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Abstract

Pair-input associations for drug-side effects are obtained through expensive placebo-
controlled experiments in human clinical trials. An important challenge in compu-
tational pharmacology is to predict missing associations given a few entries in the
drug-side effect matrix, as these predictions can be used to direct further clinical
trials. Here we introduce the Geometric Sparse Matrix Completion (GSMC) model
for predicting drug side effects. Our high-rank matrix completion model learns
non-negative sparse matrices of coefficients for drugs and side effects by imposing
smoothness priors that exploit a set of pharmacological side information graphs,
including information about drug chemical structures, drug interactions, molecular
targets, and disease indications. Our learning algorithm is based on the diagonally
rescaled gradient descend principle of non-negative matrix factorization. We prove
that it converges to a globally optimal solution with a first-order rate of convergence.
Experiments on large-scale side effect data from human clinical trials show that our
method achieves better prediction performance than six state-of-the-art methods
for side effect prediction while offering biological interpretability and favouring
explainable predictions.

1 Introduction and Background

Drug side effects are a leading cause of morbidity and mortality in health care, with an annual cost
of billions of dollars [1, 2, 3]. In this paper, we focus on the problem of predicting new unknown
side effects for drugs for which a few experimentally determined side effects are already available.
These computational predictions are important as they can be used after early-phase small-size human
clinical trials, to set the direction of the risk assessment in later clinical trials, or after a drug has
entered the market.

Several approaches have been proposed for predicting drug side effects (for reviews see [4, 5]) and
can be roughly divided into two groups. The first group of methods exploits the network structure of
the bipartite graph connecting drugs to side effects and networks built from drug or side effect side
information. Cami et al. [6], for instance, built a bipartite network of drug side effects and extracted
feature covariates from the network connectivity patterns to learn a Bernoulli expectation model
based on multivariate logistic regression. Bean et al. [7] built a knowledge graph by connecting drugs,
side effects, protein targets, and indications and then applied enrichment analysis to predict missing
links in the network. Other network-based approaches include random walks and label propagation
on side information networks [8, 9].

The second group of algorithms, proposed more recently, framed this problem as a matrix completion
task using low-rank matrix decomposition techniques. Galeano and Paccanaro [10] used this type of
model to predict missing associations in a binary matrix of drugs side effect associations. A similar
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approach was used by Zhang et al. [11], that also included smoothness constraints derived from drug
side information. Li et al. [12] proposed an inductive matrix completion approach that integrates side
information using kernel matrices of drugs and side effects.

In this paper, we cast the problem of drug side effect prediction as a sparse high-rank matrix
completion problem. Our method is related to self-expressive models [13] that have recently been
proposed as a framework for simultaneously clustering and completing high-dimensional data that
lie in the union of low-dimensional subspaces. Self-expressive models can capture an underlying
low-rank structure in a high-dimensional space or the union of low-rank structures leading to a
full or high-rank structure [14, 15]. A self-expressive model represents each datapoint as a linear
combination of a few other datapoints. Let X ∈ Rn×m be the data matrix (each column is a
datapoint) and let C ∈ Rm×m be the coefficient matrix (each column is a coefficient vector). The
goal of self-expressive model is to learn a matrix C such that X ' XC where C is sparse according
to some sparsity function and diag(C) = 0 [14, 15]. Observe that the last constraint is needed
to prevent the trivial solution of representing each datapoint with itself (C = I). Sparse linear
method [16], proposed in the recommendation system literature, also shares the model assumption of
self-expressive models.

Contributions We realized that the drug side effect matrix has a high-rank structure. We propose
a novel high-rank sparse matrix completion model for predicting drug side effects. Extensive
experiments on human clinical trials data show that our method outperforms existing state-of-the-art
approaches in drug side effect prediction.

Our model is informative of the biology underlying drug activity: the learned (non-negative) sparse
matrices of coefficients for drugs and side effects make explicit the similarities between drug activities
at the molecular and phenotypic level. We show that these learned matrices of coefficients can be used
for predicting the shared drug clinical activity, targets of drugs, and even the anatomical/physiological
relationships between side effect phenotypes.

