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13 Abstract

14 A medical student learning to perform a laparoscopic procedure as well as a recently paralyzed user of a 

15 powered wheelchair must learn to operate machinery via interfaces that translate their actions into 

16 commands for the external device. Mathematically, we describe this type of learning as a deterministic 

17 dynamical process, whose state is the evolving forward and inverse internal models of the interface.  The 

18 forward model predicts the outcomes of actions while the inverse model generates actions designed to 

19 attain desired outcomes. Both the mathematical analysis of learning dynamics and the performance 

20 observed in a group of subjects demonstrate first-order exponential convergence of the learning process 

21 toward a particular state that depends only on the initial inverse and forward models and on the supplied 

22 sequence of targets. Noise is not only present but necessary for the convergence of learning through the 

23 minimization of the difference between actual and predicted outcomes.

24 Author summary

25 Several studies have suggested that as we learn a new skill our brain forms representations, or “internal 

26 models”, of the skill and of the environment in which we operate. Theories of motor learning postulate that 

27 the brain builds forward models that predict the sensory consequences of motor commands, and inverse 

28 models that generate successful commands from planned movements. We test this hypothesis taking 

29 advantage of a special interface that generates a novel relation between the subject’s actions and the 

30 position of a cursor on a computer monitor, thus allowing subjects to control an external device by 

31 movements of their body. We recorded the motions of the body and of the cursor, and obtained estimates of 

32 both forward and inverse models.  We followed how these estimates evolved in time as subjects practiced 

33 and acquired a new skill. We found that the description of learning as a simple deterministic process driven 

34 by the sequence of targets is sufficient to capture the observed convergence to a single solution of the 

35 inverse model among an infinite variety of alternative possibilities. This work is relevant to the study of 

36 fundamental learning mechanisms as well as to the design of intelligent interfaces for people with paralysis.

37 Introduction

38 A distinct feature of the neuromotor system is the large number of muscles and degrees of freedom 
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39 allowing it to attain a specific motor goal in a number of different ways [1]. This is both a resource and a 

40 computational challenge: while this motor redundancy provides the brain with a multitude of options, an 

41 enabling feature of motor dexterity, it also results in a family of ill-posed problems characterized by a lack 

42 of uniqueness in their solutions [2, 3]. Here, we consider the challenge posed by redundancy from the 

43 perspective of learning. How does the central nervous system learn to perform a novel task when multiple 

44 alternative solutions are available?  This question acquires clinical relevance when a person suffering from 

45 loss of limb or some form of paralysis must reorganize the still available mobility to recover quality of life 

46 and independence through the operation of assistive devices – such as wheelchairs or robotic assistants – 

47 and dedicated human-machine interfaces. 

48 In the last two decades, studies of motor learning [4-8] have established that the adaptation of limb 

49 movements to external perturbing forces takes place through the gradual formation of an internal 

50 representation, or "internal model" of these forces.  To be predictable, the forces cannot be random 

51 disturbances, but must have a deterministic structure expressed in relation to the motion of the body and to 

52 the brain’s commands[6-9]. Donchin and Shadmehr [10] and others [11-13] have proposed to represent the 

53 development of such an internal model as the evolution of a dynamical system. 

54 Internal models are of two types: forward and inverse. Forward models owe their name to their predictive 

55 representation of the process that transforms action commands into their sensory consequences. Inverse 

56 models reverse the direction of this process by deriving action commands from desired sensory outcomes. 

57 Earlier theoretical work by Jordan and Rumelhart [14] considered how the learning of actions can be 

58 viewed as the concurrent  learning of forward and inverse models of actions. Here, we extend this approach 

59 to the learning of a novel map established by a body machine interface (BoMI) that translates movements 

60 of the upper body (shoulders and arm) into movements of an external object that users must guide to a set 

61 of target locations. This is an assistive tool for people that have lost the use of their hands after injury to the 

62 cervical spinal cord. We investigate how unimpaired subjects become skilled at controlling the external 

63 object via the BoMI. Our findings reveal that learning proceeds through the concurrent evolution of 

64 coupled forward and inverse models of the body-to-object mapping established by the BoMI. The validity 

65 of this description is tested by comparing the predicted evolution of motor performance with the learning 

66 performance observed in a group of human subjects. We compared the forward and inverse models derived 
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67 from simulated learning dynamics with forward and inverse models estimated from motion data at different 

68 stages of learning.  

69 Results  

70 A model of learning while practicing control via a body-machine interface

71 We investigated how users of a body machine interface learn to reorganize or "remap" their body motions 

72 as they practice controlling an external object through the BoMI. The controlled object could be a 

73 wheelchair, a robotic assistant, or a drone [15-17]. Here we focus on the control of a computer cursor 

74 whose two-dimensional coordinates determine its location on a computer screen. Effectiveness in cursor 

75 control is the first and most common benchmark for brain-based interfaces [18-20], as the ability to control 

76 two-dimensional position is readily applied to a variety of tasks (e.g., an action performed via a joystick, 

77 entering computer text, etc.). We consider interfaces in which a linear mapping associates the body motion 

78 signals to the coordinates of the external object. Importantly, there is an imbalance between the 

79 dimensionality of the task space and that of the body signals, the latter being larger. Thus, any position of 

80 the controlled object corresponds to many (potentially infinite) different body configuration signals. The 

81 BoMI matrix H establishes a linear map between these two spaces; H has as many rows as signals are 𝐾 

82 needed to control the external object, and as many columns  as there are body signals. Not being square, 𝑆

83 the matrix H does not have a unique inverse. But there exist infinite “right inverses” that combined with H 

84 yield the x  identity matrix in the task space of external control signals. Each such right inverse 𝐾 𝐾

85 transforms a desired position of the controlled object in one particular set of values for the body signals. 

