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Abstract 27 

Plant root-microbe interactions influence plant productivity, health, and resistance to stress. 28 

Although there is evidence that plant species and even genotypes can alter soil microbial community 29 

structure, environmental conditions can potentially outweigh plant genetic effects. Here, we used a 30 

reciprocal transplant experiment to understand the contributions of the environment and the host plant to 31 

rhizosphere microbiome composition in locally-adapted ecotypes of Mimulus guttatus (syn. Erythranthe 32 

guttata (Fisch. ex DC.) G.L. Nesom). Two genotypes of a coastal ecotype and two genotypes of an inland 33 

ecotype were planted at coastal and inland sites. After three months, we collected rhizosphere and bulk 34 

soil and assessed microbial communities by 16S rRNA gene sequencing. We found that local 35 

environment (coastal versus inland site) strongly influenced rhizosphere communities, at least in part due 36 

to distinct local microbial species pools. Host identity played a smaller role: at each site, the ecotypes 37 

exhibited remarkably similar composition of microbial communities at the class level, indicating that 38 

divergent M. guttatus ecotypes recruit phylogenetically similar rhizosphere communities, even in 39 

environments to which they are maladapted. Nevertheless, the two ecotypes significantly differed in 40 

community composition at the inland site due to an exclusive set of rare taxa associated with each 41 

ecotype. Although our results indicate that locally-adapted M. guttatus ecotypes are genetically diverged 42 

in factors shaping rhizosphere communities, environmental factors can trump genetic factors in shaping 43 

the M. guttatus microbiome. Overall, our findings demonstrate that wild plants strongly impact root-44 

associated microbial communities, but hierarchical drivers interact to shape microbial community 45 

assembly outcomes.  46 
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Introduction 53 

 The rhizosphere (the narrow zone of soil surrounding plant roots) is a highly diverse and active 54 

microenvironment. In addition to influencing soil structure, moisture, and nutrient availability (Marschner 55 

et al. 1987; Angers and Caron 1998; McKinney and Cleland 2014), plant roots continuously supply labile 56 

carbon to the soil through root exudation. These continual carbon inputs recruit a host of soil microbes to 57 

the rhizosphere (Bressan et al. 2009; Bulgarelli et al. 2012; Chaparro et al. 2014; Zhalnina et al. 2018), 58 

often resulting in distinct microbial communities compared to the surrounding bulk soil (Berendsen et al. 59 

2012; Bever et al. 2012; Philippot et al. 2013). Rhizosphere microbial communities can strongly impact 60 

plant health and productivity, altering plant morphology (Friesen et al. 2011), phenology (Wagner et al. 61 

2014), and plant resistance to both biotic (Santhanam et al. 2015; Busby et al. 2016; Ritpitakphong et al. 62 

2016) and abiotic stresses (Lau and Lennon 2011,  2012). Nevertheless, despite the critical importance of 63 

rhizosphere communities for plant productivity, the factors shaping the rhizosphere microbiome are 64 

complex and not fully understood (Berg and Smalla 2009; Lareen et al. 2016; Sasse et al. 2018). 65 

 One factor that can strongly influence rhizosphere community composition is plant host identity.  66 

Plant species and even genotypes within species can differ in rhizosphere community structure when 67 

planted in a common environment (Aira et al. 2010; Bouffaud et al. 2012; Edwards et al. 2015; Mahoney 68 

et al. 2017; Berg et al. 2002; Bowen et al. 2017; Fitzpatrick et al. 2018). This finding is often suggested to 69 

result, at least in part, from species-specific root exudation patterns recruiting different community 70 

members (Marschner et al. 2001). Indeed, numerous studies suggest root exudation is the primary 71 

mechanism by which plants mediate rhizosphere community assembly and function (Broeckling et al. 72 

2008; Haichar et al. 2008; Carvalhais et al. 2015; Hu et al. 2018). Other species- or genotype-specific 73 

factors could also contribute, such as differences in rooting depth (Aleklett et al. 2015) and root 74 

architecture (Pérez-Jaramillo et al. 2017), given that microbial community composition can shift with soil 75 

depth (Fierer et al. 2003; Ko et al. 2017).  76 

In addition to the influence of plant host identity, environmental factors can also shape the 77 

rhizosphere microbiome. For example, the local environment directly affects rhizosphere communities by 78 
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determining the available source pool of microorganisms, since soil microbial communities are structured 79 

by both spatial and environmental gradients (Fierer and Jackson 2006; Xue et al. 2018; Rath et al. 2019). 80 