Our work is inspired by self-expressive models, but it differs from them as we assume that our data
matrix is fully – rather than partially – observed while its entries are noisy. Our model incorporates
structure into the learned matrices by exploiting side information graphs derived from the network
structure of known relationships among row and column elements.

We prove that our multiplicative learning algorithm, which does not require to set a learning rate
nor applying projection functions to guaranteed non-negative constraints, convergences to a globally
optimal solution point with a first-order convergence rate. And unlike non-convex matrix decomposi-
tion models proposed previously for the side effect prediction problem [10, 11, 12], these theoretical
guarantees of convergence imply the reproducibility of the solutions under arbitrary initializations: a
desirable property for biological interpretation.

2 The Geometric Sparse Matrix Completion (GSMC) model

Let us denote our drug side effect matrix for n drugs and m side effects with the binary matrix
X ∈ Rn×m where Xij = 1 if drug i is associated with side effect j, or 0 if the association is
unreported. There are three main characteristics of X , which will need to be taken into consideration
to build an effective algorithm. First, X is sparse (density ∼ 7%, see section 4); second, side effects
have a long-tail distribution [17], which means that few side effects are responsible for the high
proportion of entries in X; and third, unreported associations (zeros in X) have high uncertainty
[17]. The last point stems from the fact that, typically, safety datasets report only observed pair-input
associations. Consequently, a zero value represent the uncertain fact that either the drug does not
cause the side effect, or that it does, but it could not be detected.

The analysis of our data matrix X reveals that the matrix has a high-rank (see section 4). Therefore,
we cast the problem of side effect prediction as a sparse high-rank matrix completion problem for X .
The goal of our Geometric Sparse Matrix Completion (GSMC) model is to learn two sparse matrices
of coefficients, one for the row elements (R ∈ Rn×n) and one for the column elements (C ∈ Rm×m).
The data matrix X is then approximated by:

X̂ ' pXC + (1− p)RX (1)
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where p ∈ [0, 1] is a hyperparameter that controls the balance between the row (drug) and column
(side effect) contributions. In the sequel, we shall refer to the first part of the GSMC model XC,
as GSMC-c, and to the second part, RX , as GSMC-r. Two cost functions, Qc(C) and Qr(R), that
takes into account side information for drugs and side effects are minimize with respect to C and R,
respectively:

min
C
Qc(C) =

1

2
‖X −XC‖2F +

∑
i,j

Φ(Ci,j) +
1

2

P∑
j

αcj‖C‖2D,Gc
j

+ γc Tr(C) (2)

min
R
Qr(R) =

1

2
‖X −RX‖2F +

∑
i,j

Φ(Ri,j) +
1

2

Q∑
j

αrj‖R‖2D,Gr
j

+ γr Tr(R)

subject to the non-negative constraints C,R ≥ 0.

(3)

where ‖.‖F is the Frobenius norm, Φ(.) is a sparsity function, and ‖.‖D,Gc
j

and ‖.‖D,Gr
j

are the
Dirichlet norms defined on P graphs Gcj ∈ Rm×m, representing side information for side effects,
and Q graphs Grj ∈ Rn×n, representing side information for drugs. C and R in Equation (1) are
learned by minimizing Equations (2) and (3), respectively. In the following, we provide the rationale
behind (2) only, as the same applies to (3).

The first term in Equation (2) is the self-representation constraint, which aims at learning a matrix of
coefficients C such that XC is a good reconstruction of the original matrix X — as in self-expressive
models, GSMC-c represents datapoints as a linear combination of other datapoints. The second
term is the sparsity constraint, which uses the sparsity function Φ(Ci,j) = βc

2 ‖Ci,j‖
2 + λc‖Ci,j‖11

– parameterized by constant values βc, λc > 0 – to favour sparse coefficients in the solution. The
fourth term is the null-diagonal constraint, which has the important role of preventing the trivial
solution C = I by imposing diag(C) = 0. This is achieved through a regularized trace operator
γc Tr(C), whose parameter γc � 0 does not need to be set by cross validation – the theoretical lower
bounds for γc are provided in section 3.

