chr”

scenario where there are large effects on chromosome 1, small effects on chromosome 2 and no effect

on other chromosomes, mean AUC is 78.7% for maxCT and 82.2% for SCT. In the “err” scenario

where we report GWAS summary statistics with 10% opposite effects (errors), mean AUC is 70.2%

for maxCT and 73.2% for SCT. SCT also provides higher AUC than lassosum, expect when simulat-

ing all variants as causal (1M).

Results are similar when using less well imputed variants in the simulations. Globally in these

simulations, including a broad range of imputed variants with INFO score as low as 0.3 often maxi-

mizes prediction (Figures S6 and S7).

Effects resulting from SCT (Figure S5) are mostly comprised between the GWAS effects and

0. For the simulation with only 100 causal variants, resulting effects are either nearly the same as

in the GWAS, or near 0 (or exactly 0). When there are some correlation between causal predictors
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(Scenarios “1M” and “HLA”) or when reporting GWAS effects with some opposite effect (“err”),

some effects resulting from SCT are in the opposite direction as compared to the GWAS effects.

3.2 Real summary statistics

In terms of AUC, maxCT outperfoms stdCT for all 8 diseases considered with a mean absolute in-

crease of 1.3% (Figures 2 and S4). A particularly large increase can be noted when predicting de-

pression status (MDD), from an AUC of 55.7% (95% CI: [54.4-56.9]) with stdCT to an AUC of

59.2% (95% CI: [58.0-60.4]) with maxCT. For MDD, a liberal inclusion in clumping (r2c = 0.8) and a

stringent threshold on imputation accuracy (INFOT = 0.95) provides the best predictive performance

(Figure S9f). For all 8 diseases, predictions were optimized when choosing a threshold on imputation

accuracy of at least 0.9, whereas optimal values for r2c where very different depending on the archi-

tecture of diseases, with optimal selected values over the whole range of tested values for r2c (Table

2).

0.5

0.6

0.7

0.8

BRCA RA T1D T2D PRCA MDD CAD Asthma
Trait

A
U

C

Method
stdCT
maxCT
SCT
lassosum

Figure 2: AUC values on the test set of UKBB (mean and 95% CI from 104 bootstrap samples). Training
SCT and choosing optimal hyper-parameters for C+T and lassosum use 63%-90% of the individuals
reported in table 1. See corresponding values in table S2.

Furthermore, when training size uses a large proportion of the UK Biobank data, SCT outperforms

maxCT for all 8 diseases considered with an additional mean absolute increase of AUC of 2.2%,

making it 3.5% as compared to stdCT (Figure 2 and table S2). Predictive performance improvement

of SCT versus maxCT is particularly notable for coronary artery disease (2.8%), type 2 diabetes

(3.1%) and asthma (3.4%).

Effects resulting from SCT have mostly the same sign as initial effects from GWAS, with few

effects being largely unchanged, and others having an effect that is shrunk to 0 or equals to 0, i.e.

variants not included in the final model (Figure S8).
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Table 2: Choice of C+T parameters based on the maximum AUC in the training set. Choosing optimal
hyper-parameters for C+T use 63%-90% of the individuals reported in table 1.

Trait wc r2c INFOT pT
Breast cancer (BRCA) 2500 0.2 0.95 2.2e-04
Rheumatoid arthritis (RA) 200 0.5 0.95 7.5e-02
Type 1 diabetes (T1D) 10K-50K 0.01 0.90 2.6e-05
Type 2 diabetes (T2D) 625 0.8 0.95 1.1e-02
Prostate cancer (PRCA) 10K-50K 0.01 0.90 4.2e-06
Depression (MDD) 625 0.8 0.95 1.0e-01
Coronary artery disease (CAD) 526 0.95 0.95 3.5e-02
Asthma 2500 0.2 0.90 2.2e-04

When training size is smaller (500 cases and 2000 controls only instead of 200K-300K individu-

als), SCT is not as good as when training size is large, yet SCT remains a competitive method expect

for depression for which maxCT performs much better than SCT (Figure S4). Performance of C+T

and lassosum, methods that use the training set for choosing optimal hyper-parameters only as op-

posed to SCT that learns new weights, are little affected by using a smaller training size. However,

even though lassosum can provide more accurate prediction for T2D and CAD, it can also perform

very poorly for other diseases such as BRCA, PRCA and MDD (Figures 2 and S4).