Local environmental conditions can also indirectly influence rhizosphere community composition by 81 

affecting plant and microbial physiology (Aira et al. 2010). For example, many environmental factors can 82 

influence root exudate composition, such as nutrient availability (Zhang et al. 1991; Carvalhais et al. 83 

2011), pathogenesis (Gu et al. 2016), drought (Gargallo-Garriga et al. 2018), and flooding (Henry et al. 84 

2007), thereby influencing rhizosphere composition. As a result, environmental conditions can outweigh 85 

the effects of plant host identity (i.e. differences among plant species or genotypes) in structuring 86 

rhizosphere communities (Marschner et al. 2004; Peiffer et al. 2013). While considerable recent 87 

microbiome research has been focused on economically important crops, less is known about the 88 

interplay between plant host and the local environment for wild plants, which experience relatively higher 89 

variability in their local environments than plants grown in managed systems. 90 

In this study, we used a field reciprocal transplant experiment to better understand the 91 

contributions of both the environment and host plant identity to rhizosphere microbiome composition. We 92 

used two locally adapted ecotypes (coastal versus inland) of the yellow monkeyflower, Mimulus guttatus 93 

(syn. Erythranthe guttata (Fisch. ex DC.) G.L. Nesom), a model species for ecological and evolutionary 94 

genomics (Twyford et al. 2015; Wu et al. 2008). Coastal and inland ecotypes are highly locally adapted to 95 

their respective habitats (Hall et al. 2010; Lowry et al. 2008; Lowry and Willis 2010; Hall and Willis 96 

2006). Inland habitats of M. guttatus experience a hot summer drought, for which these populations have 97 

evolved an early flowering, annual life-history strategy to escape from the long period of low soil water 98 

availability (Lowry et al. 2008; Hall and Willis 2006). In contrast, coastal habitats typically are much 99 

cooler as a result of proximity to the Pacific Ocean, which drives the production of summer sea fog. 100 

However, coastal populations of M. guttatus contend with pervasive oceanic salt spray, for which they are 101 

locally adapted (Lowry et al. 2008,  2009). Here, we planted coastal and inland ecotypes of M. guttatus in 102 

both coastal and inland sites and investigated rhizosphere and bulk soil microbial community composition 103 

after three months of growth. 104 
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 105 

Materials and Methods 106 

Experimental Design 107 

          To establish the relative role of environment (coastal versus inland site) and ecotype (coastal 108 

perennial versus inland annual) on the M. guttatus microbial rhizosphere community, we leveraged a 109 

reciprocal transplant experiment conducted in Sonoma County, CA, USA in the spring of 2017 (Popovic 110 

and Lowry 2019). Briefly, accessions from two coastal perennial populations (SWB-11, 39.0359 N, -111 

123.6905 W; MRR-13, 38.4564 N, -123.1409 W) and two inland annual populations (LMC-24, 38.8640 112 

N, -123.0840 W; OCC-31, 38.4095 N, -122.9355 W) were used for the experiment. Source populations 113 

for the SWB and LMC seeds are in Mendocino County, CA, and have been used in many recent studies 114 

of genetics and local adaptation in this system (Lowry et al. 2008,  2009). The MRR and OCC source 115 

populations are located in Sonoma County, CA (Popovic and Lowry 2019). All accessions were grown 116 

for at least one generation in the Michigan State University greenhouses to control for maternal effects. 117 

Seeds were planted on wet Sunshine Soil Mix #1 (SunGro Horticulture, Agawam, MA) on 118 

February 1, 2017 in two 54.28 x 27.94 cm potting trays per genotype. Seeds were then stratified at 4°C 119 

for 10-17 days (10 days for coastal accessions, 17 days for inland accessions), and subsequently 120 

germinated at University of California, Berkeley’s Oxford Track greenhouse facilities under 16 hours of 121 

light. Different lengths of stratification were used for the two ecotypes because the inland ecotype 122 

germinates earlier and grows faster than the coastal genotype early in development. This allowed 123 

seedlings to be transplanted to the field later at the same developmental stage. On February 28th, all 124 

seedlings were moved to the greenhouse at the Bodega Marine Reserve (bml.ucdavis.edu/bmr/) in Bodega 125 

