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ABSTRACT Taxa that are consistently found across microbial communities are often 18 

considered members of a core microbiome. One common assumption is that 19 

taxonomically identical core microbiomes will have similar dynamics and functions 20 

across communities. However, strain-level genomic and phenotypic variation of core 21 

taxa could lead to differences in how core microbiomes assemble and function. Using 22 

cheese rinds, we tested whether taxonomically identical core microbiomes isolated from 23 

distinct locations have similar assembly dynamics and functional outputs. We first 24 

isolated the same three bacterial species (Staphylococcus equorum, Brevibacterium 25 

auranticum, and Brachybacterium alimentarium) from nine cheeses produced in 26 

different regions of the United States and Europe. Comparative genomics identified 27 

distinct phylogenetic clusters and significant variation in genome content across the 28 

nine core microbiomes. When we assembled each core microbiome with initially 29 

identical compositions, community structure diverged over time resulting in communities 30 
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with different dominant taxa. The core microbiomes had variable responses to abiotic 31 

(high salt) and biotic (the fungus Penicillium) perturbations, with some communities 32 

showing no response and others substantially shifting in composition. Functional 33 

differences were also observed across the nine core communities, with considerable 34 

variation in pigment production (light yellow to orange) and composition of volatile 35 

organic compound profiles emitted from the rinds (nutty to sulfury). Our work 36 

demonstrates that core microbiomes isolated from independent communities may not 37 

function in the same manner due to strain-level variation of core taxa. Strain-level 38 

diversity across core cheese rind microbiomes may contribute to variability in the 39 

aesthetics and quality of surface-ripened cheeses. 40 

 41 

 42 

INTRODUCTION 43 

 Metagenomic surveys of microbial communities often describe the existence of 44 

core microbiomes. Although many definitions currently exist (1), core microbiomes are 45 

generally considered to be the set of microbial taxa that are commonly found across all 46 

(or many) sampled microbial communities. Many microbiomes, from plant roots to 47 

wastewater treatment plants, contain a set of core taxa that are common, highly 48 

abundant, and functionally significant (1–4). These core microbiomes can range from 49 

just a few species to tens or hundreds of species. For example, most human skin 50 

microbiomes are dominated by very similar Corynebacterium, Propionibacterium, and 51 

Staphylococcus species (3, 5, 6).  52 
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 One largely untested assumption is that taxonomically identical core 53 

microbiomes will have similar community assembly patterns and functions. More 54 

specifically, when comparing 16S rRNA gene sequencing surveys, samples that have 55 

very similar compositions of 16S sequences are often assumed to have similar 56 

functional potentials. This assumption underlies the development of taxonomy-based 57 

microbiome diagnostics and tools used to predict function from taxonomic sequences 58 

(7, 8). But independent evolution or coevolution of microbial species within communities 59 

may generate previously underappreciated functional diversity across core 60 

microbiomes. It is widely accepted that microbial genomes are highly variable within 61 

species due to rapid rates of evolution and potential for lateral gene transfer (9–11). 62 

Moreover, we know from decades of work in microbial ecology, physiology, and 63 

genomics that there is considerable within species trait variation in microbes (12–14). 64 

For example, a set of 11 strains of Brevundimonas alba isolated from the same 65 

freshwater habitat had identical 16S rRNA sequences, but highly divergent carbon 66 

utilization profiles and growth rates (15). This intraspecific trait diversity could  be 67 

ecologically significant, but the impact of strain-level diversity on core microbiome 68 

assembly and function is poorly understood (16).  69 

 Cheese rinds provide an ideal opportunity to test whether taxonomically identical 70 

core microbiomes have similar assembly dynamics and functions and more generally 71 

the causes and consequences of core microbiome diversification. Rinds form on the 72 

surfaces of cheeses aged in an aerobic environment and are composed of bacteria, 73 

yeasts, and filamentous fungi (17–19). Our previous work used amplicon and shotgun 74 

metagenomics to describe the bacterial and fungal diversity of 137 cheese rinds from 75 
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the United States and Europe (17). Three bacterial genera - Staphylococcus, 76 

Brevibacterium, and Brachybacterium - were the most frequently detected across 77 

cheese rinds and can be considered a core microbiome. Through variation in abiotic 78 

and biotic selection pressures applied during cheese production and aging, including 79 

abiotic (salinity, pH, resource availability) and biotic (presence of bacterial and fungal 80 

neighbors), core cheese microbiomes have the potential to evolve new genotypes and 81 

phenotypes with divergent functions.     82 

 Here we characterize core microbiome members across cheese rind 83 

communities and determine the consequences of core microbiome diversification for 84 

community assembly and function. We isolated the same three species of bacteria - 85 

Staphylococcus equorum (hereafter Staphylococcus), Brevibacterium auranticum 86 

(hereafter Brevibacterium), and Brachybacterium alimentarium (hereafter 87 

Brachybacterium) - from nine different cheeses made across the United States and 88 

Europe (Fig. 1A-B). These nine sets of three co-isolated bacterial species are referred 89 

to as taxonomically identical core microbiomes throughout the rest of the paper 90 