86 We consider users to be competent when they are able to move successfully their body in response to a 

87 presented target for the controlled object. Mathematically, we consider this as finding one right inverse G 

88 of the mapping H, out of a multitude of possible and equally valid choices. Current theories and 

89 experimental observations [10] suggest that learning is a dynamical process in which the learners modify 

90 their behavior based on the errors observed at each iteration of a task. In the kinematically redundant 

91 conditions considered here, learning is problematic because a given low-dimensional task error signal has 

92 multiple representations in the high-dimensional body space. Therefore, we considered an error surface 

93 defined by the squared task error in the space of the elements of the target-to-body map  adopted by a 𝐺
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94 learner, where  is the learner’s inverse model of the body-to-cursor mapping  established by the BoMI. 𝐺 𝐻

95 We implemented our learning model based on the hypothesis that the learners update the map  by moving  𝐺

96 along this error surface, following the line of steepest descent determined by the gradient of the squared 

97 error with respect to the elements of . This error gradient depends on several variables; some can be 𝐺

98 directly observed by the learner, such as the error made in attempting to reach a given target position of the 

99 external device. However, the error gradient also depends upon the elements of the interface map , which 𝐻

100 the learner cannot be assumed to know. Therefore, gradient descent learning of the inverse model requires a 

101 concurrent learning of the forward model. The latter requires a different error surface, since the forward 

102 map relates body motions to the consequent motion of the controlled object. Forward model learning does 

103 not require a target position for the controlled object, as the relevant error in this case is the difference 

104 between predicted and observed position of the controlled object. The squared prediction error defines an 

105 error surface in the space of the elements of the estimated forward map . 𝐻

106 Learning is thus described through two first order dynamical processes determined by two state equations. 

107 A forward learning process:

108               (1)𝐻(𝑛 + 1) = 𝐻(𝑛) + 𝜀(𝑝(𝑛) ‒ 𝐻(𝑛)𝑞(𝑛))𝑞𝑇(𝑛)

109 and an inverse learning process

110                 (2)𝐺(𝑛 + 1) =  𝐺(𝑛) ‒ 𝜂 𝐻(𝑛)𝑇 𝑒(𝑛) 𝑢𝑇(𝑛)

111 For details on the derivation of these equations, see Methods. The forward and inverse models are 

112 effectively the states of the respective processes, and the -th iteration of the learning process results in 𝑛

113 state variables  and .𝐻(𝑛) 𝐺(𝑛)

114 Equation (1) updates the subject’s estimate of the forward model  that transforms -dimensional body 𝐻 𝐻 𝑆

115 configurations q into -dimensional positions p of the controlled object.  The term in parentheses is the 𝐾

116 prediction error between actual and predicted positions of the controlled object. The concurrent process 

117 described by Equation (2) is the learning of the inverse model  that the subjects use to map the target 𝐺

118 object position onto body signals. The reaching error that guides this process is the 𝑢(𝑛) 𝑒(𝑛) = (𝑝(𝑛) ‒ 𝑢(𝑛)) 

119 difference between actual and desired positions of the controlled object. Two possibly different learning 

120 rates, and , provide inverse time constants for the respective dynamical processes. 𝜀 𝜂
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121 Since we focus on the case in which forward and inverse learning are carried out concurrently, naïve users 

122 are immediately presented with the reaching task, and as they practice they observe both the reaching error 

123 and the prediction error. Equations (1) and (2) are coupled through  and through a third equation that 𝐻(𝑛)

124 describes the body signals currently adopted to reach the target position:

125          (3)𝑞(𝑛) = 𝐺(𝑛)𝑢(𝑛)

126 This apparently innocuous interaction has potentially harmful effects on the convergence of the coupled 

127 dynamics, as the second term in the gradient contribution to Equation (1) includes a quadratic factor in   𝑞(𝑛)

128 and thus in . This contribution may result in local minima, a problem avoided by adding noise to 𝐺(𝑛)

129 Equation (3).  

130 We validated our approach with six healthy subjects that learned to control the two-dimensional movement 

131 of a cursor on a monitor using eight signals from their upper body motions (shoulders and upper arms on 

132 both sides). In these experiments, =8 and =2, and the state space of the combined forward-inverse 𝑆 𝐾

133 learning was 2x16=32- dimensional. 

134 Dynamics of learning in human subjects

135 We monitored the learning process through two scalar metrics: RE, the L2 norm of the reaching error (the 

136 difference between actual and target location of the cursor at the end of the reaching movement), and IME, 

137 the spectral norm of the inverse model error (the difference between the identity matrix and the product 

138 between the interface map and the current estimate of the inverse model). The spectral norm of a 𝐻 𝐺(𝑛) 

139 matrix, indicated here by  to emphasize its analogy with the L2 norm of a vector, is the maximum ‖ ∙ ‖

140 singular value of the matrix. We estimated  from target and body signal data by least squares fit on 𝐺(𝑛)

141 Equation (3). The elements of  were estimated using data from 12 trials: trial  and its 11 preceding 𝐺(𝑛) 𝑛

142 trials. Overlapping moving windows that included 12 trials were shifted by one trial at each iteration. 

143 In the experiment, each subject practiced with a personalized body-to-cursor map derived from the statistics 

144 of its own freely produced upper body motions (see calibration procedure in Methods). With increasing 

145 number of practice trials, their RE decreased to values closer to the target radius (1 cm, Fig 1a). The 

146 learning process took over one hundred steps (172 ± 32 trials, mean ± SEM) before reaching asymptotic 

147 performance (Fig 1), identified as the time when the norm of the reaching error was smaller than the radius 

148 of the target. Similarly, the matrix  converged to a generalized inverse of the body-to-cursor map (Fig 𝐺(𝑛)
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149 1b). Although the subjects explored a number of different body configurations while learning how to 

150 control the cursor, in the end they found a stable movement pattern and built a representation of the inverse 

151 model . Note the asymptotically small variations in the acquired  with about 10% of  (Fig 2). 𝐺 𝐺, ‖Δ𝐺‖ ‖𝐺‖

152 For each subject, both RE and IME errors decreased with time following a trend captured by an exponential 

153 curve (Equation (21)). The corresponding learning rates, given by the inverse of the time constant of the 

154 exponential fits, are shown in Table 1 for each subject. Note the great similarity of these two rates for any 

155 given subject. 

156

Fig 1. Subjects learn to use the body-machine interface. Data for the six subjects enrolled in the study (S1- S6). 
(a) Temporal evolution of the norm RE of the reaching error calculated over a moving window that includes the 
current and the 11 preceding trials. (b) Temporal evolution of the norm IME of the inverse model error. This 
includes the calculation of the inverse model ; the latter was obtained by least squares fit on Equation (3) from 𝑮(𝒏)

target and body signal data for trial and the 11 trials preceding it  𝒏 .