4 Discussion

4.1 Predictive performance improvement of C+T

C+T is an intuitive and easily applicable method for obtaining polygenic scores trained on GWAS

summary statistics. Two popular software packages that implement C+T, PLINK and PRSice, have

further contributed to the prevalence of C+T (Purcell et al. 2007; Euesden et al. 2014; Chang et al.

2015). Usually, C+T scores for different p-value thresholds are derived, using some default values

for the other 3 hyper-parameters. In R package bigsnpr, we extend C+T to efficiently consider more

hyper-parameters (4 by default) and enable the user to define their own qualitative variant annotations

to filter on (e.g. minor allele frequency could be used as a fifth parameter). Using simulated and

real data, we show that choosing different values rather than default ones for these hyper-parameters

can substantially improve the performance of C+T, making C+T a very competitive method. Indeed,

in our simulations (Figure 1), we found that optimizing C+T (maxCT) performed on par with more

sophisticated methods such as lassosum. Moreover, it is possible to rerun the method using a finer grid

in a particular range of these hyper-parameters. For example, it might be useful to include variants

with p-values larger than 0.1 for predicting rheumatoid arthritis and depression (Figures S9b and S9f).

Another example would be to focus on a finer grid of large values of r2c for coronary artery disease

(Figure S9g), or to focus on a finer grid of stringent imputation thresholds only (Table 2).

Using a large grid of C+T scores for different hyper-parameters, we show that stacking these
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scores instead of choosing the best one improves prediction further (Breiman 1996). Combining

multiple PRS is not a new idea (Krapohl et al. 2018; Inouye et al. 2018), but we push this idea to the

limit by combining 123,200 polygenic scores. This makes SCT more flexible than any C+T model,

but it of course also requires a larger training dataset with individual-level genotypes and phenotypes

to learn the weights in stacking.

Normally, cross-validation should be used to prevent overfitting when using stacking and it is also

suggested to use positivity constraints in stacking (Breiman 1996). However, cross-validation is not

necessary here since building C+T scores does not make use of the phenotype of the training set that

is later used in the stacking; the training set is only used to choose the best set of hyper-parameters for

C+T. Moreover, we allow C+T scores to have negative weights in the final model for three reasons.

First, because C+T scores are overlapping in the variants they use, using some negative weights allows

to weight groups of variants that correspond to the difference of two sets of variants. Second, because

of LD, variants may have different effects when learned jointly with others (Figures S5c and S5f).

Third, if reported GWAS effects are heterogenous between the GWAS dataset and the validation or

target dataset, then having variants with opposite effects can help to adjust the effects learned during

GWAS.

4.2 Limitations of the study

In this study, we limited the analysis to 8 common diseases and disorders, as these all had substan-

tial number of cases and publicly available GWAS summary statistics based on substantial sample

sizes. For example, for psychiatric disease, we include only depression (MDD) because diseases such

as schizophrenia and bipolar disorder have very few cases in the UK Biobank; dedicated datasets

should be used to assess effectiveness of maxCT and SCT for such diseases. We also do not ana-

lyze many automimmune diseases because summary statistics are often outdated (2010-20111) and,

because there are usually large effects in regions of chromosome 6 with high LD, methods that use

individual-level data instead of summary statistics are likely to provide better predictive models (Privé

et al. 2019). We also chose not to analyze any continuous trait such as height or BMI because there

are many individual-level data available in UKBB for such phenotypes and methods directly using

individual-level data are likely to provide better predictive models for predicting in UKBB than the

ones using summary statistics (Privé et al. 2019; Chung et al. 2019). Phenotypes with tiny effects

such as educational attainment for which huge GWAS summary statistics are available might be an

exception (Lee et al. 2018).