(Fig. 1C). The three taxa represent the most common species of the three most 91 

abundant bacterial genera in cheese rinds (17, 20). Staphylococcus, Brevibacterium, 92 

and Brachybacterium enter the dairy environment from the raw milk used for cheese 93 

production and therefore have the potential to co-occur and adapt to abiotic and biotic 94 

conditions within local cheese production facilities (21–23). Each species has a distinct 95 

colony morphology (Fig. 1B) making it easy to track composition in experimental 96 

communities. We predicted that intraspecific variation of core microbiome members 97 

across cheese rind communities would cause differences in community structure over 98 
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time. We also predicted that strain-level diversity across core microbiomes would result 99 

in differences in community functions relevant for cheese aging, including pigmentation 100 

of the cheese rind biofilm and the production of aroma compounds. 101 

RESULTS 102 

Variation in genome content across taxonomically identical core microbiomes  103 

 To determine genomic variation across the nine taxonomically identical core 104 

microbiomes, we constructed draft genomes of each strain (Table S1). We used single-105 

nucleotide polymorphisms (SNPs) in the core genes shared across all nine communities 106 

to determine phylogenomic divergence of each of the core communities (24). We then 107 

determined variation in functional gene content across the nine core communities using 108 

PGAP (25). For functional gene content analysis, we focused on accessory genes that 109 

were uniquely present in only one community as these genomic traits may help drive 110 

divergence in core microbiome functions.  111 

Across the nine communities, 8,069 gene clusters were shared among all three 112 

species, making up the core metagenome of these communities. Using SNPs identified 113 

in this core metagenome with PanSeq, clear phylogenomic divergence across the nine 114 

cheese communities was apparent (Fig. 2). C1 was distant from the other eight core 115 

microbiomes, driven by the highly divergent Staphylococcus genome in this community. 116 

The eight other core microbiomes clustered into two broad phylogenomic groups: one 117 

containing C6 and C2, and the other containing the remaining six communities (Fig. 2).  118 

The total number of unique accessory gene clusters across the nine communities 119 

was highly variable, ranging from 246 (C5) to 630 genes (C3) (Fig. 2, Table S2). 120 

Variability in the abundance of accessory gene clusters was most prominent in 121 
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Staphylococcus (ranging from 36-280 unique gene clusters across strains) and 122 

Brevibacterium (ranging from 72-213 unique gene clusters) suggesting that these taxa 123 

have the most dynamic accessory gene content in the cheese rind core metagenome.  124 

Several biological processes were significantly enriched in core communities 125 

(Table S3). C3 had the most diverse enrichment of SEED categories, with 126 

overrepresentation of genes in potassium metabolism, carbohydrates, and DNA 127 

metabolism. Protein metabolism and phages/prophages/transposable 128 

elements/plasmids were overrepresented in C4. In C2, the accessory genome was 129 

significantly enriched with stress response genes. Carbohydrate-related genes were 130 

enriched in the C6 core microbiome. Some of these unique accessory genes could be 131 

functionally significant in the cheese rind environment. For example, Brevibacterium of 132 

C3 has a unique potassium transport system with high similarity to the kdfABCF operon 133 

(Table S2) that is known to play a role in salt stress in bacteria (26).  134 

Collectively these genomic data demonstrate that taxonomically identical core 135 

microbiomes isolated from distinct cheeses are phylogenomically diverse and have 136 

variable genome content. Although the presence/absence of genes does not indicate 137 

actual functional potential of microbes, these comparative genomic data suggested to 138 

us that there could be divergence in how each taxa functioned within each community 139 

and how they responded to perturbations. 140 

Community assembly dynamics vary across taxonomically identical core 141 

microbiomes 142 

 We next determined whether strain-level differences impacted how the cheese 143 

rind communities assemble. A typical community succession in our lab model involves 144 
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the following steps: 1) early colonization of Staphylococcus that can tolerate the low pH 145 

(5.0-5.2) of the cheese curd, 2) growth of Brachybacterium in middle succession, and 3) 146 

dominance by Brevibacterium at the end of succession (17, 27). We predicted two 147 

different potential impacts of strain-level variation on community assembly. In one 148 

scenario, distinct strains of Staphylococcus, Brachybacterium, and Brevibacterium 149 

across the nine communities may vary in genome content or growth rates in isolation, 150 

but these differences may be too minor to impact the dynamics of assembly of the 151 

three-member community. In this case, we expected nearly identical community 152 

composition across the different core microbiomes as strains of each species behaved 153 

similarly. Alternatively, strain-level differences may translate into differences in 154 

interactions with other community members or rates of growth within the community 155 

succession. In this scenario, we expected to observe reproducible changes in the 156 

composition of the communities as they assembled and differences in functional 157 

outputs.  158 

To determine how strain-level differences across communities impact assembly 159 

dynamics, we used in vitro community assembly assays to measure total colony forming 160 

units (CFU) and community composition (relative abundance of each species) (Fig. 3A). 161 

