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Abstract 

 

Background: Vitamin D inadequacy affects almost 50% of adults in the United States and is 

associated with numerous adverse health effects. Vitamin D concentration [25(OH)D] is a 

complex trait with genetic and environmental predictors that work in tandem to influence 

25(OH)D and may determine how much vitamin D intake is required to reach an optimal 

25(OH)D concentration. To date, there has been little investigation into how genetics and 

environment interact to affect 25(OH)D. 

 

Objective: Interactions between continuous measures of a polygenic score (PGS) and vitamin D 

intake (PGS*intake) or available ultra-violet (UV) radiation (PGS*UV) were evaluated separately 

in individuals of African or European ancestry. 

 

Methods: Mega-analyses were performed using three independent cohorts (N=9,668; African 

ancestry n=1,099; European ancestry n=8,569). Interaction terms and joint effects (main and 

interaction terms) were tested using one-degree of freedom (DF) and 2-DF models, 

respectively. All models controlled for age, sex, body mass index (BMI), cohort, and dietary 

intake/available UV. Additionally, in participants achieving Institute of Medicine (IOM) vitamin 

D intake recommendations, 25(OH)D was evaluated by level of genetic risk of 25(OH)D 

deficiency.  

 

Results: The 2-DF PGS*intake, 1-DF PGS*UV and 2-DF PGS*UV results were statistically 

significant in participants of European ancestry (p=3.3x10
-18

, 2.1x10
-2

, and 2.4x10
-19

, 

respectively), but not in those of African ancestry. In European-ancestry participants who 

reached IOM vitamin D intake guidelines, the percent of participants achieving adequate 

25(OH)D (>20ng/ml) increased as genetic risk decreased (72% vs 89% in the highest vs lowest 

risk categories; p=0.018). 

 

Conclusions: Available UV radiation and vitamin D intake interact with genetics to influence 

25(OH)D. Individuals with higher genetic risk of deficiency may require more vitamin D 

exposure to maintain optimal 25(OH)D concentrations. Overall, the results showcase the 

importance of incorporating both environmental and genetic factors into analyses, as well as 

the potential for gene-environment interactions to inform personalized dosing of vitamin D. 

 

Keywords: Gene-environment interaction, ancestry-specific, vitamin D, diet, polygenic risk 

score, African, European 
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Introduction 

 

Vitamin D inadequacy, as defined by a 25-hydroxyvitamin D [25(OH)D] concentration 

less than 20 ng/mL, affects almost 50% of adults in the United States (1-3). Low vitamin D 

concentrations have been associated with increased risk of autoimmune diseases, migraines, 

hypertension, dyslipidemia, cardiovascular events, and cardiovascular mortality (1, 3-9).  

Additionally, recent Mendelian randomization studies have suggested a causal relationship 

between low 25(OH)D concentrations and increased risk of obesity, ovarian cancer, 

hypertension, lower cognitive function in aging, multiple sclerosis, and all cause and cancer 

mortality (10-16). However, there have also been Mendelian randomization studies that found 

null relationships between vitamin D and coronary artery disease, depression and fatigue (17-

19). Recent results from the Vitamin D and Omega-3 trial (VITAL) showed null associations 

between vitamin D supplementation and both cancer and cardiovascular disease. However, the 

inclusion of  individuals with adequate 25(OH)D concentrations, lack of assessing individual 

25(OH)D response to supplementation, and outside use of vitamin D before and during the trial 

limit the interpretability of these findings (20).  

Serum 25(OH)D concentration is a complex phenotype with genetic and environmental 

predictors that may determine how much vitamin D intake is required to reach an optimal 

vitamin D blood concentration (21-24). Primary environmental predictors of 25(OH)D 

concentrations are vitamin D intake through diet and supplementation, and available ultraviolet 

(UV) radiation exposure. Therefore, knowledge of how genetic determinants of vitamin D 

concentrations interact with environmental predictors could be useful in the prevention of 

vitamin D associated morbidity and mortality. Understanding gene-by-environment interactions 
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and how they affect 25(OH)D concentrations could inform personalized supplementation for 

maintaining adequate vitamin D concentrations through a precision public health approach. 