157   

Fig 2.  Temporal evolution of the changes in the inverse map . Changes in the inverse map as a function of 𝑮(𝒏)

trial number , quantified by see Equation (18) in Methods), for the six 𝒏 ‖𝚫𝑮(𝒏)‖ = ‖𝑮(𝒏) ‒ 𝑮(𝒏 ‒ 𝟏)‖ ‖𝑮(𝒏)‖(
subjects enrolled in the study (S1-S6).

158

Table 1. Exponential rate used to best approximate the decay of RE ( ) and IME ( ) with , respectively. 𝝀𝑹𝑬 𝝀𝑰𝑴𝑬 𝒏
The R2 values quantify the goodness-of-fit of the exponential model for each subject to the corresponding 
experimental data. 

Subject RE IME
𝜆𝑅𝐸 𝑅 2

𝑅𝐸 𝜆𝐼𝑀𝐸 𝑅 2
𝐼𝑀𝐸

S 1 0.036±0.003 0.87 0.036±0.004 0.78
S 2 0.010±0.001 0.85 0.006±0.001 0.86
S 3 0.015±0.003 0.73 0.014±0.003 0.75
S 4 0.016±0.003 0.80 0.022±0.004 0.80
S 5 0.021±0.001 0.87 0.020±0.002 0.86
S 6 0.029±0.002 0.93 0.029±0.002 0.90

159 Learning dynamics: model vs. human subjects 
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160 To build a model for each subject, we used the subject-specific map  and the subject-specific sequence of 𝐻

161 targets used for training. The learning rate  for the inverse model (Equation (2)) was taken to be equal to 𝜂

162 the subject-specific rates reported in Table 1 (see Methods). The learning rate for the estimation of 𝜆𝑅𝐸 𝜀 

163 the forward model (Equation (1)), and the amplitude of the noise added to the inference of body motions 𝜎 

164 (Equation (3)) followed from an optimization procedure (see Methods). Table 2 reports the values of these 

165 three parameters for each subject. We let the model evolve until the norm of the reaching error was smaller 

166 than 1 cm, as the subject’s performance reached a plateau when the cursor reached the target. 

167 We then tested how well our model captured the learning dynamics of each subject. As shown in Fig 3, 

168 these subject specific models were able to predict quite well the individual learning curves. Both the RE 

169 and the IME estimated from the model follow the time evolution extracted from the real experimental data. 

170 Correlation coefficients (Table 3) quantify the similarity between the simulated and actual temporal 

171 evolution of RE and IME during learning. 

172

Fig 3. Modeling human learning. (a) Temporal evolution of the norm RE of the reaching error as a function of 
trial number , calculated from the data of six subjects (black) and from the respective models (blue). (b) Temporal 𝒏
evolution of the norm IME of the inverse model error as a function of trial number , estimated from the 𝒏
experimental data (black) and from the model simulation (blue). Both metrics are calculated over a moving window 
that encompasses trial  and its preceding 11 trials𝒏 .

Table 2. Subject-specific model parameters. The learning rates  and  correspond to the inverse and the forward 𝜼 𝜺
model, respectively;  is the amplitude of the Gaussian noise added to the inference of target-specific body 𝝈
motions.

Subject 𝜎 𝜀 𝜂
S 1 0.7335 0.1774 0.036
S 2 0.6587 0.2463 0.010
S 3 0.7395 0.1924 0.015
S 4 0.7241 0.2178 0.016
S 5 0.8278 0.1540 0.021
S 6 0.7794 0.1937 0.029
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173

Table 3. Correlation coefficients (R2) between the temporal evolutions of the norm RE of the reaching error and 
the norm IME of the inverse model error recorded during the experiment, and the temporal evolution of these 
two scalar error metrics as predicted by the model. 

Subject Correlation RE Correlation IME
S 1 0.93 0.87
S 2 0.90 0.90
S 3 0.78 0.78
S 4 0.77 0.70
S 5 0.98 0.97
S 6 0.89 0.83

174 The model also allows us to compute a current estimate of the forward map  as acquired by the subjects 𝐻

175 while practicing. We quantified the similarity between the estimated  and the BoMI map  at each 𝐻(𝑛) 𝐻

176 iteration of the learning dynamics by using the forward model error (FME), defined as the spectral norm of 

177 the difference between  and , normalized by the spectral norm of  see Equation (19) in Methods). 𝐻 𝐻(𝑛) 𝐻 (

178 This error in the estimate of the map that transforms body movements into cursor movement was 

179 responsible for the cursor prediction error, the difference between the actual and the expected position of 

180 the cursor. We monitored the norm PE of the prediction error and the FME as a function of trial number  𝑛

181 (Fig 4). The estimate  converged toward the actual forward map , resulting in near zero asymptotic 𝐻(𝑛) 𝐻

182 values for both PE and FME (Fig 4).

183

Fig 4. Subjects learn the forward model. (a) Temporal evolution of the norm PE of the prediction error as a 
function of trial number . (b) Temporal evolution of the estimate of the forward map, quantified by FME 𝒏 =

, as a function of trial number . Data are shown for each subject-specific model. Only the first ‖𝑯(𝒏) ‒ 𝑯‖ ‖𝑯‖ 𝒏
100 iterations of the dynamics are presented, since the asymptotic regime has by then been reached for both metrics. 

184 The dynamics of the learning model captured the errors in the low-dimensional task space of the controlled 

185 cursor as well as the history of body signals generated by the subjects in response to the successive targets 

186 (Fig 5 and Table 4); the sole exception was Subject 4, whose accuracy in reaching the target position was 

187 smaller and characterized by a higher level of variability (Fig 3a). The body and cursor signals recorded 

188 during the experiment and predicted by the model were not very similar at the beginning of training, but 

189 they quickly converged and tended to overlap by the time RE and IME reached their asymptotic condition 

190 (Fig 5, Table 4). These results support the conclusion that a model of learning based on simple gradient 

191 descent over quadratic error surfaces captures the formation of forward and inverse representations of the 
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192 map established by the body-machine interface.

193

Fig 5. Reconstruction of body and cursor signals. Comparison between real (black) and simulated (blue) data 
for subject 6. The top panel presents the values of the eight body signals {q1,…,q8}, i.e., the (x,y) coordinates of 
four markers (shoulders and upper arms on both sides) in the image plane of the associated cameras; the bottom 
panel shows the (x, y) coordinates of the cursor {p1, p2}in the reference frame of  the computer monitor.