Communities were quantified at three and ten days after inoculating equal amounts of 162 

each of the three bacterial species on the surface of cheese curd agar. Our previous 163 

work demonstrated that this assay mimics in situ community dynamics (17, 27). We 164 

acknowledge that real cheese rind communities would develop over much longer time 165 

scales (weeks to months). In the context of this work, we used the community assembly 166 
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assay in a standardized environment to demonstrate the potential for divergence in 167 

community assembly. 168 

 At both three and ten days of community assembly, there were nearly no 169 

differences in total community abundance as measured by combined CFU of all three 170 

species (Fig 3B, Day 3 ANOVA F8,81 = 2.07, P = 0.05; Day 10 ANOVA  F8,79 = 0.46, P = 171 

0.88). However, there were substantial differences in community composition across the 172 

nine core communities (Day 3 permutational multivariate analysis of variance 173 

[PERMANOVA] F = 4.005, P = 0.0001; Day 10 PERMANOVA F = 5.57, P = 0.0001). 174 

Many communities (C1, C2, C6, C7) were dominated by Brevibacterium at the end of 175 

succession (Fig 3C). Some communities had a relatively even mix of all three species 176 

(C5, C3, C8, and C9). Community C4 had a very dissimilar structure with a high 177 

abundance of Brachybacterium at the end of succession and a low abundance of 178 

Brevibacterium. 179 

 A simple explanation for differences in community composition across the nine 180 

core communities is that individual bacterial strains have different growth abilities alone 181 

and in the community. Those taxa and strains that grow best alone and with the 182 

community present should be the most abundant members of the community. To test 183 

this, we determined total growth of each of the 27 strains on cheese curd agar and 184 

compared growth alone after ten days to growth in the community. All Staphylococcus 185 

species grew well alone and had limited responses to growth in the community (Fig. 186 

3D). Two strains were slightly stimulated by growth in the community (C5 and C7) and 187 

one was slightly inhibited (C6). In contrast to the relatively even growth of the 188 

Staphylococcus, the Brevibacterium strains had variable growth alone across the nine 189 
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core communities. Four of the Brevibacterium strains grew poorly by themselves on 190 

cheese curd agar (C2, C5, C8, and C9) and were strongly stimulated by growth in the 191 

community. One Brevibacterium strain (C4) was inhibited by growth in the community. 192 

All Brachybacterium strains grew well on cheese curd by themselves and were 193 

generally inhibited when grown in the community.  194 

For all three taxa, mean growth alone was a very poor predictor of mean relative 195 

abundance in the community (Staphylococcus r2 = 0.166, P = 0.276; Brevibacterium r2 = 196 

0.001, P = 0.923; Brachybacterium r2 = 0.020, P = 0.716). A somewhat better predictor 197 

of mean relative abundance was how growth of each strain was impacted by the 198 

community (Staphylococcus r2 = 0.672, P <0.01; Brevibacterium r2 = 0.013, P = 0.773; 199 

Brachybacterium r2 = 0.319, P = 0.113). This suggests that interactions between each 200 

of the strains and their communities may contribute to differences in community 201 

composition across the nine core microbiomes. For example, the inhibition of 202 

Brevibacterium and lack of inhibition of Brachybacterium in C4 may partly explain why 203 

this community was the only one to be dominated by Brachybacterium.  204 

 205 

Variation in responses to abiotic and biotic perturbation across core 206 

microbiomes 207 

 Core microbiomes may experience abiotic or biotic perturbations that could alter 208 

community assembly and function. We predicted that if individual core members have 209 

evolved different responses to stress or if the communities have coevolved stress-210 

response mechanisms, taxonomically identical core microbiomes may have divergent 211 

responses to perturbations. Two major perturbations in cheese rind core microbiomes 212 
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are salt and interactions with fungi (17, 20, 28). Salt concentrations are initially high on 213 

the surface of fresh cheese because salt is applied to the cheese surface or via a brine 214 

(29). The salt diffuses into the cheese and eventually equilibrates to around 3% salt in 215 

the rind environment of many cheeses. Core cheese rind microbiomes also experience 216 

interactions with fungi, ranging from yeasts (e.g. Debaryomyces and Galactomyces 217 

species) to molds (Fusarium, Scopulariopsis, and Penicillium species) (17, 20, 30). 218 

Penicillium species are widespread in cheese rinds and can strongly inhibit diverse 219 

cheese rind bacteria (17, 27, 31) potentially through the production of secondary 220 

metabolites or other mechanisms.  221 

To determine how the nine core microbiomes respond to salt and fungal 222 

perturbations, we used the same community assembly assay described above with the 223 

addition of two treatments: a 6% NaCl treatment and a +Penicillium treatment. We used 224 

a strain of Penicillium that was isolated from a natural rind cheese and was previously 225 

demonstrated to inhibit cheese rind bacterial growth (17). Across isolates of all three 226 

taxa, both the 6% NaCl and +Penicillium treatments caused a general decrease in total 227 

growth across all nine core microbiomes with +Penicillium causing stronger growth 228 

inhibition (Fig. 4A). Core microbiomes had variable responses to the two perturbations. 229 

The Penicillium perturbation caused the most significant shifts in community 230 

composition with six out of nine core communities showing significant changes in 231 

community composition (Fig. 4B-C). In some communities, Penicillium caused a major 232 

increase in Brachybacterium relative abundance (C2 and C3). In others, Penicillium 233 

caused an increase in the relative abundance of Staphylococcus (C1, C8, and C9). The 234 