Our model is called geometric due to the third term in Equation (3), the smoothness constraint, which
incorporates structure into the sparse coefficient matrix C. This is achieved by adding smoothness
priors from multiple weighted graphs that encode side information about the columns. Let us call one
of these graph Gc ∈ Rm×m (each node represents a side effect). Ideally, nearby points in Gc should
have similar coefficients in C, which can be obtained by minimizing:∑

i,j

Gci,j‖ci − cj‖2 = Tr(CLGcCT ) = ‖C‖2D,Gc (4)

where ci and cj represent column vectors of C, LGc = Dc − Gc is the graph Laplacian, and
Dc = diag(

∑
iG

c
i,j) is a diagonal matrix. Extending this formulation to multiple graphs Gcj , j ∈

{1, 2, .., P} we obtain the third term in Equation (2):2

P∑
j

αcj Tr(CLGc
j
CT ) =

P∑
j

αcj‖C‖2D,Gc
j

(5)

where the constant values αcj > 0, j ∈ {1, ..., P} weigh the relative importance of each graph.

Finally, following [18], we impose non-negative constraints on C, as these constraints lead to more
interpretable model since they allow only for additive combinations.

1This function is also known as the elastic-net regularization.
2Note that for Equation (3), the graphs Gr

j ∈ Rn×n have a different number of nodes (each node represents
a drug) and the Dirichlet norm is applied to the rows of R, i.e. ‖R‖2D,Gr

j
= Tr(RTLGr

j
R).
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3 The Multiplicative Learning Algorithm

To minimize Equations (2) and (3) subject to the non-negative constraints R,C ≥ 0, we developed
efficient multiplicative algorithms inspired by the diagonally rescaled principle of non-negative matrix
factorization [18, 19]. The algorithm consists in iteratively applying the following multiplicative
update rules:

Cij ← Cij
(XTX +

∑P
k α

c
kCG

c
k)ij

(XTXC +
∑P
k α

c
kCD

c
k + βcC + λc + γcI)ij

(6)

Rij ← Rij
(XXT +

∑Q
k α

r
kG

r
kR)ij

(XXTR+
∑Q
k α

r
kD

r
kR+ βrR+ λr + γrI)ij

(7)

In the following, we shall prove that the algorithm in Eq. (6) converges to a solution; that the cost
function Qc(C) is convex, and therefore the solution found is the global optimum; and that the speed
of convergence is first-order. Finally we provide a lower bound for the value γc. Proofs for Eq. (7)
are similar and omitted here for brevity.

Lemma 1. The cost function Qc(C) in Equation (2) is convex in C.

Proof Sketch. We need to prove that the Hessian is a positive semi-definite (PSD) matrix. That is, for
a non-zero vector h ∈ Rm the following condition is met hT∇2Qc(C)h ≥ 0. The graph Laplacians
are PSD by definition. The remaining terms in the Hessian (XTX + βc) are also PSD. Therefore,
Qc(C) is convex in C. See supplementary section S5 for complete proof.

Theorem 1 (Convergence). The cost functionQc(C) in Equation (2) converges to a global minimum
under the multiplicative update rule in (6).

Proof. We need to show that our algorithm satisfies the Karush-Khun-Tucker (KKT) complementary
conditions, which are both necessary and sufficient conditions for a global solution point given the
convexity of the cost function (lemma 1) [20, 21]. KKT require Ci,j ≥ 0 and (∇Qc(C))ijCij = 0.
The first condition holds with non-negative initialization of C. For the second condition, the gradient
is: ∇Qc(C) = −XTX−

∑
j α

c
jCG

c
j +XTXC+

∑
j α

c
jCD

c
j +βcC+λc+γcI , and according to

the second KKT condition, at convergenceC = C∗ we have (XTXC∗+
∑
j α

c
jC
∗Dc

j+βcC∗+λc+

γcI)ijC
∗
ij − (XTX +

∑
j α

c
jC
∗Gcj)ijC

∗
ij = 0, which is identical to (6). That is, the multiplicative

rule converges to a global optima.