 

194

Table 4. Correlation coefficients (R2) between the temporal evolution of the body signals {q1, …, q8} and the 
cursor coordinates {p1,p2} recorded during the experiment, and the temporal evolution of these quantities as 
predicted by the model. The comparison was performed during the last 100 trials.

Subject Body space Cursor space
S 1 0.90 0.96
S 2 0.90 0.97
S 3 0.93 0.98
S 4 0.69 0.93
S 5 0.91 0.98
S 6 0.93 0.99

195 Discussion

196 We investigated the learning process that occurs when subjects reorganize or "remap" their body motions 

197 as they learn to perform a task that involves a novel relation between body motions and their observable 

198 consequences. For a patient who suffers from severe paralysis and is obliged to reorganize the available 

199 mobility to operate an assistive device such as a powered wheelchair through a human-machine interface, 

200 the ability to engage in such remapping becomes a necessity of life. Here we investigated the process of 

201 learning to perform reaching movements via a body-machine interface; we used a group of unimpaired 

202 subjects under the preliminary assumption that similar learning mechanisms are present in people suffering 

203 from injuries to the spinal cord. We considered a body-machine interface that harnesses signals generated 

204 by body motions in order to control an external object, in this case the position of a cursor on a computer 

205 monitor. The interface establishes a many-to-one body-to-object map that the user must learn to master 

206 starting from a naïve state. The map is in fact not intuitive, as there is no obvious correspondence between 

207 the motions of the body and the motion of the controlled object.  

208 In our experiment, unimpaired subjects practiced controlling a computer cursor through a BoMI whose 

209 linear body-to-object map was customized to each subject through a calibration procedure that fitted the 

210 statistics of the subject’s body motions. Through practice with a fixed BoMI, all subjects demonstrated 
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211 exponential convergence toward an inverse of the BoMI mapping, with subject-specific learning rates. The 

212 parameters of this inverse model define a state space in which learning is modeled as a first order 

213 dynamical process that evolves based on the specific sequence of target positions for the external object, 

214 and of two types of error: (i) the prediction error that is the difference between the actual position of the 

215 object and the position predicted by the subjects based on their internal representation of the interface map, 

216 and (ii) the task error or reaching error that is the difference between the position reached by the object and 

217 the actual target position. While the prediction error depends on the current estimate of the forward model, 

218 the reaching error depends on the current state of the inverse model, which determines the chosen body 

219 motion.

220 We studied the evolution of the learning system using different interface maps , learning rates , and 𝐻 𝜂

221 target sequences  for each subject. The empirical observations of human adaptation to the BoMI were 𝑈

222 compared to predictions from a subject-specific learning model that used initial conditions inferred from 

223 each subject’s initial performance, the same  and  as used by the subject, and a learning rate  obtained 𝐻 𝑈 𝜂

224 by temporal regression of the experimental data. We demonstrated that a model based on first-order 

225 dynamics was sufficient to capture the evolution of learning as described both through the observed errors 

226 and through the accuracy of the estimated internal models. There was however a notable difference 

227 between the models’ and the subjects’ learning: the decay of the norm of the reaching error computed from 

228 real data was not as smooth as the decay predicted by the model. This might be due to the main 

229 simplifications adopted in our model, namely, i) the learning dynamics (Equations (1) and (2)) were 

230 assumed to be deterministic, without any noise contributing to the state and output equations, and ii) the 

231 learning of the inverse model (Equation (2)) was assumed to be linear. 

232 Although the interface forward map is linear (Methods, Equation (4)), it is a many-to-one map admitting a 

233 multitude of inverses. This “redundancy” opens the possibility of successful linear and nonlinear inverse 

234 maps. Redundancy also leads to an important consideration about gradient descent learning. The reaching 

235 error surface in the space of the inverse model elements does not have a unique minimum but a 

236 continuously connected set of minima corresponding to the null space of the forward map. In the metaphor 

237 of a skier descending from a mountain following the gradient, this space of equivalent inverse models 

238 corresponds to a flat elongated valley at the bottom of the mountain. Anywhere along the valley is a valid 
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239 end to the ride, as it corresponds to a valid inverse model. The inverse model on which the steepest descent 

240 ends depends on the initial conditions, as predicted by the dynamical model (Fig 3b – evolution of the norm 

241 of the inverse model error).

242 The analysis of learning dynamics of the users of a body-machine interface is essential for the effective 

243 development of coadaptive approaches, where the interface parameters are themselves updated based on 

244 the user’s state of learning [21-23]. Coadaptation requires a seamless integration between machine learning 

245 and human learning. Both learning processes are dynamic, evolving as functions of their own internal state 

246 and of inputs that reflect the state of their counterpart. A mismatch between the timing of the interface 

247 updates relative to the subject’s learning dynamics would likely lead to hindering human learning (if the 

248 interface update rate is too fast) or to ineffectiveness (if the interface update rate is too slow). 

249 In our current understanding, motor learning is not only a way to acquire or improve a skill, but is perhaps 

250 most importantly a biological mechanism to gain knowledge about the physical properties of the 

251 environment [9]. Through the practice of movements, the brain learns to separate unpredictable from 

252 predictable features of the world in which the body is immersed; through the formation of representations 

253 or "internal models" of the predictable features, the brain acquires the ability to anticipate the sensory 

254 consequences of its commands. The human operator of a BoMI must develop an inverse model of the 

255 forward map to transform a desired goal into an action of the body. Further evidence from the literature 

256 indicates that adaptive, error-driven, internal model formation is a general feature of motor learning, 

257 observed during arm reaching and drawing, and during pointing with the legs and walking [24]. 

258 Theoretical studies of motor learning have focused on control policies and internal models to understand 

259 how the brain generates action commands [25]. Control policies allow the brain to select goals and plan 

260 actions, while internal models generate motor commands that are appropriate for those plans in the context 

261 established by sensory feedback. For example, when the goal is to reach a target, the brain must first 

262 evaluate the current position of the limb with respect to the target and use a control policy to plan a 

263 movement of the hand [3, 26]. An internal model of limb's dynamics, called an inverse model, then 

264 converts that plan into motor commands [27-29], while a forward model of the same limb's dynamics 

265 predicts the sensory consequences of these motor commands [14, 30, 31]. The comparison of this 

266 prediction with actual sensory feedback [32] allows re-estimating the current hand position with respect to 
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267 the target and updating the motor plan [33] by issuing an error-dependent motor command aimed at 

268 correcting the ongoing movement. Forward and inverse internal models thus play a fundamental role in 

269 movement planning and execution.