6% salt treatment caused fewer shifts in community composition with only two 235 
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communities (C5 and C6) responding to the higher salt environment. In both cases, 236 

Brevibacterium increased in relative abundance. 237 

Strain-level diversity of cheese rind core microbiomes drives divergent pigment 238 

and aroma production  239 

 Our experiments above demonstrate that strain-level diversity of the core cheese 240 

rind taxa drives divergence in community composition across the nine core 241 

microbiomes. Does this divergence lead to cheeses with different properties that could 242 

be perceived by consumers? Differences in community composition may not 243 

necessarily translate into differences in functional outputs. Many studies of the 244 

microbiome have suggested that communities with different compositions may have 245 

similar functions due to functional redundancy across community members (32–34). 246 

While our comparative genomic analysis above suggested potential functional 247 

differences across the cheese communities, many of the core community functions 248 

were conserved in the core genome and variation in accessory genes may have little 249 

impact on community functions. To determine whether divergence in composition of the 250 

core microbiomes also translated into differences in functional outputs, we measured 251 

two important traits of cheese rind microbiomes: rind color and volatile organic 252 

compound (VOC) production. 253 

Cheese rind bacteria define how the cheese appears to customers through the 254 

production of cellular pigments such as carotenoids or the secretion of pigmented 255 

extracellular metabolites into the curd (35–39). The three bacteria in our model 256 

community produce distinct pigments (Fig. 1B) and shifts in their relative abundance 257 

could translate into changes in rind color. Using a colorimeter, we measured rind color 258 
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after 10 days. Communities had significantly different color development (ANOVA F9,39 259 

= 524.9, P <0.0001), with C3, C4, C6, C7, and C9 having significantly greater a* values 260 

compared to the control, indicating more red pigmentation (Fig. 5A). All communities 261 

had significantly greater b* values compared to the control (ANOVA F9,39 = 139.6, P 262 

<0.0001), with C3 and C4 having the greatest values and appearing the most orange 263 

(Fig. 5A).  264 

As the rind biofilm decomposes fats, proteins, and other components of the 265 

cheese substrate, a diversity of VOCs are produced that are aromatic (40–42). Using 266 

headspace sorptive extraction (HSSE) followed by gas chromatography-mass 267 

spectrometry (GC-MS) analysis (43, 44), we quantified VOCs produced by each 268 

community after 10 days of cheese rind development. Across all nine communities 248 269 

unique VOCs were detected with significant differences in the mean VOCs per 270 

community (Fig. 5B, ANOVA F8,35 = 28.9, P <0.0001). The composition of VOCs across 271 

the nine cheese communities was significantly different (Fig. 5C, PERMANOVA F = 272 

62.38, P < 0.001, Table S4). Using a SIMPER analysis, nine compounds contributed 273 

more than 1% to the average overall Bray-Curtis dissimilarity: benzyl methyl ketone 274 

(27% contribution; odor = floral/fruity), tetramethylpyrazine (19%; odor = 275 

nutty/musty/chocolate/coffee), 2,5-dimethylpyrazine (13%; odor = 276 

nutty/musty/chocolate/coffee), trimethylpyrazine (12%; odor = 277 

nutty/musty/chocolate/coffee), dimethyl disulfide (9%; odor = sulfurous/cabbage/onion), 278 

dimethyl trisulfide (2%; odor = sulfurous/cabbage/onion), 2,6-diethylpyrazine (2%; odor 279 

= nutty/musty/chocolate/coffee), unknown compound 520 (1%; odor = unknown), and 3-280 

hydroxy-2-butanone (1%; odor = sweet/buttery/creamy). C5 had the most distinct VOC 281 
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profile of all communities with high amounts of tetramethylpyrazine, trimethylpyrazine, 282 

and 3-hydroxy-2-butanone and low amounts of the major sulfur compounds, suggesting 283 

a nuttier and more buttery aroma profile. 284 

 285 

 286 

DISCUSSION 287 

 Using taxonomically identical three-member communities isolated from nine 288 

distinct cheeses, our work demonstrates the significance of strain-level variation for 289 

microbiome community assembly and function. Studies of plant and animal 290 

communities have demonstrated that intraspecific genetic and phenotypic diversity can 291 

impact community assembly and function (45–47). Here we demonstrate that 292 

intraspecific diversity of taxonomically identical core microbiome members can impact 293 

the relative abundance of community members as well as functional outputs of the 294 

communities. Many communities did converge on a similar composition despite having 295 

substantial variation in accessory gene content. But several communities had 296 

substantially different structures and functions even though the initial inoculum was 297 

identical. Some communities had relatively even coexistence of the three community 298 

members, while others were dominated by either Brevibacterium or Brachybacterium. 299 

The divergence was not due to stochastic community assembly across replicates as we 300 

observed highly reproducible community structures across replicate experiments. 301 