Theorem 2 (Rate of convergence). The multiplicative update rule in (6) has a first-order convergence.

Proof Sketch. Following [20, 22], we can represent the updating algorithm as mapping Ct+1 =
M(Ct) with fixed point C∗ = M(C∗). Then, when Ct+1 is near C∗, we have C ' M(C∗) +
∇M(C)(C − C∗) subject to C ≥ 0, and thus ‖Ct+1 − C∗‖ ≤ ‖∇M(C)‖ · ‖Ct − C∗‖, with
‖∇M(C)‖ 6= 0 almost surely. That is, the multiplicative update rule is a first-order algorithm.

Theorem 3 (Lower bounds for the null-diagonal parameter γc). Let ε > 0 be the maximum tolerable
value in diag(C),

√
σ the maximum initial value in diag(C), N c the total number of iterations and

L = maxi diag(XTX). Then, γc = f(ε,N c) is bounded by (σ
1/(2Nc)L
ε1/Nc ,∞).

Proof. Assuming that γc � maxi diag(XTXC +
∑
j α

c
jCD

c
j + βcC + λc) and that L �

maxi diag(
∑
j α

c
jCG

c
j)), then at the jth iteration, ε(j) :=

√
σLj

(γc)j . At convergence, j = N c, and

ε =
√
σLNc

(γc)Nc , from which we can obtain the lower-bound for γc. That is, to guarantee at most ε in

diag(C), we need to set a γc(ε,N c) > σ1/(2Nc)L
ε1/Nc . The upper bound is obtained when ε→ 0, which

causes γc(ε, p)→∞. In practical applications, the upper bound is limited by machine precision.
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The most expensive operation in (6) comes from the denominator termXTXC for whichO(N c×m3)
(whereN c is the total number of iterations). The overall complexity can be reduced by pre-computing
the constant covariance matrix XTX and the linear combination of graphs. A similar reasoning
applies to (7), giving O(Nr × n3). Algorithm 1 presents a Matlab pseudocode for solving GSMC-
c that follows the NMF implementation guidelines in [23]: (i) Ct=0 is sample from a uniform
distribution in the interval (0,

√
σ]; (ii) a small value ε ' 1× 10−16 is added to the denominator to

prevent division by zero. The stopping criteria for the algorithm is (i) when the number of iterations
reaches maxiter or (ii) when the element-wise change δ(t)C between C(t+1) and C(t) is smaller than
a predefined tolerance tolX, with:

δ
(t)
C = max

(
|C(t+1)
ij − C(t)

ij |

max(i,j) |C
(t)
ij |+ ε

)
(8)

ALGORITHM 1: GSMC-c
Given the parameters αc ∈ Ra, βc, λc, σ, γc > 0 and the graphs Gc of P
elements in a cell array.
C = rand(m)*sqrt(σ); % initialization
I = eye(m); % identity
COV = X'*X; % column covariance matrix
Dc = zeros(size(C));
Gc = zeros(size(C));
for graph = 1:P do

Dc = Dc + alpha(graph).*diag(sum(Gc{graph}, 2));
Gc = Gc + alpha(graph).*Gc{graph}; % graphs;

end
while convergence criterion is not met do

numer = COV + C*Gc; % numerator
den = COV*C + C*Dc + βc.∗C + λc + γc. ∗ I +ε;% denominator
C = C .* numer ./ den; % update rule

end

The algorithm to solve GSMC-r is similar and omitted for brevity. However, note that algorithm (1)
can also be used to solve GSMC-r. This can be understood by considering that the GSMC-r model
can be expressed as follow RX = (XTRT )T = (Y A)T where Y = XT and A = RT and thus
algorithm (1) can be used to solve A in Ŷ ' Y A.