Bay, CA. 126 

         We transplanted seedlings at the four-leaf stage into the coastal site on March 8th and into the 127 

inland site on March 9th. The coastal site was located at the Bodega Marine Reserve, Bodega Bay, CA, in 128 

a perennial seep at the south end of Horseshoe Cove (38.315716 N, -123.068625 W; ~60 m from the 129 

ocean). The inland site was planted in a seasonal grassland seep at the Pepperwood Preserve in Santa 130 
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Rosa, CA (38.575545 N, -122.700851 W; 39.84 km from the ocean). Native populations of M. guttatus 131 

are located in both seeps. Prior to planting, three 1 x 1 m plots were cleared of native vegetation at each 132 

site. Each plot included a total of 100 plants (N=25 of each genotype), which were all equally spaced 133 

from one another throughout the plot (N=100 per plot, 300 per site, 600 total). Plants were then grown for 134 

three months until being harvested for rhizosphere community analyses. 135 

 136 

Sample collection and processing 137 

         On June 13th-15th, five replicate M. guttatus rhizosphere soils were collected from each genotype 138 

at each field environment from plants that were spatially distributed across all three plots. Rhizosphere 139 

soil was isolated by uprooting the plant with a trowel, discarding excess soils from around the roots, and 140 

shaking what soil remained attached to the root into a sterile Whirl-Pak bag. Rhizosphere soils were 141 

homogenized with an ethanol-sterilized metal spatula, aliquoted into cryovials, flash frozen in liquid 142 

nitrogen, and stored on ice. Above- and belowground tissue for each plant was stored in a paper bag and 143 

transported at ambient temperature to the lab at Michigan State University, washed with distilled water, 144 

and dried for 1 week at 60°C before measuring dry biomass. In addition, bulk soil cores (10 cm x 2 cm) 145 

were collected randomly across the three plots at each site, sieved, and homogenized in a sterile Whirl-146 

Pak bag and stored on ice. Bulk soil samples were subsequently analyzed for phosphorus, potassium, 147 

calcium, magnesium, copper, percent organic matter, sodium, nitrate, ammonium, percent nitrogen, and 148 

sulfur at the Michigan State University Soil and Plant Nutrient Laboratory following their standard 149 

protocols (http://www.spnl.msu.edu/). Gravimetric soil water content was determined from the loss of 150 

mass in soils dried for one week at 60°C. We assessed significant differences in soil chemistry with t-tests 151 

in R 3.5.0 (R Core Team 2018). The homogeneity of variance assumption was assessed using both 152 

Bartlett’s and Levene’s tests (Levene 1960; Snedecor and Cochran 1989) in the ‘car’ package (Fox and 153 

Weisberg 2011) of R, and the Welch’s t-test was used when the homogeneity of variance assumption was 154 

not met. 155 

 156 
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DNA Extraction and Sequencing 157 

DNA was extracted from the five replicate rhizosphere soil samples of each M. guttatus genotype 158 

from each environment (n=40 samples; five replicates of each of four genotypes at each of two sites), as 159 

well as from ten bulk soil samples (five replicates from each of two sites). We used the MoBio PowerSoil 160 

Total DNA Isolation Kit (Carlsbad, CA, USA) following the manufacturer’s instructions. Extracted DNA 161 

was quantified fluorometrically with the Qubit (ThermoFisher, Waltham, MA, USA). DNA from each 162 

sample was diluted to < 10 ng µl-1 for paired-end amplicon sequencing using the dual-indexed primer pair 163 

515F/806R (Kozich et al. 2013). Samples were prepared for sequencing by the Michigan State University 164 

Genomics Core (East Lansing, MI, USA) including PCR amplification and library preparation using the 165 

Illumina TruSeq Nano DNA Library Preparation Kit. Paired-end, 250bp reads were generated on an 166 

Illumina MiSeq and the Genomics Core provided standard Illumina quality control and sample 167 

demultiplexing. 168 

 169 

Sequence processing 170 

The rhizosphere and bulk soil sequencing datasets were analyzed together. Paired-end reads were 171 

merged using USEARCH v10.0.240 (Edgar 2010) and primer-binding regions removed using cutadapt 172 

v1.18 (Martin 2011), then reads were quality-filtered, dereplicated, and clustered into zero-radius OTUs 173 

using the USEARCH v9.2.64/v10.0.240 and UNOISE pipeline (Edgar 2016). Taxonomy annotations 174 

were assigned in Qiime v1.9.0 (Caporaso et al. 2010) using UCLUST (Edgar 2010) against the SILVA 175 

rRNA database v123 (Quast et al. 2013) and were added to the .biom file using the biom-format package 176 

(McDonald et al. 2012). Sequences that were unassigned at the phylum level, along with those matching 177 

chloroplasts or mitochondria, were excluded from analyses. Representative sequences were aligned using 178 

MUSCLE 3.8.1 (Edgar 2004) and FastTree v2.1.10 (Price et al. 2009,  2010) was used to build a 179 

phylogenetic tree. Samples were rarefied to the minimum number of sequences observed per sample 180 