 The goal of this work was to determine whether taxonomically identical core 302 

microbiomes have similar community dynamics and functions. The limited number of 303 

core communities (nine) makes it difficult to pinpoint specific ecological or genetic 304 
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mechanisms that may be underlying the observed differences across the core 305 

communities. One simple explanation for the dominance of different taxa across the 306 

core microbiomes is differences in growth of individual strains. Our experiments 307 

comparing growth alone versus in the community demonstrates variable growth rates 308 

and interactions with the community for each of the three taxa. However, it does not 309 

fully explain community structure. For example, in C4 where Brachybacterium 310 

dominated, the Brachybacterium strain had similar levels of growth alone and 311 

interactions with community members as other communities where Brevibacterium 312 

dominated (e.g. C5 and C6). Future work exploring the roles of inhibitory and 313 

cooperative interactions will pinpoint specific mechanisms explaining the variable 314 

community assembly dynamics of cheese rind core microbiomes. 315 

 The evolutionary processes that have generated the divergent species and 316 

community-level responses of our core cheese microbiomes are currently unknown. It is 317 

possible that each core microbiome has experienced different evolutionary histories in 318 

each cheese production environment. As new batches of cheese are introduced to a 319 

cave environment, communities may be repeatedly transferred to these new cheeses. 320 

This repeated colonization of the cheese substrate could allow each of the core 321 

microbiomes to evolve collectively as a community in the individual production 322 

environments (48). Each environment may have unique abiotic selection pressures, 323 

including salt concentrations, milk composition, and temperature that could shape the 324 

evolutionary trajectories of these communities. The core microbiomes could also 325 

experience highly divergent biotic environments. For example, these core communities 326 

were isolated from cheeses with variable fungal environments, ranging from yeast to 327 
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filamentous fungi (17). Future work using experimental evolution to attempt to create 328 

divergent communities from an ancestral core microbiome should begin to help us 329 

understand the drivers of core microbiome diversification. 330 

 Our model communities represent the widespread bacterial taxa found in cheese 331 

rinds. We acknowledge that these communities have several constraints that may 332 

impact translation of our results to other systems. First, our communities only had three 333 

bacterial species. While some widespread microbiomes have low species diversity (5, 334 

49), many microbiomes have much higher levels of diversity. Would taxonomically 335 

identical core microbiomes with higher taxonomic diversity also demonstrate divergence 336 

in assembly and functions? With greater potential for higher-order interactions and a 337 

higher number of potential functions with increasing species diversity, we predict that 338 

increasing diversity may lead to even more divergent communities. Our model 339 

communities also used a single strain of each species within each core microbiome. In 340 

constructing our communities, we chose to ignore potential intraspecific variation within 341 

each of the nine core communities and assumed that the isolated taxa represented the 342 

most common genomic type of the species within each of the core communities. 343 

Metagenomic sequencing studies have identified multiple co-existing strains of the 344 

same microbial species (3, 16, 56–60) and these strains may interact with each other 345 

and other community members to impact community composition. It would be 346 

fascinating to see how including intraspecific diversity within core microbiomes may 347 

impact community assembly and function. 348 

In a large amplicon-sequencing study of cheese rind microbiomes, we 349 

demonstrated that taxonomically identical cheese rind communities could form in very 350 
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different cheese-making regions (17). This was surprising given that these cheeses 351 

have divergent sensory properties. Many of these differences could be driven by 352 

ingredients, length of aging, or other cheese processes. Our current findings suggest 353 

that the variability in the qualities of surface-ripened cheeses could also be driven by 354 

strain-level differences across the cheese communities. We acknowledge that our lab 355 

cheese rinds are not real cheeses and only represent potential patterns of cheese rind 356 

community assembly. But it is very likely that the differences observed across the nine 357 

core microbiomes would translate to actual cheese production. Previous studies of 358 

fermented food microbes have pointed out strain-level differences of individual species 359 

used in fermented foods (50–54), but studies demonstrating the functional significance 360 

of strain-level variation at the community level are rare (55). To help preserve the 361 

unique identities of cheeses made in specific regions, it may be helpful for cheese 362 

producers to identify the unique genomic and functional properties of their core 363 

microbiomes and maintain these communities. 364 

More broadly, our work in these model microbiomes may have implications for 365 

both the design and management of core microbiomes in other systems. First, our work 366 

demonstrates that taxonomic profiling of microbiomes may not provide useful predictors 367 

of assembly dynamics and functions. Amplicon based approaches of sequencing 368 

microbiomes, such as using 16S rRNA gene sequencing, only capture high-level 369 

taxonomic diversity. As we have demonstrated, taxonomically similar communities can 370 

have very different dynamics. Fortunately, microbiome sequencing studies are moving 371 

toward shotgun-metagenomic approaches that could capture the strain-level diversity 372 

that we observed across our nine communities (3, 16, 56–60). Our work also suggests 373 
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that it might be hard to predict microbiome responses to disturbances using taxonomic 374 

profiles alone. For example, across individuals that have similar skin core microbiomes, 375 

responses to environmental stresses such as antibiotics may depend on the specific 376 

strains and genomic content of the core communities. Finally, when designing synthetic 377 

microbiomes, our work suggests that the individual ‘parts’ (strains of species) may alter 378 

desired outcomes.  379 

 380 

METHODS 381 

Isolation and maintenance of core microbiome members 382 

Frozen glycerol stocks of communities initially characterized using metagenomic 383 

sequencing (Wolfe et al. 2014) were plated out on plate count agar with milk and salt 384 