While attention has been paid to genetic determinants of 25(OH)D concentration 

through genome-wide association studies (GWAS) and, separately, to the environmental 

determinants, much less research has focused on how environmental factors interact with 

genetic factors. Investigating the effects of genetic or environmental predictors in isolation may 

miss much of the variance in 25(OH)D. Through GWAS top findings, only 2.8% of the variance in 

25(OH)D can be explained (25). Research has found that vitamin D intake through diet and 

supplement use accounts for 1-8% of the variation in vitamin D concentrations between 

individuals, and that sun exposure accounts for 1-15% of the variation (23, 26-28). One study in 

European-ancestry women reported an interaction between two SNPs in the GC gene (the GC 

protein product transports the vitamin D metabolites in the blood) and both vitamin D intake 

and sun exposure (23). The genetic effect was stronger, with more variance explained, in 

summer and in those with a higher intake of vitamin D. This same study reported preliminary 

evidence of differing genetic effect of a polygenic score (PGS) for deficiency, comprised of two 

SNPs, by level of vitamin D intake and season (23). Therefore, it is important to investigate 

gene-environment interactions as the risk inferred by genetic or environmental factors alone is 

not enough to predict risk of inadequate vitamin D concentrations.  

To address these knowledge gaps, we examined the interactions between a new PGS 

and vitamin D intake or available UV radiation using separate linear models in individuals of 

African or European ancestry (29). Additionally, to replicate findings from a previous study (23), 

we also determined, using an independent cohort of participants achieving Institute of 
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Medicine (IOM) vitamin D intake guidelines, the percent reaching adequate (>20 ng/ml) 

25(OH)D concentrations, stratified by level of genetic risk. IOM vitamin D intake guidelines are 

600 IU/day for those 70 years old or younger, and 800 IU for those over 70 years old. We 

hypothesized that gene*environment interactions would determine 25(OH)D concentrations. 

These results could help inform screening and treatment of vitamin D inadequacy based on 

genetic and environmental factors. 

 

Methods 

  

Participants  

 Analyses were performed in a sample of 8,569 participants of primarily European 

ancestry and 1,099 participants of primarily African ancestry who had data for the required 

variables: age, sex, body mass index (BMI), dietary intake of vitamin D, available UV radiation 

and genome-wide single nucleotide polymorphisms (SNPs). Participants were from 

Atherosclerosis Risk in Communities (ARIC), the Multi-Ethnic Study of Atherosclerosis (MESA) 

and the Women’s Health Initiative (WHI), and are independent of the GWAS meta-analysis, 

TRANS-ethniC Evaluation of vitamiN D (TRANSCEN-D), that provided the summary statistics 

used to calculate the PGS (30).  

ARIC is a prospective study of men and women who were recruited from 4 U.S. locations 

[Forsyth County, NC; Jackson, MS; suburbs of Minneapolis, MN; and Washington County, MD] 

and were aged 46-70 years at visit 2 (1990-1992), which was the visit that serum 25(OH) was 

measured as part of an ancillary study.  ARIC data were obtained through dbGaP Study 

Accession: phs000090.v4.p1. MESA is a prospective study of men and women aged 45-84 at 
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baseline who were recruited from six United States sites: Columbia University, New York, NY; 

Johns Hopkins University, Baltimore, MD; Northwestern University, Chicago, IL; University of 

Minnesota, Minneapolis, MN; University of California at Los Angeles, Los Angeles, CA, and Wake 

Forest University, Winston-Salem, NC. Serum 25(OH)D was measured at MESA exam 1 (July 

2000-August 2002). MESA data were obtained through dbGaP Study Accession: 

phs000209.v13.p3.  Women participating in WHI were recruited from 40 clinical centers in the 

United States. Serum 25(OH)D was measured as part of the Calcium and Vitamin D (CaD) Trial 

(1993-1999) (31). WHI data were obtained through dbGaP Study Accession: phs000200.v11.p3. 

The data used in these analyses were collected under guidelines from the relevant institutional 

review boards and all participants provided informed consent, including consent for use of 

genetic data.  

 

Calculation of available UV radiation 

Participants were assigned continuous available UV radiation values that were 

calculated based on month of blood draw and location using UV data from the National 

Weather Service Climate Prediction Center historical database. The UV radiation values ranged 

from 0.7 to 9.5 UV index units. The methods are described in more detail elsewhere (29). 

 

Measurement of vitamin D intake 

 Dietary data were derived from study specific nutritional questionnaires; each study 

created a derived variable of typical dietary vitamin D intake. WHI also collected data on 

vitamin D supplement use at the same visit that 25(OH)D was assessed. The sum of vitamin D 
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intake from food and supplements was derived and used for supplemental and sensitivity 

analyses, otherwise dietary intake alone was used. The methods are described in more detail 

elsewhere (29). 

 

Measurement of 25(OH)D 

 

Serum 25(OH)D concentrations were measured by the studies using different assays, 

which are reported on elsewhere (29). To control for assay-level differences in vitamin D 

concentrations, vitamin D concentrations were converted to z-scores within studies for 

combined analyses.  