4 Experimental Results

Datasets Drug side effects were extracted from the SIDER database [24, 25]. Our matrix X
contains 75,542 known associations for 702 marketed drugs (rows) and 1,525 distinct side effect
terms (columns) (7.06% density). Each drug and each side effect has at least six known associations.
A value Xij = 1 if a drug i is known to be associated with side effect j or Xij = 0 otherwise (see
Table S1 for details about the datasets).

In order to build graphs representing side information for drugs, we assembled binary matrices descri-
bing drug target interactions (702 drugs×401 targets), drug indication associations (702 drugs×5,178
indications), drug-drug interactions (702 drugs×702 drugs) and SMILES fingerprints – these datasets
were extracted from DrugBank [26] and the Comparative Toxicogenomics database [27]. We then
built the graphs using the cosine similarity between the rows of: the drug target matrix (we shall
call this graph DT); the drug indication matrix (DInd); the drug-drug interaction matrix (DDI). The
chemical graph (Chem) was built using the 2D Tanimoto chemical similarity from the drugs SMILES
fingerprints (see section S4 for details). For each graph, we set the main diagonal of the weighted
adjacency matrix to zero. The distribution of similarity scores of each graph is shown in Fig. S1. In
the experiments, we did not include any graphs representing side information for side effects.

Experimental setting Following previous approaches [6, 8, 10, 11, 12], we frame the side effect
prediction problem as a binary classification problem. We applied ten-fold cross-validation, while
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Table 1: Performance comparison for drug side effect prediction

Method AUROC± s.t.d. AUPRC± s.t.d. Time(s)3

IMC [12] 0.747 ± 0.0113 0.016 ± 0.0011 348.95 ± 23.71
TopPop [29] 0.827 ± 0.0031 0.071 ± 0.0028 0.010±0.0014
LP [8] 0.888 ± 0.0021 0.126 ± 0.0033 0.018 ± 0.0032
IMCZeros 0.892 ± 0.0045 0.194 ± 0.0100 317.149 ± 16.09
FGRMF [11] 0.911 ± 0.0029 0.237 ± 0.0059 209.27 ± 9.43
PPNs [6] 0.923 ± 0.0020 0.208 ± 0.0056 186 ± 5.91
MF [10] 0.929 ± 0.0019 0.274 ± 0.0071 31.12 ± 4.73
FGRMF-DDI [11] 0.931 ± 0.0020 0.285 ± 0.0075 30.41 ± 1.45
GSMC-r 0.936 ± 0.0014 0.295 ± 0.0073 3.19 ± 0.30
GSMC-c 0.938 ± 0.0023 0.323 ± 0.0024 15.29 ± 1.70
GSMC 0.944 ± 0.0017 0.325 ± 0.0063 17.82 ± 1.95

optimizing the hyperparameters using an inner loop of five-fold cross-validation within each of the ten
folds (nested cross-validation for model selection [28]). The performance of the classifier is measured
using the area under the receiver operating curve (AUROC) and the area under the precision-recall
curve (AUPRC). We report the mean values of the ten folds for each metric (AUROC and AUPRC).
We compared the performance of our method against Matrix factorization (MF) [10], Inductive Matrix
Completion (IMC)[12], Predictive PharmacoSafety Networks (PPNs) [6], Label propagation (LP)[8],
Feature-derived graph regularized matrix factorization (FGRMF)[11], and side effect popularity
(TopPop)[29]. While every algorithm used the drug side effect matrix X , only IMC, PPNs, LP and
FGRMF could also make use of the drug side information graphs (see section S3 for a details for
each model). Optimal hyperparameters for each model were optimized to maximize the AUROC
(see Table S5-S6). For GSMC, we optimize both models GSMC-c and GSMC-r independently.
Then we set only the hyperparameter p using GSMC-c and GSMC-r with their obtained optimal
hyperparameters. Datasets and code to reproduce the procedure are provided: (This will be provided
with the publication).