(PCAMS) to culture bacteria. Colonies with morphotypes that had the appearance of 385 

one of the three target species were streaked from single colonies. Staphylococcus 386 

equorum colonies are usually fast-growing, smooth, medium-sized, flat, and either white 387 

or light golden in color. Brevibacterium auranticum colonies are usually slow-growing, 388 

medium-sized, and orange. Brachybacterium alimentarium colonies have medium 389 

growth rates, are large and flat, and are yellow-green in color. Initial identification of the 390 

isolates was done using the 16S rRNA region using primers 27f and 1492r.  391 

Comparative genomics 392 

The genome of each bacterial strain was sequenced, assembled, and annotated 393 

as we previously described for Staphylococcus species (27). Briefly, DNA was extracted 394 

using MoBio PowerSoil DNA extraction kits from pure cultures grown for one week on 395 

PCAMS. Approximately 1 µg of purified gDNA was sheared using a Covaris S220 to 396 

approximately 450 base pair lengths and was used as the input for a New England Biolabs 397 
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NEBNext Ultra DNA Library Prep Kit for Illumina. Libraries were spread across multiple 398 

sequencing lanes with other projects and were sequenced using 100 base-pair, paired-end 399 

reads on an Illumina HiSeq 2500. Approximately 10 million reads were sequenced for each 400 

genome. Failed reads were removed from libraries and reads were trimmed to remove low 401 

quality bases and were assembled to create draft genomes using the de novo assembler in 402 

CLC Genomics Workbench 8.0. Assembled genomes were annotated using RAST(61). All 403 

genome assemblies have been deposited in NCBI (accession numbers in Table S1).  404 

To identify phylogenomic relationships between each of the nine core 405 

communities, we used PanSeq (24) to identify SNPs across the core genome of each of 406 

the nine genomes for each of the three species. A SNP file for each species from each 407 

community was then concatenated together to create a community SNP file. RAxML 408 

8.2.11 (with GTR GAMMA nucleotide model and 100 bootstrap replicates) was used to 409 

create a maximum likelihood phylogeny of the nine communities using the SNP file. 410 

To compare the presence and absence of genes across strains and species, 411 

core and accessory genes were identified by assigning protein-coding sequences to 412 

functionally orthologous groups using the MultiParanoid method of the PanGenome 413 

Analysis Pipeline (PGAP) (25). Species-to-species orthologs were identified by pairwise 414 

strain comparison using BLAST with PGAP defaults: a minimum local coverage of 25% 415 

of the longer group and a global match of no less than 50% of the longer group, a 416 

minimum score value of 50, and a maximum E value of 1E−8. Multistrain orthologs were 417 
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then found using MultiParanoid (80). Enrichment of SEED subsystem categories in 418 

each of the nine core communities was determined using Fisher’s exact test with false-419 

discovery rate correction. 420 

Community assembly assays 421 

To measure assembly of the distinct core communities, approximately 20,000 422 

CFU of each species was inoculated on the surface of 150 µL of cheese curd agar (3% 423 

salt) distributed into replicate wells of a 96-well plate, as previously described (17, 27). 424 

Communities were incubated aerobically at 24°C in the dark, and harvested at 3 and 10 425 

days after inoculation, which represent early and late community succession (17). To 426 

determine community composition of individual replicate communities, the community 427 

was pestled in 600 µL of 1X phosphate buffered saline, serially diluted, and plated onto 428 

PCAMS. PCAMS plates were incubated for a week before counting the abundance of 429 

each bacterial species. To measure growth alone, the same density of CFU of each 430 

taxa alone was inoculated into wells. Five technical replicates of each community were 431 

performed in each of two experimental replicates. 432 

Salt (6%) and fungal (+Penicillium) perturbation experiments were conducted 433 

using the same community assembly assay, but with 6% salt cheese curd agar or with 434 

the addition of Penicillium. Penicillium strain #12, isolated from a natural rind cheese in 435 

Vermont, was used in these experiments. We used this strain because it was isolated 436 

from a cheese where the Staphylococcus, Brachybacterium, and Brevibacterium were 437 

also found and it was used in previous experiments in our lab (27, 31). The exact 438 

species identification of this mold is unknown, but it belongs to section Fasciculata with 439 
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other cheese Penicillium species. Penicillium was inoculated at an initial density of 2000 440 

CFUs. Community composition in these experiments was determined as described 441 

above except that cycloheximide was added to PCAMS plates used for bacterial 442 

community isolation to eliminate fungal growth. 443 

Color and VOC analyses 444 

To measure rind color and VOC production, we constructed larger versions of 445 

each of the nine core communities on cheese curd agar poured into Petri dishes (60mm 446 

wide) to allow for a larger sampling area. To construct the rind communities, 600,000 447 

CFU of each species was inoculated across the surface of the cheese curd agar. 448 

Experimental cheeses were incubated for 10 days in the dark at 24°C before color and 449 

VOC analyses. 450 

To measure differences in color of the experimental cheeses, we used a CTI 451 

A6CTI10 spectrocolorimeter. This handheld colorimeter uses the CIELAB color space to 452 

quantify both lightness (L*) and two chromatic coordinates (a* and b*). Similar 453 

colorimeters have been used to quantify cheese rind color (62). Higher values of a* 454 