 

Data Quality Control 

Quality control (QC) of phenotypic data is described in detail elsewhere (29). Generally, 

QC included winsorizing 25(OH)D to minimize the influence of outliers and using a log 

transformation to improve normality of 25(OH)D distribution in each cohort (32).  

Where available for the respective visit, physical activity was measured in metabolic 

equivalent (MET) hours per week. Physical activity was capped at 16 MET hours/day or 112 

MET hours/week. Additionally, physical activity data were normalized by cohort to account for 

the different surveys utilized to acquire the data. 

 

Genotyping and PGS Development  

Genotyping methods are described in publications by ARIC, MESA, and WHI (33-37). 

Supplemental Table 1 gives information on the genotyping array used by the studies. QC was 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 28, 2019. ; https://doi.org/10.1101/652941doi: bioRxiv preprint 

https://doi.org/10.1101/652941
http://creativecommons.org/licenses/by-nd/4.0/


done in an ancestry-specific manner for those of European and African ancestry. QC methods 

are described in more detail elsewhere (29). Supplemental Figures 1 and 2, and Supplemental 

Table 1 give specifics on quality control for each cohort. QC was performed using PLINK v1.9 

and vcfTools (38, 39).  

Previously, an optimal PGS was determined in an ancestry-specific manner for those of 

European or African ancestries (29). PGSs were weighted using effect sizes from an 

independent multi-ethnic GWAS, TRANSCEN-D, the largest multi-ethnic vitamin D GWAS meta-

analysis to date (40). European summary statistics came from the SUNLIGHT discovery cohort 

that was included in TRANSCEN-D.  After QC, 8,569 European samples and 1,099 African-

ancestry samples remained for the analysis.  

 

Statistical Analysis 

Two separate sets of models were investigated: 1) one-degree of freedom (DF) models 

which tested only the relevant interaction term and 2) 2-DF models which jointly tested both 

the relevant interaction term and the PGS main effect term (41). Relevant interaction terms 

were the PGS interacting with either vitamin D intake (PGS*intake) or available UV radiation 

(PGS*UV). All 1-DF and 2-DF models controlled for age, sex, BMI, cohort, vitamin D intake, and 

available UV radiation. All statistical analyses were performed using SAS (version 9.4). Further 

analyses were performed in those who achieved IOM vitamin D intake guidelines (600 IU/day 

for those 1-70 years old and 800 IU/day for those over 70) to explore differences in the percent 

of those achieving adequate 25(OH)D concentrations (>20 ng/ml) by decile of genetic risk. 

Statistical significance was determined by testing difference between two proportions. 
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 Sensitivity analyses were performed in a subset of participants with physical activity 

data or vitamin D supplement use data, which permitted adjusting for these variables. 

Additionally, sensitivity analyses controlling for principal components (PCs) of ancestry were 

performed. All sensitivity analyses were performed in an ancestry-specific manner for European 

and African cohorts. Additional sensitivity analyses were performed to ensure that the 

randomized controlled trial (RCT) study design of the WHI CaD trial was not biasing the results.  

 

Results 

  

Participant characteristics of this sample can be found in Table 1. Gene-environment 

interactions for PGS*intake and PGS*UV were tested for with a 1-DF and 2-DF approach (Table 

2 and Figure 1). The interaction term in the 1-DF PGS*UV model and the joint effect in the 2-DF 

PGS*intake and 2-DF PGS*UV models were statistically significant in participants of European 

ancestry (p=2.1x10
-2

, 3.3x10
-18

 and 2.4x10
-19

, respectively). In African-ancestry analyses, power 

was limited due to the smaller sample size, and no statistically significant interactions or joint 

effects were discerned. 

Sensitivity analyses were performed.  Characteristics for participants used in sensitivity 

analyses can be found in Supplemental Tables 2 and 3.  Sensitivity analyses controlling for 

physical activity showed the same pattern of significance for interaction terms, however, p-

values were slightly attenuated due to smaller sample size (Supplemental Figure 3). Interaction 

terms were no longer significant in the sensitivity analyses that used the subsample with 

vitamin D supplement use, due to loss of power and small sample size (European ancestry 

n=455; African ancestry n=700). Adding PCs to analyses had only a minor impact on effect size 

and did not change significance or interpretation. To ensure the RCT study design of WHI did 
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not influence the results, additional sensitivity analyses were performed. There was no 

significant difference in 25(OH)D concentration between participants on the treatment arm 

compared to the placebo arm. Additionally, there was no significant difference in the 

association between the PGS and 25(OH)D in WHI compared to the other cohorts.  