The principal aim of this work is to study and improve the widely used C+T method. The idea be-

hind C+T is simple as it directly uses weights learned from GWAS; it further removes variants as one

often does when reporting hits from GWAS, i.e. only variants that pass the genome-wide threshold (p-

value thresholding) and that are independent association findings (clumping) are reported. Yet, there

are two other established methods based on summary statistics, LDpred and lassosum (Vilhjálms-

son et al. 2015; Mak et al. 2017; Allegrini et al. 2019). Several other promising and more complex

1https://www.immunobase.org/downloads/protected_data/GWAS_Data/
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methods such as NPS, PRS-CS and SBayesR are currently being developed (Chun et al. 2019; Ge

et al. 2019; Lloyd-Jones et al. 2019). One could also consider other variants of C+T such as choos-

ing a different set of hyper-parameters for each chromosome separately, which would make a lot of

sense e.g. in the “2chr” simulation scenario. Here, we include lassosum in the comparisons since

no other method has yet shown that they provide any improvement over lassosum. In addition, we

found lassosum to be easy to use. When applied to real data, lassosum yields mixed results because

it achieves almost the largest AUC for some diseases (CAD, T2D) whereas it is less discriminative

than standard C+T for other diseases (BRCA, MDD, PRCA) (Figure 2). This may be explained by

the presence of large effects in the latter diseases, which can be an issue for methods that model LD.

This may also be due to the initial filtering on p-value that we use to keep disk usage and computation

time manageable when analyzing the UK Biobank dataset. A full comparison of methods (including

individual-level data methods), including binary and continuous traits with different architectures, us-

ing different sizes of summary statistics and individual-level data for training, and in possibly different

populations would be of great interest, but is out of scope for this paper. Indeed, we believe that dif-

ferent methods may perform very differently in different settings and that understanding what method

is appropriate for each case is of paramount interest if the aim is to maximize prediction accuracy to

make PRS clinically useful.

4.3 Extending SCT

The stacking step of SCT can be used for either binary or continuous phenotypes. Yet, for some dis-

eases, it makes sense to include age in the models, using for example Cox proportional-hazards model

to predict age of disease onset, with possibly censored data (Cox 1972). Cox regression has already

proven useful for increasing power in GWAS (Hughey et al. 2019). Currently, we support linear and

logistic regressions in our efficient implementation of package bigstatsr, but not Cox regression. This

is an area of future development; for now, if sample size is not too large, one could use R package

glmnet to implement stacking based on Cox model (Tibshirani et al. 2012).

One might also want to use other information such as sex or ancestry (using principal compo-

nents). Indeed, it is easy to add covariates in the stacking step as (possibly unpenalized) variables in

the penalized regression. Yet, adding covariates should be done with caution (see the end of supple-

mentary materials).

Finally, note that we added an extra parameter in the SCT pipeline that makes possible for an user

to define their own groups of variants. This allows to refine the grid of computed C+T scores and

opens many possibilities for SCT. For example, we could derive and stack C+T scores for two (or

more) different GWAS summary statistics, e.g. for different ancestries or for different phenotypes.

This would effectively extend SCT as a multivariate method. We could also learn to differentiate be-

tween two genetically different phenotypes with similar symptoms such as type 1 and type 2 diabetes,

which is in our research interests.
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4.4 Conclusion

In this paper, we focused on understanding and improving the widely-used C+T method by testing

a wide range of hyper-parameters values. More broadly, we believe that any implementation of sta-

tistical methods should come with an easy and effective way to choose hyper-parameters of these

methods well. We believe that C+T will continue to be used for many years as it is both simple to use

and intuitive. Moreover, as we show, when C+T is optimized using a larger grid of hyper-parameters,

it remains a competitive method since it can adapt to many different disease architectures by tuning

all hyper-parameters.

Moreover, instead of choosing one set of hyper-parameters, we show that stacking C+T predic-

tions improves predictive performance further. SCT has many advantages over any single C+T predic-

tion: first, it can learn different architecture models for different chromosomes, it can learn a mixture

of large and small effects and it can more generally adapt initial weights of the GWAS in order to

maximize prediction. Moreover, SCT remains a linear model with one vector of coefficients as it is a

linear combination (stacking) of linear combinations (C+T scores).
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Supplementary Materials

(a) First simulations (b) Second simulations

Figure S1: Histogram of INFO scores for the 1M variants used in the simulations.