(22,354) for all subsequent analyses. We calculated species richness, Shannon diversity, and phylogenetic 181 
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diversity in QIIME, as well as beta diversity using weighted UniFrac distance (Lozupone and Knight 182 

2005) for Principal Coordinates Analysis (PCoA).  183 

Statistical analyses were performed in R 3.5.0 (R Core Team 2018). We assessed the effects of 184 

abiotic (phosphorus, potassium, calcium, magnesium, copper, percent organic matter, sodium, nitrate, 185 

ammonium, percent nitrogen, and sulfur) parameters on microbial community composition by fitting 186 

variables to weighted UniFrac distance with the R package vegan v2.5-2 (Oksanen et al. 2018). We 187 

included parameters that had significant explanatory value (p < 0.1) for PCoA axis 1 or 2. Differences in 188 

community composition across categorical groups (rhizosphere versus bulk soil, inland versus coastal 189 

sites, inland versus coastal ecotypes at each site, etc.) were calculated with PERMANOVA (Anderson 190 

2001). We also tested for differences in group dispersions with PERMDISP (Anderson 2006). For alpha 191 

diversity metrics (species richness, phylogenetic diversity, and Shannon diversity), we tested for 192 

differences between ecotypes at each site, and between each ecotype and bulk soil at each site, using t-193 

tests. Next, we selected the twenty most abundant taxa at the class level and tested for differences in 194 

abundance of these taxa using t-tests with an FDR-adjusted p-value for multiple comparisons. Within 195 

each site, we compared inland versus coastal ecotypes, as well as each ecotype versus bulk soil. We also 196 

compared genotypes within ecotypes at each site. 197 

Given that the coastal and inland ecotypes differed in community composition only at the inland 198 

site, we further explored the inland site alone to better understand the factors distinguishing the 199 

microbiomes of the two ecotypes. First, we conducted an indicator species analysis, which aims to 200 

determine which taxa are characteristic of a given treatment group, taking into account the abundances of 201 

a given taxon for each treatment group (specificity), as well as the proportion of samples in each 202 

treatment group in which that taxon occurs (fidelity) (De Cáceres and Legendre 2009; De Cáceres et al. 203 

2010). We used the multipatt function (De Cáceres et al. 2010) in the R package indicspecies (De Cáceres 204 

and Legendre 2009). Next, we tested for ecotype differences in relative abundance of individual OTUs 205 

using t-tests with FDR-adjusted p-values for multiple comparisons. Finally, we generated Venn diagrams 206 

using the R packages gplots (Warnes et al. 2019) and VennDiagram (Chen 2018) to assess differences in 207 
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the presence/absence of individual taxa between the two ecotypes. Data were visualized using a 208 

combination of the R packages ggplot2 v2.2.1 (Wickham 2009), reshape2 v.1.4.3 (Wickham 2007), and 209 

cowplot v0.9.2 (Wilke 2017). Package plyr v.1.8.4 (Wickham 2011) was used for data summaries.  210 

Data availability and computing workflows 211 

Raw reads were submitted to the NCBI Sequence Read Archive under accession numbers 212 

PRJNA451377 (rhizosphere samples) and PRJNA526056 (bulk soil samples). All plant and 213 

environmental data, as well as computational workflows and custom scripts, are available on GitHub 214 

(https://github.com/ShadeLab/PAPER_MimulusRecipTransplant_Submitted).  215 

 216 

Results 217 

Soil characteristics and plant performance differ across sites 218 

The coastal and inland sites had very different soil properties (Table 1). Nearly all measured 219 

abiotic parameters significantly differed between the coastal and inland sites, with the exception of pH, 220 

ammonium, nitrate, and percent nitrogen. Plants also performed differently in the coastal and inland sites. 221 

Plants grown in the coastal site tended to be larger in both shoot and root mass than those grown in the 222 

inland site (Figure S1), although this was only significant for genotype MRR (coastal ecotype).  223 

Site and ecotype influence microbial community composition 224 

A principal coordinates analysis based on weighted UniFrac distances found that two axes 225 

captured nearly 60% of the variation in the amplicon sequencing dataset (45.8% variation explained for 226 

PC1 and 13.9% for PC2) (Figure 1). Numerous abiotic parameters had significantly explanatory value for 227 

PCoA axis 1, which largely distinguished the coastal and the inland sites. Coastal site samples were 228 

associated with greater moisture content, sodium, phosphorus, and sulfur, while inland site samples were 229 

associated with greater potassium, calcium, magnesium, and copper (Figure 1).  230 

PERMANOVA revealed significant clustering of microbial communities by sample type 231 