Performance evaluation Table 1 summarizes the performance of the different methods. GSMC
greatly outperforms the competitors both in terms of AUROC (by 1.3-19.7%) and in terms of AUPRC
(by 4-30.9%). It is interesting to note that side effect popularity (TopPop) is highly predictive of drug
side effects – this possibly reflects the fact that clinical reports are biased towards popular side effects
such as headache or diarrhea [25]. The optimal value of p in GSMC was 0.45, indicating that although
GSMC-c performs better than GSMC-r individually, the final model weighs the combination in favour
of the latter, which includes side information about drugs. Our method also informs about the relative
contribution of each side information: we found that molecular networks were weighted higher
(αrDT = αrDDI = 1), than networks containing chemical (αrChem = 0.5) or phenotypic (αrDInd = 0.01)
information. Importantly, we observed that the performance of our model is robust with respect to
the setting of the model parameters βs and λs (see the heatmaps in Fig. S4-S5).

When comparing our method with competitor approaches, we found that a partial FGRMF [11] model
based on the DDI graph only (FGRMF-DDI) performs better than the integrated model FGRMF – the
fact that partial models could outperfom the integrated model had already been noted in the original
publication. In the original publication [12], the IMC model was optimized using the observed
entries only. Although matrix completion algorithms are predominantly based on this assumption
[13, 15, 30, 31, 32, 33, 34, 35, 36], we found that taking into account the zeros can greatly improve
the performance (we refer to this variant as IMCZeros in Table 1).

High-rank structure of the drug side effects matrix We verified that our 702× 1, 525 drug side
effect matrix X has a high rank – its value is 7014 (see the spectra in Fig. S2). We observed that the
reconstructed matrices also preserve the high-rank structure, but with smooth filtering of the spectra,
indicating that smaller singular values are important to model weaker regularities in the data (see Fig.
S3).

3Average time of running the algorithm in the ten fold cross-validation.
4This was computed using the Matlab built-in function rank.
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Figure 1: Our drug similarity captures drug clinical and molecular activity (a) AUROC repre-
senting the performance of our drug similarity, side effect similarity (Jaccard) and Tanimoto chemical
similarity at predicting whether a pair of drugs share Anatomical, Therapeutic and Chemical (ATC)
category at each level of the ATC taxonomy. (b) ROC curve representing the performance of our
drug similarity at predicting whether pairs of drugs share a target. Inset AUROC barplot.

Biological interpretability The effectiveness of our model at predicting the presence/absence of
drug side effects prompted us to analyze whether the learned sparse matrices of coefficients are
informative of the biology underlying drug activity. For these experiments, we trained the model using
all the available data, fixed hyperparameters (βr = 4, λr = 1, βc = 2, λc = 0.5, γc = γr = 104)
and without side information graphs to avoid biases.

We first obtained a symmetrized version of the learned matrices R and C, defined as SR := R+RT

and SC := C + CT , respectively. Drug and side effect similarities were then defined as the cosine
similarity between rows of SR and SC , respectively. Drug clinical activity was defined using
the Anatomical, Therapeutic and Chemical (ATC) taxonomy, a hierarchical organization of terms
describing clinical activity where lower levels of the hierarchy contain more specific descriptors.
Following the procedure in [17, 37, 38], we tested whether the similarity between two drugs was
higher when they shared clinical activity.The evaluation was framed as a binary classification problem
where the aim was to predict whether two drugs share an ATC category at different level of the
taxonomy.

Figure 1a shows that our similarity is predictive of shared drug clinical activity. The predictions
improve as we consider terms located lower in the ATC hierarchy (finer granularity) – this correctly
reflects the fact that drug clinical responses become more similar as we move to lower (or more
specific) levels of the ATC hierarchy. The figure also shows a comparison of the performance obtained
for this problem with other methods used elsewhere [37, 39, 38]: Tanimoto chemical similarity and
Jaccard side effect similarity (see section S4 for details). The fact that our similarity performs better
than the Tanimoto chemical similarity in the chemical ATC subclass is quite remarkable, as in our
model drugs are characterized only by noisy information about a few side effects, rather than exact
knowledge of chemical structures.