(a*+) indicate red colors while lower values (a*-) indicate green colors. Higher values of 455 

b*(b*+) indicate yellow while lower values (b*-) indicate blue colors. Colorimeter 456 

readings were taken by placing a 30mm Petri dish lid upside down on the middle of the 457 

surface of the rind and then placing the colorimeter on the Petri dish surface. This was 458 

done to protect the colorimeter from the sticky rind surface and to avoid cross-459 

contamination across replicates.  460 

Cheese volatiles were collected from experimental cheese rinds by headspace 461 

sorptive extraction (HSSE) using a polydimethylsiloxane (PDMS) coated magnetic stir-462 
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bar. HSSE is an equilibrium-driven, enrichment technique in which 10mm long x 0.5 mm 463 

thick stir-bars, TwisterTM (Gerstel), were suspended 1 cm above the sample by placing a 464 

magnet on the top side of the collection vessel cover. Five replicates of each culture 465 

were sampled for four hours. After collection, the stir-bar was removed and spiked with 466 

10 ppm ethylbenzene-d10, an internal standard obtained from RESTEK. The internal 467 

standard was used to determine the relative concentration of each compound. Organics 468 

were introduced into the gas chromatograph/mass spectrometer (GC/MS) by thermal 469 

desorption. In addition to Twister blanks, analysis of the cheese curd agar media was 470 

made to assess background interferences. Compounds present at equal or higher 471 

relative concentrations in the media compared to the samples were removed from the 472 

data. 473 

Analyses were performed using an Agilent 7890A/5975C GC/MS equipped with 474 

an automated multi-purpose sampler (Gerstel). The thermal desorption unit (TDU, 475 

Gerstel) provided splitless transfer of the sample from the stir bar into a programmable 476 

temperature vaporization inlet (CIS, Gerstel). The TDU was heated from 40°C (0.70 477 

min) to 275°C (3 min) at 600°C/min under 50ml/min of helium. After 0.1 min the CIS, 478 

operating in solvent vent mode, was heated from -100°C to 275°C (5 min) at 12°C/s. 479 

The GC column (30 m x 250 µm x 0.25 µm HP5-MS, Agilent) was heated from 40°C (1 480 

min) to 280 °C at 5°C/min with 1.2 mL/min of constant helium flow.  The MS was 481 

scanned from 40 to 350 m/z, with the EI source at 70 eV. A standard mixture of C7 to 482 

C30 n-alkanes (Sigma–Aldrich) was used to calculate the retention index (RI) of each 483 

compound in the sample. 484 
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 The Ion Analytics spectral deconvolution software (Gerstel) was used to analyze 485 

the GC/MS data (63, 64).   A target/nontarget data analysis approach was employed 486 

where previously constructed databases are used to identify target compounds in the 487 

sample based on spectra deconvolution of their irons and abundances. Once found, 488 

each compound’s mass spectrum was subtracted from the peak’s total ion current (TIC) 489 

signal. Each resulting peak scan was inspected to determine if residual ion signals were 490 

constant (±20%) or approximated background noise. If constant, the software recorded 491 

the retention time, mass spectrum, 3-5 target ions and their relative abundances into the 492 

database. Finally, sample data were compared to reference compound data in the 493 

database, viz., RI and MS (positive identification), or to commercial libraries and 494 

literature (tentative identification). Once assigned, the database was annotated to 495 

include compound name, CAS#, and RI. If neither positive nor tentative identification 496 

was possible (an unknown), a numerical identifier was used to identify the compound. 497 

The database was annotated to include the same GC/MS information described above. 498 

In contrast, if peak scans differed (an unresolved peak), the software searched for 3-5 499 

invariant scans, averaged their spectra, and then subtracted the average spectrum from 500 

the TIC signal. This process was repeated until the residual signal at each scan 501 

approximated background noise. If peak signals failed to meet the user-defined criterion 502 

below, no additional information was obtained.  503 

Statistical Analyses 504 

To determine differences in community composition with all core microbiome 505 

experiments, PERMANOVAs with Bray-Curtis dissimilarity were used. ANOVA on log-506 

transformed data was used to determine significant differences between total CFU 507 
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across experiments. In the cases of unequal variances (the individual taxa growth in 508 

perturbations), Kruskal-Wallis tests were used. To determine relationships between 509 

relative abundance and growth of individual strains, linear regressions were used. To 510 

compare total growth alone to growth in the community, t-tests were used. Differences 511 

in a* and b* values in the pigmentation assay were determined using ANOVA. To 512 

determine differences in VOC composition across the nine communities, 513 

PERMANOVAs on Bray-Curtis dissimilarity of relative peak area were used. A SIMPER 514 

analysis of relative peak area of VOCs was used to identify the contributions of each 515 

VOC to Bray-Curtis dissimilarity.  516 

 517 
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FIGURES and FIGURE LEGENDS: 714 

 715 

Figure 1: Isolation of nine taxonomically identical cheese rind core microbiomes. (A) The 716 
same three bacterial species - Staphylococcus equorum, Brevibacterium auranticum, and 717 
Brachybacterium alimentarium - were isolated from a set of 137 cheese rinds that were 718 
previously described using 16S rRNA gene amplicon sequencing (Wolfe et al. 2014). Each 719 
column represents average relative abundance data for one cheese rind microbiome. Data are 720 
clustered using an UPGMA tree based on Bray-Curtis dissimilarity. (B) The three core 721 
microbiome species have distinct colony morphologies. (C) Graphical representation of the nine 722 
core microbiomes as used throughout the manuscript. 723 
 724 
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 725 