(rhizosphere versus bulk soil; F=8.011, P=0.001) and site (coastal versus inland; F=43.227, P =0.001), as 232 

well as their interaction (F=4.307, P =0.006). We therefore investigated further by dividing the dataset by 233 
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site and found that rhizosphere and bulk soils significantly differed in community composition at both the 234 

coastal and the inland sites (F=8.2951, P=0.001; and F=4.918, P =0.005, respectively), and differed in 235 

variability by PERMDISP at the coastal site (F=10.73, P=0.002). We next subdivided the rhizosphere 236 

samples by ecotype. We found that site influenced community composition for both the coastal 237 

(F=28.828, P=0.001) and inland ecotypes (F=16.319, P=0.001). In addition, the coastal ecotype differed 238 

in variability between the two sites (F=7.3244, P=0.013). Next, we found that inland ecotype 239 

rhizospheres differed from bulk soil in community composition at both the coastal and inland sites 240 

(F=6.2055, P=0.001; and F=5.2513, P=0.007, respectively), and differed in variability at the coastal site 241 

(F=13.198, P=0.004). Similarly, coastal ecotype rhizospheres differed from bulk soil at both the coastal 242 

and inland sites (F=10.474, P=0.001; and F=3.8461, P=0.004, respectively). We also tested for 243 

differences between ecotypes at each site and found that inland and coastal ecotypes differed in 244 

community composition at the inland site (F=3.279, P=0.006), but not at the coastal site (F=1.6859, 245 

P=0.095). Finally, we tested for differences between genotypes (within each ecotype at each site), and 246 

found that genotypes did not differ in any instance (all P>0.1).  247 

Ecotypes differ in rhizosphere communities at inland site 248 

 Across environments and ecotypes, we detected 14,869 OTUs spanning a breadth of phylogenetic 249 

diversity. Overall, alpha diversity metrics did not differ between either ecotype and bulk soil at either site 250 

(Figure 2). However, the inland ecotype exhibited greater species richness (t=-3.2507, P=0.006), 251 

phylogenetic diversity (t=-3.2446, P=0.004), and Shannon diversity (t=-2.9905, P=0.012) than the coastal 252 

ecotype at the inland site (Figure 2). 253 

 Each ecotype exhibited some of the same compositional shifts in microbial communities (relative 254 

to bulk soil) in both sites. At both the coastal and inland sites, the inland ecotype exhibited lower relative 255 

abundance of Acidobacteria, Gemmatimonadetes, Nitrospira, and higher relative abundance of 256 

Planctomycetacia, compared to bulk soils (Figure 3). Similarly, at both sites, the coastal ecotype exhibited 257 

lower relative abundance of Nitrospira, and higher relative abundance of Planctomycetacia, compared to 258 

bulk soils. Within each site, both ecotypes influenced the relative abundance of numerous taxa in similar 259 
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ways. At the coastal site, both ecotypes exhibited lower relative abundance of Acidobacteria, 260 

Anaerolineae, Gemmatimodetes, Nitrospira, Deltaproteobacteria, and OPB35-Soil, and higher relative 261 

abundance of Thermoleophilia, Cytophagia, Sphingobacteria, KD4-96, Planctomycetacia, and Alpha-262 

proteobacteria, compared to bulk soil (Figure 3). Similarly, at inland site, both ecotypes exhibited lower 263 

relative abundance of Nitrospira and higher relative abundance of Planctomycetacia compared to bulk 264 

soil. There were exceptions to this rule, however. For example, at the inland site, the inland ecotype 265 

exhibited lower relative abundance of Acidobacteria, Gemmatimomdetes, Spartobacteria, and higher 266 

relative abundance of Actinobacteria compared to bulk soil, while the coastal ecotype did not (Figure 3).  267 

Directly comparing the coastal and inland ecotypes (Figure 4), we found that the two ecotypes 268 

exhibited very similar relative abundances of microbial taxa at the class level. The two ecotypes did differ 269 

in the abundances of several highly abundant taxa, but only at the inland site. At the inland site, the inland 270 

ecotype had higher relative abundance of Cytophagia, Deltaproteobacteria, Gammaproteobacteria, and 271 

Verrucomicrobiae, but lower relative abundance of Acidobacteria, than the coastal ecotype (Figure 4). 272 

Genotypes within each ecotype did not differ in relative abundances of taxa at either the coastal or the 273 

inland site (Figure S2). 274 

Presence/absence of rare taxa differs between coastal and inland ecotypes at the inland site 275 

 Given that inland and coastal ecotypes differed in overall community composition (Figure 1), 276 

alpha diversity (Figure 2), and several highly-abundant bacterial classes at the inland site (Figures 3 and 277 