270 Recent studies have considered the formation of these internal models as dynamical process [10, 34, 35]. 

271 For example, to account for findings observed when reaching arm movements are perturbed by external 

272 force fields, Donchin and co-workers [10] argued that the forces generated by the subjects to compensate 

273 for the external field are the output of an internal model of the field, developed through experience. Their 

274 theory, successful at predicting the time history of adaptation, was based on two key assumptions that we 

275 also adopted here, namely i) that the movement outcomes and the ensuing errors result from a deterministic 

276 process, and ii) that the internal model is the state of learning. 

277 The transformation from the movements of the BoMI user to the movements of the controlled objects 

278 establishes a new geometrical relation between body motions and their consequences. The BoMI thus 

279 essentially creates a novel geometry that the user must learn to operate. Here, we have implemented a linear 

280 transformation from body signals to a cursor, which allowed us to work under the assumption that the users 

281 would develop a linear inverse model of this map. However, linearity of the inverse map is not a necessary 

282 consequence of operating through a linear forward map, because a linear forward map that is not bijective 

283 may also admit nonlinear inverses. Therefore, our approach will not result in the most general solution to 

284 the problem of finding an inverse map. Nevertheless, our analysis demonstrated that the linear inverse 

285 model derived by coupled gradient descent on both the prediction error and the reaching error is capable of 

286 reproducing with high fidelity the entire history of a subject’s responses to a sequence of targets (Fig 5).  

287 While we are unable to exclude more complex processes that could lead to an equally effective nonlinear 

288 inverse model of the linear BoMI map, the linearity assumption not only leads to results that agree with the 

289 experimental data but also fulfills Occam’s razor criterion for simplicity.

290 We conclude with some comments on the clinical relevance of this study. Damage to the spinal cord, 

291 stroke, and other neurological disorders often cause long-lasting and devastating loss of motion and 

292 coordination, as well as weakness and altered reflexes. In most cases, some residual motor and sensory 

293 capacities remain available to the disabled survivor, and can be harnessed to provide control signals to 

294 assistive devices such as robotic systems, computers, and wheelchairs.  A first challenge for the disabled 
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295 [36] is to learn how to interact with the assistive devices and how these respond to the user’s actions. 

296 A broad spectrum of sensors, such inertial measurement units (IMUs) placed on the head [37] or 

297 electroencephalography (EEG) systems [38], are available for detecting and decoding movement intentions. 

298 A body machine interface (BoMI) captures residual body motions by optical [17, 39, 40], accelerometric 

299 [15, 41], or electromyographic sensors [42], and maps the sensor signals onto commands for external 

300 devices such as powered wheelchairs [15] or drones [17], or onto computer inputs. At the other end of the 

301 spectrum, brain-machine interfaces decode motor intention from neural activity recorded in motor or 

302 premotor cortical areas [19, 20, 43]. Both brain- and body-machine interfaces take advantage of the vast 

303 number of neural signals and degrees of freedom of the human body [1, 44, 45], and of the natural ability of 

304 the motor system to reorganize the control of movement [4, 9, 46, 47]. Typically these interfaces establish a 

305 map - most often linear - from the space of neural or motion signals to the lower dimensional space of 

306 control signals for the external device [41, 48]. The user's ability to operate the interface is expected to 

307 change over time; either a positive change associated with the acquisition of greater control skills, or a 

308 negative change due to the worsening of the user's medical conditions. In either case, the interface map also 

309 needs to change, to coadapt with its user. This coadaptation is a critical challenge in the development of 

310 both brain- and body-machine interfaces [21, 23]; harmonizing the interface update with the processes that 

311 guide the improvement or decay of the user’s skill is of obvious importance. Understanding the dynamics 

312 of human learning through the interaction with the interface carries the promise of creating truly intelligent 

313 systems capable of compensating for the changing abilities of their users [19, 22].

314 Methods

315 Computational model

316 Inverse kinematics is a well-known and well-explored computational problem in robotics [49, 50] and 

317 human motor control [27, 51]; it refers to finding the configuration of joint angles that results in a desired 

318 position of an end effector or of the hand in the operational space [52]. Inverse kinematics problems 

319 become ill-posed [53] when there are multiple valid solutions as  a consequence of the many-to-one nature 

320 of the forward kinematic map. This is the situation considered here, in which the kinematics that the 

321 subjects are controlling may be partitioned in a sequence of two maps. In a first map, the subjects control 
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322 the motions of their bodies by acting on a multitude of muscles and joints. In a second map, the signals 

323 triggered by these body motions determine the lower dimensional state of an external object such as a 

324 wheelchair [15], a cursor on a computer screen [16], or a drone [17]. Here we make the critical but 

325 reasonable assumption that the subjects have already acquired in a stable form the expertise needed to 

326 control the motion of their body, or at least portions of it that were unaffected by injury or disease. 

327 Therefore, they only need to acquire the second component. This is the component we focus on, limited 

328 here to a body-machine interface whose linear map  transforms, at any given trial n, an -dimensional 𝐻 𝑆

329 vector of body signals  into a -dimensional control vector p as follows:𝑞 𝐾

330            (4) 𝑝(𝑛) = 𝐻𝑞(𝑛) = [ℎ1,1 ⋯ ℎ1,𝑆
⋮ ⋱ ⋮

ℎ𝐾,1 ⋯ ℎ𝐾,𝑆
]𝑞(𝑛)

331 Here,  is a x  matrix. Since < , this interface map is many-to-one and there is a "null space" of inputs 𝐻 𝐾 𝑆 𝐾 𝑆

332 for each value of its output, encompassing all different patterns of body signals that result in the same 

333 control signal.  This is an important characteristic of the map; earlier work has shown that subjects learn 

334 through practice to separate the null space from its orthogonal “potent space” complement [48]. 

335 Learning dynamics as first order state-based model. In a learning experiment where the goal 

336 is to reach targets in the control space, the superscript labels the trials or successive repetitions of a single 𝑛 

337 action; for instance, each trial is a reaching movement in a sequence of such movements. At the end of a 

338 trial, the learner observes an error This error drives the updating of the internal model, which we 𝑒(𝑛). 