Figure S2: Comparison of estimated effect sizes (A) and Z-scores (B) if computed using a logistic re-
gression with 10 principal components as covariates, or with a simple Cochran-Armitage additive test.
Phenotypes were simulated using 100 causal variants only, allowing for large effects.
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Table S1: AUC values on the test set for simulations with well imputed variants (mean [95% CI] from
104 bootstrap samples).

Scenario stdCT maxCT SCT lassosum
100 79.8 [77.0-82.0] 86.9 [86.6-87.3] 86.3 [85.8-86.8] 83.2 [81.8-84.2]
10K 72.5 [71.8-73.3] 75.1 [74.7-75.5] 76.0 [75.5-76.6] 74.9 [74.3-75.6]
1M 68.9 [68.3-69.4] 69.5 [68.8-70.0] 69.0 [68.5-69.6] 70.4 [70.0-70.9]
2chr 77.2 [76.7-77.7] 78.6 [78.0-79.2] 82.2 [81.8-82.7] 78.9 [78.4-79.4]
err 69.8 [68.9-70.7] 70.7 [70.1-71.2] 73.2 [72.5-73.9] 72.1 [71.5-72.8]
HLA 78.7 [78.0-79.5] 79.8 [79.1-80.4] 80.7 [80.2-81.3] 79.4 [78.7-80.2]

Table S2: AUC values on the test set of UKBB (mean [95% CI] from 104 bootstrap samples) and the
number of variants used in the final model. Training SCT and choosing optimal hyper-parameters for
C+T and lassosum use 63%-90% of the individuals reported in table 1.

Trait stdCT maxCT SCT lassosum
Breast cancer (BRCA) 62.1 [60.5-63.6] 63.3 [61.7-64.8] 65.9 [64.4-67.4] 57.9 [56.3-59.5]

6256 2572 670,050 322,003
Rheumatoid arthritis (RA) 59.8 [57.7-61.8] 60.3 [58.3-62.4] 61.3 [59.1-63.4] 59.5 [57.5-61.7]

12,220 88,556 317,456 672,922
Type 1 diabetes (T1D) 75.4 [72.4-78.4] 76.9 [73.9-79.7] 78.7 [75.7-81.7] 75.3 [72.2-78.3]

1112 267 135,991 204,785
Type 2 diabetes (T2D) 59.1 [58.1-60.1] 60.7 [59.8-61.7] 63.8 [62.9-64.7] 63.2 [62.3-64.1]

177 33,235 548,343 256,353
Prostate cancer (PRCA) 68.0 [66.5-69.5] 69.3 [67.8-70.8] 71.7 [70.2-73.1] 58.7 [57.1-60.3]

1035 356 696,575 121,660
Depression (MDD) 55.7 [54.4-56.9] 59.2 [58.0-60.4] 59.5 [58.2-60.7] 52.0 [50.8-53.3]

165,584 222,912 524,099 625,732
Coronary artery disease (CAD) 59.9 [58.6-61.2] 61.1 [59.9-62.4] 63.9 [62.7-65.1] 63.0 [61.8-64.2]

1182 87,577 315,165 290,204
Asthma 56.8 [56.2-57.5] 57.3 [56.7-58.0] 60.7 [60.0-61.3] 58.7 [58.1-59.4]

3034 360 446,120 75,965
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Figure S3: Results of the 6 simulation scenarios with less well imputed variants: (100) 100 random
causal variants; (10K) 10,000 random causal variants; (1M) all 1M variants are causal variants; (2chr)
100 variants of chromosome 1 are causal and all variants of chromosome 2, with half of the heritability
for both chromosomes; (err) 10,000 random causal variants, but 10% of the GWAS effects are reported
with an opposite effect; (HLA) 7105 causal variants in a long-range LD region of chromosome 6. Mean
and 95% CI of 104 non-parametric bootstrap replicates of the mean AUC of 10 simulations for each
scenario. The blue dotted line represents the maximum achievable AUC for these simulations (87.5%
for a prevalence of 10% and an heritability of 50% – see equation (3) of Wray et al. (2010)). See
corresponding values in table S3.