Next, in participants who reached IOM vitamin D dietary intake guidelines, the percent 

of participants achieving adequate 25(OH)D concentration by PGS quartile was calculated 

(Figure 2). In those of European ancestry, as genetic risk decreased, those reaching optimal 

vitamin D concentrations increased (71.7% vs 89.0% in the highest and lowest risk categories, 

respectively). This is a statistically significant (p=0.018) and clinically meaningful difference. The 

directionality of the trend persisted in those of African ancestry, however, the difference was 

not significant (p=0.28). This confirmed results previously reported on in an independent 

sample (23).  

 

Discussion 

 

 Findings presented here build upon existing literature reporting that UV radiation and 

vitamin D intake modify the effect that genetics have on 25(OH)D concentrations (23, 42). 

Previously, in women of European ancestry, the genetic effects were reported to be stronger in 

summer and in women with high vitamin D intake (>400 IU/day) (23). Here, these results are 

replicated in both women and men of European ancestry. As available UV radiation or dietary 

vitamin D intake increased, the genetic risk score had a larger effect on 25(OH)D (Table 2; 

interaction term not significant for dietary vitamin D intake). The current study also includes 
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individuals of African ancestry, but results were not significant, likely a reflection of the smaller 

sample size and, subsequently, reduced power. 

Gene-environment interactions can have public health implications, especially in the 

context of 25(OH)D. Extending previous findings in women of European ancestry (20), the 

results presented here in men and women of African or European ancestry indicate that, for 

those of high genetic risk, IOM recommendations for vitamin D intake may not be sufficient. As 

shown by about a third of those with highest genetic risk not reaching adequate 25(OH)D albeit 

achieving IOM recommendations for vitamin D intake. In European-ancestry participants who 

reached IOM dietary guidelines for vitamin D intake, significantly fewer participants with high 

genetic risk reached optimal 25(OH)D concentrations (>20 ng/ml). This trend was also seen in 

African-ancestry participants, although it was not statistically significant, possibly due to the 

relatively small sample size. These results suggest that a precision public health approach to 

achieve adequate blood levels of vitamin D may be more effective, tailoring intake 

recommendations to genetic risk. 

While this study builds upon the novel interactions previously reported (20) by including 

both men and women of European and African ancestry, it is not without limitations. First while 

exploring gene-by-environment interactions that influence 25(OH)D concentrations in a multi-

ethnic sample is novel, the relatively small size of the African-ancestry sample limited the 

power. To maintain independence from TRANSCEN-D, which provided ancestry-specific weights 

for the PGSs, the sample size used in this analysis was relatively small, especially for the African-

ancestry cohort (n=1,099), as nearly all the publicly available African-ancestry samples with 

relevant data had been exhausted. This emphasizes that we, as a research community, need to 
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include more individuals of African ancestry in our studies to better understand vitamin D 

requirements and other health outcomes and make ancestrally informed recommendations 

that combat instead of accentuate health disparities (i.e. in initiatives like All of Us) (43, 44). 

Additionally, while the use of available UV radiation is a substantial improvement from using 

season as a measure of UV exposure, it does not include behaviors which can alter an 

individual’s exposure in months when UV exposure is high enough to make substantial vitamin 

D in the skin, such as the time spent outside, the amount of skin usually exposed, and sunblock 

use. The lack of information about these behaviors could introduce measurement error to the 

estimate of an individual’s UV radiation and, consequently, limit power. Finally, vitamin D 

supplementation is a stronger predictor of 25(OH)D concentrations than vitamin D intake from 

food, which is generally in much lower amounts than those found in supplements. However, 

only the WHI study measured vitamin D supplement intake for the relevant visit. Therefore, 

only interactions involving dietary intake had adequate sample size to be explored in this study, 

which could have led to the lack of a significant interaction being detected between the PGS 

and vitamin D intake in the 1-DF models. Nonetheless, findings here guide future research in 

the quest for precision public health management of 25(OH)D inadequacy. 

 

Conclusion 

 This research adds to the ongoing narrative deciphering the predictors of 25(OH)D 

concentrations, by extending evidence suggesting that levels of environmental sources of 

vitamin D (intake and UV radiation) affect 25(OH)D concentrations differently in those with low 

versus high genetic risk, reiterating the importance of well-measured environmental factors in 
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genetic analyses. This research also adds to evidence indicating the importance of considering 

genetic risk when making recommendations on vitamin D intake and personalizing the dose of 

vitamin D to best achieve optimal 25(OH)D concentrations.   
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Tables 

 

Table 1: Sample characteristics 

 

 

 

 

  

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1
available UV radiation 

2
vitamin D intake from diet  

3
MANOVA global test (performed in SAS (version 9.4) revealed differences in one or more variables by cohort, 

therefore cohort was adjusted for in all models that included multiple cohorts 

 

Original to this manuscript. 