339 assume to be a liner map  transforming a goal into its corresponding body vector (previously 𝐺(𝑛) 𝑢(𝑛) 

340 Equation (3)):

341           (5)𝑞(𝑛) = 𝐺(𝑛)𝑢(𝑛) 

342 Since the forward map H is linear, the linearity of G is a sufficient but not necessary condition. More 

343 complex nonlinear structures of the inverse model would in principle be admissible. Here, we assume the 

344 simplest general form for a linear inverse model of the forward BoMI map; this assumption makes the 

345 investigation of learning dynamics tractable.

346 For the -th reaching trial, is the position of the target, and the reaching error is the -dimensional 𝑛 𝑢(𝑛) 𝐾
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347 vector from the target position to the actual position of the controlled object at the end of the trial:

348           (6)𝑒(𝑛) = 𝑝(𝑛) ‒ 𝑢(𝑛).

349 As learning reaches a steady state, participants are expected to have eliminated this error. This implies that 

350 the internal model becomes a right-inverse model of the interface map: since

351            (7)𝑒(𝑛) = 𝑝(𝑛) ‒ 𝑢(𝑛) = (𝐻𝐺(𝑛) ‒ 𝐼𝐾) 𝑢(𝑛),

352 then requires 𝑒(𝑛) = 0 𝐻 𝐺(𝑛) = 𝐼𝐾  .

353 Learning is represented as a dynamical process whose state, the internal inverse model , changes after 𝐺(𝑛)

354 the observation of each reaching error. The targets presented to the learner constitute the external input to 

355 this process. To ensure that the change in state leads to a reduction of the error, the learning process drives 

356 the state along the gradient of the quadratic error surface in the state space defined by the components of G. 

357 The gradient of the squared reaching error with respect to the components of the inverse model is 

358           (8)∇𝐺 
1
2‖(𝐻 𝐺(𝑛) ‒ 𝐼𝐾) 𝑢(𝑛) ‖2 = 𝐻𝑇(𝐻 𝐺(𝑛) ‒ 𝐼𝐾) 𝑢(𝑛)𝑢𝑇(𝑛), 

359 which leads to the update equation 

360          (9) 𝐺(𝑛 + 1) =  𝐺(𝑛) ‒ 𝜂 𝐻𝑇(𝐻 𝐺(𝑛) ‒ 𝐼𝐾) 𝑢(𝑛) 𝑢𝑇(𝑛),

361 or, equivalently

362        (10)𝐺(𝑛 + 1) =  𝐺(𝑛) ‒ 𝜂 𝐻𝑇 𝑒(𝑛) 𝑢𝑇(𝑛) .

363 Here,  is a learning rate parameter that we model as a scalar, although in principle there could be a 𝜂

364 different rate for learning every element of the forward and inverse models. We found that only two 

365 learning rates,  for the forward model and  for the inverse model, sufficed to account for the observed 𝜀 𝜂

366 learning behavior.

367 If the interface map is known, the update Equation (10) provides an estimate of the right inverse of  𝐻 𝐻

368 solely on the basis of control space data, without performing an explicit matrix inversion. Given the targets 

369 , the variables of interest are the observed reaching errors and the estimated inverse model or "state 𝑢(𝑛) 𝑒(𝑛) 

370 of learning" . As  becomes stationary. 𝐺(𝑛) 𝑒(𝑛)→0, 𝐺(𝑛)
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371 The gradient of the error involves the actual value of the interface map . It is not plausible to assume that 𝐻

372 our subjects had any initial notion of the interface map, let alone an exact representation. In a realistic 

373 model of learning, the value of  must be replaced with an evolving estimate . In this scenario, the 𝐻 𝐻(𝑛)

374 current state of learning is represented in a higher dimensional space that includes the components of both 

375 and . In the case of =8 body signals controlling the location of an object in =2 dimensions, the 𝐺(𝑛) 𝐻(𝑛) 𝑆 𝐾

376 state space for learning is 2x8x2=32-dimensional. We follow a concept introduced by Jordan and 

377 Rumelhart [14], and represent learning as the parallel development a of forward-inverse model.. The 

378 forward model leads to a prediction of the controlled device position given the current set of body signals, 

379 whereas the inverse model generates the body signals needed to achieve a given target position of the 

380 device. 

381 In principle, the two learning processes could take place in two separate phases: a “flailing” phase where 

382 aimless body motions are produced and the resulting object motions are compared with their expected 

383 motion to obtain prediction errors that drive the estimation of the forward model. This would then be 

384 followed by a phase where the subjects reach for specific targets, and reaching errors drive the estimation 

385 of the inverse model (see S1 Fig). This mechanism has been suggested as a possible model of motor 

386 development in infants [54], who acquire a model of the dynamical properties of limbs by driving them 

387 with erratic neuromuscular activities. However, this is not the case in experiments where subjects are 

388 presented with reaching targets from the onset; in this scenario, no aimless “flailing” was observed. It is 

389 thus more plausible to model forward and inverse learning as concurrent processes.  

390 The prediction error quantifies the difference between actual and predicted positions of the controlled 

391 object, without reference to a target. The gradient of the squared prediction error with respect to the 

392 components of the forward model is𝐻 

393       (11)∇𝐻 
1
2‖𝑝(𝑛) ‒ 𝐻(𝑛) 𝑞

(𝑛)‖2
=‒  (𝑝(𝑛) ‒ 𝐻(𝑛) 𝑞(𝑛))𝑞𝑇(𝑛). 