4), but not the coastal site, we further explored the differences between ecotypes at the inland site. 278 

Indicator species analysis revealed that no bacterial species were indicative of inland versus coastal 279 

ecotypes at the inland site (all adjusted P>0.05). In addition, the inland and coastal ecotypes did not differ 280 

in relative abundance of any individual OTUs at the inland site. However, the two ecotypes did differ in 281 

the presence/absence of numerous OTUs at the inland site: 1,157 OTUs were present in the coastal but 282 

not the inland ecotype, while 2,065 OTUs were present in the inland but not the coastal ecotype (Figure 283 

5). These OTUs were in extremely low relative abundance (roughly ten-fold lower mean relative 284 

abundance) compared to the 6,290 OTUs shared by the ecotypes and bulk soil. The OTUs distinguishing 285 
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the coastal and inland ecotypes also had very low occupancy (i.e. were present in a small proportion of 286 

samples per ecotype). In the coastal ecotype, only 14 of the 1,157 OTUs unique to the coastal ecotype 287 

were present in at least half of the coastal ecotype samples. Similarly, in the inland ecotype, only 99 of the 288 

2,065 OTUs unique to the inland ecotype were present in at least half of the inland ecotype samples. 289 

Interestingly, although the majority of the OTUs observed at the inland site (7,537 out of 11,553) were 290 

found in bulk soil plus one or both ecotypes, a large number of OTUs were found in either the coastal 291 

ecotype (741 OTUs), the inland ecotype (1,234 OTUs), or both (1,484 OTUs), but not the bulk soil. Only 292 

557 of the 11,553 OTUs observed at the inland site were found in bulk soil alone with no observations in 293 

either ecotype (Figure 5).   294 

   295 

Discussion 296 

Interactions between plant roots and soil microorganisms strongly influence plant health and 297 

productivity, yet the relative role of host plant identity versus the local environment in shaping the 298 

rhizosphere microbiome is not well understood. To begin to unravel this we examined the rhizosphere 299 

communities of two ecotypes of M. guttatus, which are locally adapted to distinct environments, in a 300 

reciprocal transplant experiment.  301 

The local environment (coastal versus inland site) strongly influenced rhizosphere microbial 302 

communities in M. guttatus. This effect is due, at least in part, to distinct microbial source pools in the 303 

bulk soil at each site. This finding was not surprising given that abiotic conditions strongly differed 304 

between the two sites and microbial community structure is often influenced by environmental gradients 305 

(Lauber et al. 2009; Fierer et al. 2012; Xue et al. 2018; Sorensen et al. 2019). For example, both salinity 306 

(Rath et al. 2019) and moisture availability (Brockett et al. 2012), two of the major factors distinguishing 307 

the coastal and inland sites, can have substantial effects on microbial community structure. Nevertheless, 308 

despite the drastically different abiotic (soil nutrient availability, salinity, and moisture) and biotic (bulk 309 

soil inoculum) conditions between the two sites, the presence of M. guttatus strongly influenced microbial 310 

communities at both coastal and inland sites. This is in agreement with the general observation that plants 311 
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play a major role in regulating soil microbial community composition and function (reviewed in 312 

(Bulgarelli et al. 2013; Lareen et al. 2016; Coskun et al. 2017). 313 

Host plant identity influenced rhizosphere community composition in M. guttatus, but to a 314 

smaller extent than the influence of environment. At each site, the two ecotypes exhibited remarkably 315 

similar composition of microbial communities at the class level. Many of the shared lineages are 316 

commonly associated with rhizospheres, including Actinobacteria, Firmicutes, Alpha- and Beta-317 

proteobacteria (Philippot et al. 2013), suggesting evolutionarily-conserved mechanisms for recruiting 318 

and/or sustaining these taxa. Indeed, our results indicate that divergent M. guttatus ecotypes recruit 319 

phylogenetically similar rhizosphere communities, even in environments to which they are maladapted. 320 

Nevertheless, when planted in a common garden at the inland site, the two ecotypes differed in overall 321 

community composition, with the inland ecotype recruiting a more OTU-rich and phylogenetically-322 

diverse rhizosphere than the coastal ecotype. This difference in communities between ecotypes at the 323 

inland site is largely due to low abundance (rare) and low occupancy (found in a low proportion of 324 

samples) microbial OTUs found in one ecotype at the exclusion of the other. Although the relative rarity 325 

of these OTUs suggests they may be present in the M. guttatus rhizosphere due to stochastic processes 326 

rather than by deterministic recruitment by the plant host, rare microbial taxa have the potential to provide 327 

a reservoir of microbial functions that can support community stability despite environmental fluctuations 328 