Table S3: AUC values on the test set for simulations with less well imputed variants (mean [95% CI]
from 104 bootstrap samples).

Scenario stdCT maxCT SCT lassosum
100 77.4 [76.0-78.8] 83.9 [83.4-84.4] 83.1 [82.6-83.6] 80.1 [79.5-80.8]
10K 69.4 [68.4-70.5] 73.0 [72.5-73.4] 72.9 [72.5-73.3] 71.2 [70.6-71.7]
1M 64.0 [63.6-64.4] 64.0 [63.6-64.4] 62.7 [62.3-63.0] 64.1 [63.3-64.8]
2chr 70.0 [68.8-71.2] 74.4 [73.6-75.2] 78.5 [77.9-79.1] 73.2 [72.5-73.8]
err 67.0 [66.0-68.1] 68.6 [67.7-69.5] 69.5 [68.9-70.1] 65.6 [64.9-66.3]
HLA 74.8 [72.9-76.3] 75.3 [73.5-76.9] 76.4 [74.5-78.0] 75.8 [74.2-77.2]
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Figure S4: AUC values on the test set of UKBB (mean and 95% CI from 104 bootstrap samples). Training
SCT and choosing optimal hyper-parameters for C+T and lassosum use 500 cases and 2000 controls only.
See corresponding values in table S4.

Table S4: AUC values on the test set of UKBB (mean [95% CI] from 104 bootstrap samples). Training
SCT and choosing optimal hyper-parameters for C+T and lassosum use 500 cases and 2000 controls only.

Trait stdCT maxCT SCT lassosum
Breast cancer (BRCA) 62.2 [61.6-62.7] 63.4 [62.8-63.9] 62.9 [62.4-63.5] 57.8 [57.3-58.4]
Rheumatoid arthritis (RA) 59.2 [58.4-60.0] 59.5 [58.7-60.3] 59.5 [58.7-60.3] 58.0 [57.1-58.8]
Type 1 diabetes (T1D) 75.6 [72.4-78.7] 76.7 [73.6-79.8] 78.7 [75.5-81.8] 75.5 [72.1-78.7]
Type 2 diabetes (T2D) 59.8 [59.3-60.3] 60.2 [59.7-60.7] 61.0 [60.6-61.5] 63.6 [63.1-64.1]
Prostate cancer (PRCA) 67.1 [66.4-67.8] 68.7 [68.0-69.3] 69.3 [68.7-70.0] 56.2 [55.4-56.9]
Depression (MDD) 54.5 [54.1-54.9] 58.4 [58.0-58.8] 54.7 [54.3-55.1] 51.6 [51.2-52.0]
Coronary artery disease (CAD) 59.7 [59.2-60.3] 60.0 [59.5-60.5] 61.4 [60.8-61.9] 62.3 [61.8-62.8]
Asthma 56.2 [55.9-56.4] 56.9 [56.7-57.2] 57.2 [56.9-57.4] 57.0 [56.7-57.3]
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(a) “100”: 100 random causal variants

(b) “10K”: 10,000 random causal variants
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(c) “1M”: all 1M variants are causal variants

(d) “2chr”: Causal variants on chromosomes 1 & 2
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(e) “err”: 10,000 random causal variants, but 10% of the GWAS effects are re-
ported with an opposite effect

(f) “HLA”: 7105 causal variants in a long-range LD region of chromosome 6

Figure S5: New effect sizes resulting from SCT versus initial effect sizes of GWAS in the first simulation
of each simulation scenario. Only non-zero effects are represented. Red line corresponds to the 1:1 line.
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(a) “100”: 100 random causal variants

(b) “10K”: 10,000 random causal variants

(c) “1M”: all 1M variants are causal variants
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(d) “2chr”: Causal variants on chromosomes 1 & 2

(e) “err”: 10,000 random causal variants, but 10% of the GWAS effects are reported with an opposite effect