394 The update equations for the coupled learning process then are

395 ,        (12)𝐻(𝑛 + 1) =  𝐻(𝑛) + 𝜀 (𝑝(𝑛) ‒ 𝐻(𝑛) 𝑞(𝑛))𝑞𝑇(𝑛)

396 ,        (13)𝐺(𝑛 + 1) =  𝐺(𝑛) ‒ 𝜂 𝐻(𝑛)𝑇  𝑒(𝑛) 𝑢𝑇(𝑛)
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397 reported earlier as Equations (1) and (2). Note that Equation (12) contains a term that is quadratic in q; this 

398 implies a quadratic dependence on the elements of  since at each step is derived by applying  𝐺(𝑛), 𝑞(𝑛) 𝐺(𝑛)

399 to the corresponding target. The update equation for the estimate of the forward model is thus not linear, 

400 and the learning process is prone to get stuck in local minima. The simplest way to avoid this is to add a 

401 small amount of noise to the body signals derived from the inverse model,  

402        (14)𝑞(𝑛) = 𝐺(𝑛)𝑢(𝑛) + 𝜉(𝑛),

403 where the noise has the same dimension as , and each component of  is independently drawn from a 𝜉 𝑆 𝑞 𝜉

404 Gaussian distribution at each trial. 𝒩(0, 𝜎2) 

405 Two important parameters of the combined learning model of Equations (12) and (13) are the learning rates 

406 for the forward (  and the inverse ( ) models. In the case of eight body signals mapped into a two-𝜀) 𝜂

407 dimensional control space, these learning rates apply to the evolution of 16 elements each; their most 

408 general form would be a 2x8 matrix for and an 8x2 matrix for . Here, for simplicity and to avoid 𝜀 𝜂

409 overfitting, we assume both learning rates to be scalar. A similar assumption is made for the noise 

410 amplitude , a somewhat less critical parameter whose sole purpose is to add sufficient noise to the 𝜎

411 learning algorithm so as to avoid getting trapped in local minima.

412 Validation of the model with experimental data 

413 To validate the outcomes of the model we recruited six unimpaired subjects (age range 21-40 years old, 3 

414 males and 3 females) in the preliminary study. All of them signed an informed consent approved by 

415 Northwestern University Institutional Review Board. 

416 The subjects practiced the execution of reaching movements via an interface (Fig 6) that mapped an eight-

417 dimensional signal space associated with upper body motions to the two-dimensional task space of a 

418 computer cursor. An array of four video cameras (V100, Naturalpoint Inc., OR, USA) was used to track  

419 active infrared light sources attached to the subject’s upper-body garments (two for each side of the body, 

420 one on the shoulder and one on the upper arm, as shown in Fig 6). Each camera pointed at a single marker, 

421 providing two signals defining the coordinates of the marker in the camera’s frame. Collectively, the four 

422 sensors provided an eight-dimensional body vector that was transformed into a command vector for 𝑞 𝑝 

423 controlling the position of a cursor on a computer screen, 𝑝 = 𝐻𝑞.
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424

Fig 6. Experimental setup of the Body Machine Interface. The subject sits on a chair in front of the computer. 
Active optical markers were placed on shoulders and arms; their positions were recorded by infrared cameras.

425 In order to design the matrix  for each subject, we used a standard linear dimensionality reduction 𝐻

426 method, principal component analysis (PCA) [55] to set up the dimensionality reduction implicit in the  to 𝑞

427  map. PCA is based on the decorrelation of the input signals through the diagonalization of their 𝑝

428 covariance matrix; dimensionality reduction is obtained by keeping only the eigenvectors corresponding to 

429 the K=2 largest eigenvalues. PCA provided us with a computationally straightforward method for 

430 identifying those directions that captured the largest extent (i.e. the largest variance) of body motions 

431 within the space of sensor signals for each subject.

432 The interface map from the input space of body signals to the output task space was constructed in three 𝐻 

433 steps: 

434 1) Calibration – Subjects were asked to freely explore their range of shoulders and upper arms motion in all 

435 possible directions for about 60 seconds. This stage results in an aimless free dance, during which subjects 

436 visited a large portion of their available range of motion; their movements were limited only by the type 

437 and degree of impairment. The “calibration” data set  was organized as an SxM matrix, where the 𝑄𝐶𝐴𝐿

438 number S of rows is the dimensionality of the space of sensor signals (here, S=8) and the number M of 

439 columns is the total number of samples (here M=5000, collected over about 66 seconds at 75 samples per 

440 second). 

441 2) PCA – The principal components of the data set were extracted using PCA. The  eigenvectors of 𝑄𝐶𝐴𝐿 𝑆

442 the covariance matrix of the sensor signals were ordered according to the magnitude of their corresponding 

443 eigenvalues, from largest to smallest. The eigenvalues represent the variance of the data along the 

444 eigenvector directions; those directions with high signal excursion correspond to larger eigenvalues. We 

445 considered those high-variance movement directions to be the user’s “best controlled” combinations, and 

446 used the  leading eigenvectors as rows to construct the KxS matrix H (Equation (4)). In our case the 𝐾

447 interface map H was a 2x8 matrix; the two first PCs accounted for 73±5% of the variance of the calibration 

448 dataset across subjects.

449 3) Training – After calibration, participants went through a two-hours training session. The training session 
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450 consisted of 324 reaching movements from the center of the screen to targets located 5 cm away from the 

451 center in 6 directions 60° apart. Although the order of target presentation was randomized, a given target 

452 was not presented until the subject had reached all other targets. The subjects had no visual feedback about 

453 the cursor position for the first second following movement onset. The cursor then became visible, and the 

454 subjects could use visual feedback to correct for the reaching error if the cursor was not on the target.

455 Data analysis

456 Estimation of the learning dynamics. To investigate the learning dynamics, we focused on the 

457 temporal evolution of two scalar variables in task space: the reaching error (RE) and the inverse model 

458 error (IME). These two variables were computed both from the data for healthy volunteers and from the 

459 synthetic data generated by simulating the proposed model for the learning process.

460 The reaching error RE was computed as the norm of the difference between the actual cursor position at the 

461 end of the reaching movement and the target position. For the experimental data, we considered as an 

462 estimate of the reaching error the distance between target and cursor at the end of the blind phase of the 

463 trial, when the subjects moved relying only on their inverse internal model in the absence of visual 

464 feedback of the cursor motion. As the cursor reappeared, the subjects performed a corrective movement 

465 bringing the cursor on the target. The inverse model error IME was computed as the norm of the difference 

466 between the identity matrix and the product  between the interface map and the estimate of the 𝐼𝐾 𝐻 𝐺(𝑛)

467 inverse map at the end of each trial. 

468 The lower dimensionality of the output space for the interface map H causes the problem of finding the 

469 inverse map to be ill-posed; the surface defined by the squared reaching error in the state space spanned by 

470 the components of does not exhibit a single minimum but a flat extended “valley” corresponding to all 𝐺 

471 possible inverses of the interface map . To circumvent this ambiguity and to monitor whether subjects 𝐻

472 converged towards a stable inverse transformation, we estimated the inverse model matrix  from the 𝐺(𝑛)

473 subjects’ performance.