Encouraged by these results, we decided to test whether our drug similarity could even be used for
the prediction of shared drug targets. Having framed this as a binary classification problem, we
found that our drug similarities are predictive of shared protein targets between drugs (see Figure
1b). Note that, drug side effect similarity had previously been found to be predictive of drug protein
targets at molecular level [40, 38], but the fact that our similarity, that is built using the same data,
works better, means that our model is able to exploit the information more effectively (4% AUROC
improvement). Finally, we found that using the cosine similarity between the rows of SR, instead of
SR directly, slightly improves the prediction performance – this is probably due to the fact that the
cosine similarity is less noisy as it takes into account the similarity between all the neighbourhs of
each drug. Fig. S6 presents the embedding of drugs in 3D based on SR that is obtained applying

7

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 29, 2019. ; https://doi.org/10.1101/652412doi: bioRxiv preprint 

https://doi.org/10.1101/652412


 Lindane
DB00431

paresthesia

dizziness

pruritus

urticaria

pain

alopecia

headache

dermatitis

irritant dermatitis

seizures

Target side effect
  Hypothension

0 0.1 0.2 0.3 0.4
100

101

102

103

C
ou

n
t

Lindane scores 

hypothension rash
diarrhea

a b

score =   

Cl

Cl

Cl

Cl

Cl Cl

Figure 2: Example of explainable predictions for the withdrawn drug Lindane (a). Histogram
of predicted scores for Lindane using GSMC-c; (b) Network diagram despicting how the model
generates the predictions for a given target side effect under study. In the figure, Ω represents the set
of known side effects indexed by i, and j is the target side effect. The thickness of the connections
are proportional to the learned coefficients.

t-SNE [41] together with the heatmap of the mean inter- and intra-class similariy SR for each ATC
anatomical classes.

Finally, we also analyzed the link between side effect similarities and the anatomy/physiology of
the side effect phenotypes. Side effects were grouped based on their anatomical class according
to MedDRA [42]. We found that similarities for two side effects tend to be higher when they are
phenotypically related. Figure S7 shows that, in most cases, the side effect similarity within system
organ classes (top level of the MedDRA hierarchy) is higher than the similarity between classes.
Moreover, side effect similarity is predictive of shared MedDRA category at each of the different
levels and predictions improve as we move to more specific terms in the MedDRA hierarchy.

5 Conclusion and Discussion

In this paper, we show that the drug side effect matrix has a high rank structure, and we presented
a novel high-rank sparse matrix completion approach based on geometric multi-graph learning to
predict side effects of drugs that outperforms state of the art models. To our knowledge, our work
is the first that relies on the high-rank assumption to predict drug side effects. We envision the
application of our geometric sparse matrix completion model to other problems in computational
biology and pharmacology with similar high-rank structure.

An advantage of our method is that the predictions are explainable thanks to the non-negative
constraints on the learned matrices. Fig. 2 shows an example using the GSMC-c model and Lindane,
a drug that has been withdrawn from the market due to side effects that had gone unreported during
clinical trials. Lindane is amongst the drugs with the smallest number of side effects in our dataset
(1.5th percentile) – only 10 side effects are present. Figure 2a shows the histogram of the values
found in the row corresponding to Lindane in XC. Our model predicts that Lindane is likely to cause
hypotension (the score is in the 98.8th percentile) and indeed this side effect has been repeatedly
reported [43, 44]. Figure 2b provides the rationale behind this prediction. The score for Lindane-
hypothension is the sum of the (non-negative) coefficients in the column of C corresponding to
hypotension for the 10 known side effects of Lindane. Notice how seizures, a condition normally
associated to hypothension, explains 37.92% of the score strength. As illustrated in this example,
an analysis of the non-negative coefficients learned by our model can potentially provide biological
clues to generate medical and pharmacological hypothesis when assessing the safety of a drug.
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