(Shade et al. 2014; Shade and Gilbert 2015). The ability of the inland ecotype to harbor greater microbial 329 

diversity, due to rare taxa, could potentially contribute to its higher fitness at the inland site compared to 330 

the coastal ecotype. Nevertheless, the design of the present study does not allow us to determine whether 331 

differing rhizosphere communities at the inland site are a cause or a consequence of the evolutionary 332 

divergence between the ecotypes. Future work should explore the potential role of the rhizosphere 333 

microbiome in local adaptation in this system by examining growth and fitness of the two ecotypes in 334 

sterilized and unsterilized ‘home’ and ‘away’ soil. For this type of experiment, a greater difference in 335 

fitness between the two ecotypes in the unsterilized soil would indicate that soil microbial communities 336 

contribute to local adaptation and ecotypic divergence in M. guttatus. 337 
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Taken together, our results indicate that plant host identity impacts rhizosphere communities, and 338 

the two locally adapted M. guttatus ecotypes are genetically diverged in the factors shaping those 339 

communities. Although numerous studies have documented genetic differentiation for rhizosphere 340 

microbiome communities in crops and model species in controlled environments (Costa et al. 2006; 341 

Micallef et al. 2009; Aira et al. 2010; Peiffer et al. 2013; Mahoney et al. 2017), our work is one of only a 342 

few studies reporting genotype-specific effects of wild plants in natural environments (Kuske et al. 2002; 343 

Osanai et al. 2013; Aleklett et al. 2015). We hypothesize that variable root exudate composition and/or 344 

root morphology between M. guttatus ecotypes acts to differentially shape rhizosphere community 345 

structure in these ecotypes. Nevertheless, our results show that the effect of host plant identity is 346 

environment-dependent, given that the two ecotypes did not differ in community composition when 347 

planted at the coastal site. This complex interplay between host identity and environment is in agreement 348 

with the contrasting results seen in studies of cultivated crops. For example, some studies report that 349 

differences in rhizosphere community composition across species or genotypes are environment-350 

dependent (Marschner et al. 2004; Costa et al. 2006; Peiffer et al. 2013), while others find that differences 351 

across species or genotypes are maintained regardless of environment (Mahoney et al. 2017; Marschner et 352 

al. 2001). Previous work in the M. guttatus system has found that the coastal ecotype exhibits extremely 353 

low fitness in inland sites due to near-zero survival-to-flowering rates (Lowry et al. 2008; Lowry and 354 

Willis 2010). Although the sample collections made here were completed before the inland site dried out 355 

for the summer, it is possible that the early stages of physiological stress at the inland environment 356 

contributed to the differences in rhizosphere composition between the two ecotypes seen here. In any 357 

case, although the two ecotypes are indeed genetically diverged in factors shaping the rhizosphere 358 

microbiome, environmental factors outweigh genetic factors in shaping the M. guttatus microbiome at 359 

least for the field sites examined in our study. 360 

It is worth noting that numerous taxa were detected in the M. guttatus rhizosphere that were not 361 

detected in bulk soil. One possible cause of this discrepancy is that the ecotypes recruited taxa that were 362 

so rare in the bulk soil that they were below the threshold of detection. Another possibility is that some 363 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 30, 2019. ; https://doi.org/10.1101/652883doi: bioRxiv preprint 

https://doi.org/10.1101/652883
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 

taxa were carried over from the horticultural soil in which the seedlings were originally germinated before 364 

transplanting to the field. A final possibility is maternal packaging of microbial endophytes in the seed 365 

(Shade et al. 2017; Rezki et al. 2018), which occurs across diverse plant groups (Nelson 2018) and can 366 

influence rhizosphere community composition (Bacilio-Jiménez et al. 2001). More work is needed to 367 

determine the potential contributions of seed packaging versus local recruitment to rhizosphere assembly 368 

in Mimulus and its potential relevance for plant productivity and local adaptation. 369 

In summary, we found that the local environment (coastal versus inland site) strongly influenced 370 

rhizosphere communities, at least in part due to distinct composition of the microbial source pool at each 371 

site. Although host plant identity also influenced rhizosphere community composition, it was to a much 372 

smaller extent than the influence of the environment. At each site, the two ecotypes exhibited remarkably 373 

similar composition of microbial communities at the class level, indicating that divergent M. guttatus 374 

ecotypes recruit phylogenetically similar rhizosphere communities, even in environments to which they 375 

are maladapted. Nevertheless, the two ecotypes did differ in rhizosphere community composition at least 376 

at the inland site primarily, due to rare (low abundance and low occupancy) OTUs. Overall, the 377 

environment-dependence of the differences between ecotypes in rhizosphere communities indicates that 378 

strong environmental gradients can obscure plant genetic factors in regulating the M. guttatus 379 

microbiome. Our findings demonstrate that wild plants strongly impact the structure of soil microbial 380 

communities regardless of environment, yet also highlight the context-specific interactions between host 381 

identity and local environment in shaping those communities. 382 

 383 
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 661 

Figure 1. Principal coordinates analysis based on weighted UniFrac distances of bacterial and archaeal 662 

community structure. The strength of statistically significant (p < 0.05) explanatory variables are shown 663 

with solid arrows.  664 
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 692 