474 A typical experimental data set consisted of temporal sequences of reaching movements. At each trial we 𝑛 

475 considered a movement set, a sequence of trials that included the -th trial and the ( -1) trials that 𝑟 𝑛 𝑟

476 preceded it. Here we used =12, so that on average each movement set included two trials towards each of 𝑟
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477 the six different targets. The body and target vectors for the n-th movement set were collected in the arrays

478  and 
                      

(15)𝑄(𝑛) =  [𝑞(𝑛 ‒ 𝑟 + 1), ⋯,𝑞(𝑛)] 𝑈(𝑛) =  [𝑢(𝑛 ‒ 𝑟 + 1), ⋯,𝑢(𝑛)] .

479 The matrix then was obtained from a least-squares estimation based on Equation (3):  𝐺(𝑛) 

480
       

(16)𝐺(𝑛) =   𝑄(𝑛) 𝑈(𝑛)𝑇(𝑈(𝑛) 𝑈(𝑛)𝑇) ‒ 1  .

481 The history of reaching errors for the  trials in the movement set that ended with trial  was computed as𝑟 𝑛

482         (17)𝐸(𝑛) = 𝐻 𝑄(𝑛) ‒ 𝑈(𝑛) .

483 A scalar reaching error (RE) was then calculated by taking the spectral norm of the x  matrix in ‖𝐸(𝑛)‖ 𝐾 𝑟

484 Equation (17). Similarly, we calculated the inverse model error (IME) as the spectral norm . ‖𝐻 𝐺(𝑛) ‒ 𝐼𝐾 ‖

485 The IME is expected to approach 0 as learning converges and  approaches a right inverse of . The 𝐺(𝑛) 𝐻

486 convergence toward a stable representation of the inverse map was assessed by computing the percentage 

487 difference in norm among consecutive estimations of , 𝐺(𝑛)

488  .                                                                                                                               (18)∆𝐺(𝑛) =
‖𝐺(𝑛) ‒ 𝐺(𝑛 ‒ 1)‖

‖𝐺(𝑛 ‒ 1)‖  

489 We defined two additional errors to quantify whether each subject was also forming a forward map  that 𝐻

490 converged to the interface map . We defined the forward model error (FME) as 𝐻

491            (19)𝐹𝑀𝐸(𝑛) =
‖𝐻 ‒ 𝐻(𝑛)‖ 

‖𝐻‖  

492 The current estimate affects the prediction error, computed in task space as the difference between the 𝐻 (𝑛) 

493 actual position of the cursor and the one estimated with the current estimate of the forward model. The L2 

494 norm of this difference defines 

495 ,                     (20)𝑃𝐸(𝑛) = ‖𝑃(𝑛) ‒ 𝐻(𝑛) 𝑄(𝑛)‖

496 with .𝑃(𝑛) = 𝐻 𝑄(𝑛)

497  No moving window was used to compute these two errors because both PE and FME could be extracted 

498 from the simulated data at each trial.

499 Model parameters. For each subject recruited for the study, we constructed a model that used the 
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500 same interface map  as used by the subject; the model was then exposed to the same target sequence. To 𝐻

501 set the individual learning rate for the learning of the inverse map in Equations (2) and (13), we fitted the 𝜂 

502 experimentally observed decay of the norm RE of the reaching errors for each subject to an exponential of 

503 the form 

504  ,       (21)𝑅𝐸(𝑛) = 𝑎𝑒 ‒ (𝜆𝑅𝐸)𝑛 + 𝑐

505 to obtain a value of  for each subject. We then set  in the corresponding subject-specific model. 𝜆𝑅𝐸 𝜂 = 𝜆𝑅𝐸

506 To set values for the parameters  and  we adopted a minimum search approach to minimizing a cost 𝜀 𝜎

507 function based on the forward model error (FME), as those two parameters mostly influence the evolution 

508 of the estimation  of the forward model. The cost function  was defined as𝐻 𝐶

509                                                                                                                                 (22)𝐶 = ∑𝑁
𝑛 = 1

‖𝐻 ‒ 𝐻(𝑛)‖
‖𝐻‖  ,

510 where is the total number of trials. 𝑁 

511 Comparison between simulated and real data. To estimate the similarity between the real and 

512 model data we used the correlation coefficient R2. By definition the R2 evaluates similarity between the 

513 shapes of the compared curves and also provides additional information regarding the amplitude. This 

514 metric was applied to the norm RE of the reaching error, the norm IME of the inverse model error, the body 

515 coordinates , and the cursor coordinates . For each of these quantities, assume that the measured values 𝑞 𝑝

516 are , , where  is the total number of trials. The model gives a prediction or estimation {𝑦(𝑛)} 1 ≤ 𝑛 ≤ 𝑁 𝑁

517 , for each of these values, with residuals , The mean of the {𝑦(𝑛)} 1 ≤ 𝑛 ≤ 𝑁 𝑒(𝑛) = 𝑦(𝑛) ‒ 𝑦(𝑛) 1 ≤ 𝑛 ≤ 𝑁. 

518 observed data is given by . The total sum of squares 𝑦 =  (1 𝑁)∑𝑁
𝑛 = 1𝑦(𝑛)

519                                                                                                                          (23)𝑆𝑆𝑡𝑜𝑡 =  ∑𝑁
𝑛 = 1(𝑦(𝑛) ‒ 𝑦)2

520 is proportional to the variance of the experimentally observed values. The sum of squares of the residuals is 

521                                                                                           (24)𝑆𝑆𝑟𝑒𝑠 =  ∑𝑁
𝑛 = 1(𝑦(𝑛) ‒ 𝑦(𝑛))2 =  ∑𝑁

𝑛 = 1(𝑒(𝑛))2

522 The most general definition of R2, as used here, follows from the ratio between these two sums of squares

523 R2 ≡ 1 ‒
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
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660 Supporting information 

661

S1 Fig. Modeling human learning with sequential learning of forward and inverse models. (a) 
Temporal evolution of the norm RE of the reaching error as a function of trial number  calculated from the 𝒏
data of six subjects (black) and from the respective models (blue). (b) Temporal evolution of the norm IME 
of the inverse model error, the difference between the identity matrix and the product of the interface 𝑰𝑲 

map H and the inverse model  estimated from the experimental data (black) and from the model 𝑮(𝒏),
simulations (blue). Both metrics were calculated over a moving window including 12 consecutive trials; the 
window was shifted forward by one trial at each iteration. 
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