Cohort Variable European ancestry African ancestry 

ARIC 

Sample size 6,178 57 

Age (SE) 

[years] 57.1 (5.7) 55.6 (6.2) 

% Female 54 49 

BMI (SE) 

[kg/m
2
] 27.3 (4.9) 28.6 (5.7) 

UV
1
 (SE) 

[units] 5.1 (2.5) 7.1 (2.4) 

Intake
2
 (SE) 

[IU] 223.3 (145.7) 221.2 (137.3) 

25(OH)D (SE) 

[ng/ml] 26.0 (8.8) 20.9 (7.8) 

MESA 

Sample size 1,936 342 

Age (SE) 

[years] 62.7 (10.3) 
62.3 (10.4) 

% Female 53 51 

BMI (SE) 

[kg/m
2
] 27.8 (5.0) 30.0 (5.9) 

UV
 
(SE) 

[units] 4.5 (2.3) 5.1 (2.2) 

Intake (SE) 

[IU] 188.9 (157.2) 161.8 (144.1) 

25(OH)D (SE) 

[ng/ml] 30.1 (10.8) 19.5 (8.9) 

WHI 

Sample size 455 700 

Age (SE) 

[years] 66.6 (6.8) 61.8 (7.4) 

% Female 100 100 

BMI (SE) 

[kg/m
2
] 29.9 (6.3) 31.1 (6.4) 

UV
 
(SE) 

[units] 5.2 (2.5) 5.5 (2.6) 

Intake (SE) 

[IU] 192.3 (143.2) 146.4 (130.5) 

25(OH)D (SE) 

[ng/ml] 18.9 (10.7) 19.0 (15.4) 
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Table 2: Betas, standard errors and p-values for G*E interaction terms 

 European Ancestry African Ancestry 

Model PGS*UV PGS*Intake PGS*UV PGS*Intake 

 Beta (SE) p-value Beta (SE) p-value Beta (SE) p-value Beta (SE) p-value 

Environmental main effect
1
 0.096 

(0.005) 

<0.0001 0.11 

(0.011) 

<0.0001 0.07 

(0.012) 

<0.0001 0.13 

(0.033) 

0.0002 

Genetic main effect
2
 0.087 

(0.038) 

0.022 0.16 

(0.018) 

<0.0001 0.086 

(0.071) 

0.23 0.062 

(0.031) 

0.04 

Interaction term 0.017 

(0.0073) 

0.021 0.0006 

(0.018) 

0.74 -0.0044 

(0.012) 

0.71 0.00042 

(0.03) 

.99 

1
Environmental main effect is either available UV radiation (UV) measured for month prior to blood draw (values 

ranged from 0.7 to 9.5 units), or vitamin D intake through diet (Intake) assessed at blood draw visit and measured 

in IU 
2
Genetic main effect term is the PGS 

3
All models controlled for age, sex, BMI, cohort and vitamin D intake or available UV radiation 

 
Original to this manuscript. 

 

 

 

Figure 1: p-values for G*E interaction terms from 1-DF and 2-DF models 

 
Figure 1 shows –log(p-values) for the 1-DF and 2-DF models of the PGS interaction term or joint effect, 

respectively; all models controlled for age, sex, BMI, cohort, vitamin D intake and available UV radiation. The black 

horizontal line denotes the p=0.05 significance cutoff. The 2-DF PGS*intake, 1-DF PGS*UV and 2-DF PGS*UV results 

were statistically significant in participants of European ancestry (p=3.3x10
-18

, 2.1x10-2 and 2.4x10
-19

, respectively). 

Original to this manuscript. 

 

 

 

Figure 2: Percent achieving adequate 25(OH)D in those reaching IOM vitamin D intake 

guidelines by genetic risk 
 

Figure 2 shows the percent of European- or African-ancestry participants who reached IOM vitamin D intake 

guidelines and achieved adequate 25(OH)D (20 ng/ml) by quartile of genetic risk. In those of European ancestry 

(panel (A), n=184), as genetic risk decreased (higher PGS), those reaching optimal vitamin D concentrations 

increased. The difference in percent reaching adequate 25(OH)D between the two extreme quartiles was 17.3%; 

71.7% of participants with the highest genetic risk and 89.0% of participants with the lowest risk reached adequate 

25(OH)D. This is a statistically significant (p=0.018) and clinically meaningful difference. The trend was not 

significant in those of African ancestry (panel (B), n=17). Original to this manuscript. 
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