Figure 2. Metrics of alpha diversity in bulk soil and rhizosphere of coastal (genotypes MRR and SWB 693 

pooled) and inland (genotypes LMC and OCC pooled) ecotypes of Mimulus guttatus planted in two 694 

environments. Instances where ecotypes significantly differ are indicated with an asterisk (*). 695 
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 709 

Figure 3. Relative abundance (mean ± SD) of the top 20 most abundant bacterial and archaeal classes in 710 

bulk soil and rhizosphere communities of Mimulus guttatus planted in two environments. Less abundant 711 

taxa were pooled into a single group (“Less Abundant Classes”). Taxa which significantly differed 712 

between a specific ecotype and bulk soil are indicated by an asterisk. 713 
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 734 

 735 

Figure 4. Relative abundance (mean ± SD) of the top 20 most abundant bacterial and archaeal classes in 736 

the rhizospheres of coastal (genotypes MRR and SWB pooled) and inland (genotypes LMC and OCC 737 

pooled) ecotypes of Mimulus guttatus planted in two environments. Less abundant taxa were pooled into 738 

a single group (“Less Abundant Classes”). Taxa which significantly differed between ecotypes at a given 739 

site are indicated by an asterisk. 740 
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 767 

Figure 5. Presence/absence and relative abundance of microbial OTUs in each ecotype rhizosphere and 768 

bulk soil at the inland site. Labels indicate the number of OTUs unique to a given set, as well as the mean 769 

relative abundance of those OTUs across the full dataset. 770 
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 795 

Supplementary Figure 1. Shoot and root biomass of coastal (MRR, SWB) and inland (LMC, OCC) 796 

genotypes of Mimulus guttatus planted in two environments. For shoot and root biomass, genotypes that 797 

significantly differed are indicated by a different letter above the boxplot. 798 

 799 

 800 

 801 

 802 

 803 

 804 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 30, 2019. ; https://doi.org/10.1101/652883doi: bioRxiv preprint 

https://doi.org/10.1101/652883
http://creativecommons.org/licenses/by-nc-nd/4.0/


32 

 805 

 806 

 807 

 808 

 809 

 810 

 811 

 812 

 813 

 814 

 815 

Supplementary Figure 2. Relative abundance (mean ± SD) of the top 20 most abundant bacterial and 816 

archaeal classes in the rhizospheres of coastal (MRR, SWB) and inland (LMC, OCC) genotypes of 817 

Mimulus guttatus planted in two environments. Less abundant taxa were pooled into a single group 818 

(“Less Abundant Classes”). None of the taxa depicted here significantly differed between genotypes at 819 

either site. 820 
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Soil Variable  Coastal  Inland  p-value 

pH  6.08 (0.06)  6.16 (0.07)  0.3978 

Phosphorus (ppm)  17.4 (1.03)  3.4 (0.24)  <0.001 

Potassium (ppm)  49.2 (4.14)  171.4 (7.31)  <0.001 

Calcium (ppm)  788.2 (54.42)  2518.4 (41.06)  <0.001 

Magnesium (ppm)  227.4 (8.8)  1603.8 (72.64)  <0.001 

Copper (ppm)  2.42 (0.18)  21.68 (1.15)  <0.001 

Organic Matter (%)  3.46 (0.26)  4.9 (0.48)  0.02891 

Sodium (ppm)  135.8 (7.62)  50.4 (1.21)  <0.001 

Nitrate (ppm)  0.0 (0.0)  0.6 (0.23)  0.05966 

Ammonium (ppm)  5.26 (0.61)  5.64 (0.69)  0.6914 

Moisture (%)  34.24 (2.08)  17.82 (1.82)  <0.001 

Total N (%)  0.1386 (0.02)  0.1888 (0.02)  0.1067 

Sulfur (ppm)  23.6 (2.06)  17.4 (1.29)  0.03427 

 830 

Supplementary Table 1. Soil characteristics (mean ± SE) for bulk and rhizosphere soils collected from 831 

Mimulus guttatus planted in two environments. 832 
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