 726 
 727 
Figure 2: Accessory genome of the cheese rind core microbiomes. Heatmap indicates 728 
variation in the abundance of unique accessory gene clusters across the three individual taxa 729 
(top) and across SEED functional categories (bottom). Phylogeny is a maximum likelihood 730 
consensus tree constructed from SNPs identified across the nine core communities. Values are 731 
bootstrap support.  732 
 733 
 734 
 735 
 736 
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Figure 3 (previous page): Divergent community assembly across the nine cheese rind 738 
core microbiomes. (A) Experimental setup. Each set of three species from each core 739 
microbiome was inoculated into wells of 96-well plates. Communities were harvested three and 740 
ten days after inoculation. (B) Total community abundance as measured by CFUs of each of the 741 
nine core microbiomes. n=5 across two experimental replicates. (C) Relative abundance of 742 
each of the three bacterial species across each of the nine core microbiomes. Each column 743 
represents a replicate. I1 and I2 indicate the input compositions for the two independent 744 
experimental replicates. In the Day 3 and Day 10 datasets, the first five columns are from one 745 
experimental replicate and the second five are from a second experimental replicate. Blank 746 
columns represent replicates that were lost due to contamination. (D) Growth of each of the 747 
community members alone (open circles) and in the presence of the community (closed black 748 
squares). Each point represents the mean CFUs of the taxa and the error bars represent one 749 
standard deviation of the mean. Asterisks indicate significant differences between growth alone 750 
and growth in the community (n=5, t-test, p < 0.05).  751 
  752 
 753 
 754 
 755 
 756 
 757 
 758 
 759 
 760 
 761 
 762 
 763 
 764 
 765 
 766 
 767 
 768 
 769 
 770 
 771 
 772 
 773 
 774 
 775 
 776 
 777 
 778 
Figure 4 (next page): Response of the nine cheese rind core microbiomes to abiotic and 779 
biotic perturbations. (A) Responses of each taxa to abiotic (6% salt) and biotic (Penicillium) 780 
disturbance. Each point represents the mean CFUs of the taxa in that community at Day 10 781 
(n=5) and the error bars represent one standard deviation of the mean. Asterisks indicate 782 
significant difference in growth compared to control based on Kruskal-Wallis test (p<0.05).  (B) 783 
Mean community composition in the three treatments. Asterisk indicates significant difference in 784 
community composition compared to control based on PERMANOVA. (C) Principal coordinates 785 
analysis of replicate communities in the three treatments. PCoA is based on Bray-Curtis 786 
dissimilarity of absolute abundances of each community member. 787 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 7, 2019. ; https://doi.org/10.1101/652768doi: bioRxiv preprint 

https://doi.org/10.1101/652768


36 

 788 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 7, 2019. ; https://doi.org/10.1101/652768doi: bioRxiv preprint 

https://doi.org/10.1101/652768


37 

 789 
 790 
Figure 5: Functional diversity across nine cheese rind core microbiomes. (A) Color 791 
profiles of experimental rind communities after ten days of rind development. Each dot 792 
represents a replicate cheese rind community (n=5). Boxes in legend are representative photos 793 
of the experimental cheese surface from each community. (B) Total volatile organic compound 794 
(VOC) diversity across the nine cheese communities. Each point represents the mean number 795 
of VOCs detected in each community and the error bars represent one standard deviation of the 796 
mean (n=5). Core communities that share the same letter are not significantly different from one 797 
another based on Kruskal-Wallis test (p<0.05). (C) Non-metric multidimensional scaling of total 798 
VOC profiles. Each dot represents a replicate cheese rind community (n=5). (D) Relative 799 
abundance of VOCs that contributed the most to the Bray-Curtis dissimilarity across 800 
communities (as determined by SIMPER analysis). Because total concentrations of VOCs are 801 
highly variable across different compounds, visualization was simplified by relativizing the 802 
relative peak area from GC-MS chromatograms within each VOC to the highest concentration 803 
detected for that VOC. Data are clustered together by total VOC profiles using a UPGMA tree. 804 
Asterisks indicate clusters with > 70% bootstrap support.  805 
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SUPPLEMENTARY TABLES: 806 

 807 
Table S1: Overview of bacterial strains and genomes used in this study 808 
 809 
Table S2: Distribution of gene clusters in the three taxa from each of the nine core 810 

microbiomes. When a cell is filled, it indicates that a predicted gene belongs to a gene 811 
cluster (row). In some communities, multiple genes belong to a single gene cluster. The 812 

identifiers in the cells are the gene IDs of each of the genomes based on the RAST 813 
annotation of that genome.  814 
 815 
Table S3: Enrichment of SEED subsystem categories in core microbiomes based on 816 

Fisher's exact test. 817 
 818 
Table S4: Relative peak area of each volatile organic compound detected from the 819 

experimental cheese communities. The "_1, _2, etc." indicates replicates within each of 820 
the nine core communities. 821 
 822 
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