(f) “HLA”: 7105 causal variants in a long-range LD region of chromosome 6

Figure S6: AUC values (for the training set) when predicting disease status for many parameters of
C+T in the first simulation of each simulation scenario when using well imputed variants. Facets are
presenting different clumping thresholds r2c from 0.01 to 0.95, window sizes wc from 52 to 50,000 kb,
and imputation thresholds from 0.3 to 0.95. The x-axis corresponds to the remaining hyper-parameter,
the p-value threshold pT ; here, -log10(p-values) are represented using a logarithmic scale.
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(a) “100”: 100 random causal variants

(b) “10K”: 10,000 random causal variants

(c) “1M”: all 1M variants are causal variants
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(d) “2chr”: Causal variants on chromosomes 1 & 2

(e) “err”: 10,000 random causal variants, but 10% of the GWAS effects are reported with an opposite effect

(f) “HLA”: 7105 causal variants in a long-range LD region of chromosome 6

Figure S7: AUC values (for the training set) when predicting disease status for many parameters of C+T
in the first simulation of each simulation scenario when using less well imputed variants. Facets are
presenting different clumping thresholds r2c from 0.01 to 0.95, window sizes wc from 52 to 50,000 kb,
and imputation thresholds from 0.3 to 0.95. The x-axis corresponds to the remaining hyper-parameter,
the p-value threshold pT ; here, -log10(p-values) are represented using a logarithmic scale.
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(a) Breast cancer

(b) Rheumatoid arthritis
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(c) Type 1 diabetes

(d) Type 2 diabetes
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(e) Prostate cancer

(f) Depression
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(g) Coronary artery disease

(h) Asthma

Figure S8: New effect sizes resulting from SCT versus initial effect sizes of GWAS in real data applica-
tions. Only non-zero effects are represented. Red line corresponds to the 1:1 line.
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(a) Breast cancer

(b) Rheumatoid arthritis

(c) Type 1 diabetes
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(d) Type 2 diabetes

(e) Prostate cancer

(f) Depression
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(g) Coronary artery disease

(h) Asthma

Figure S9: AUC values (for the training set) when predicting disease status for many parameters of C+T
in real data applications. Facets are presenting different clumping thresholds r2c from 0.01 to 0.95, win-
dow sizes wc from 52 to 50,000 kb, and imputation thresholds from 0.3 to 0.95. The x-axis corresponds
to the remaining hyper-parameter, the p-value threshold pT ; here, -log10(p-values) are represented using
a logarithmic scale.
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Caution on using covariates

For example, because prevalence of CAD is much higher in men than in women in the UKBB (8-9%

vs 2%), adding sex in the model amount to fitting two different intercepts, centering distributions of

fitted probabilities around disease prevalence (Figure S10). This increases the AUC from 63.9% to

74.4% but results in a model that would classify all women as healthy. A possible solution would be

to report AUC figures for each gender separately, or even to fit a model for each gender separately

(in the stacking step). Fitting models separately would enable the use of sex chromosomes without

introducing bias. As for ancestry concerns, fitting different models for different ancestries might be a

way to get more calibrated results and to account for differences in effect sizes and LD. However, here

for CAD, fitting two separate models for each gender results in a slight loss of predictive performance,

while using variable ‘sex’ does not change results when they are reported for each gender separately,

with an AUC of 64.9% [63.5-66.3] for men and 62.5% [59.8-65.2] for women. Thus, adding ‘sex’ as

a covariate in the model may provide a model with similar discrimination and with better calibration

of probabilities (if prevalence in the data is representative of prevalence in the population). Yet, we

would like to emphasize again that reporting one AUC figure for all individuals would be misleading

in the case of using variable ‘sex’ in the model.

Figure S10: Distribution of predicted probabilities of Coronary Artery Disease (CAD) in the UK Biobank
using SCT. Upper / lower panels corresponds to women / men. Left panels correspond to a model using
C+T scores and variable ‘sex’ when fitting penalized logistic regression in the stacking step. Right panels
correspond to performing stacking of C+T scores without using variable ‘sex’.
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