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ABSTRACT 

Background and objectives: Cognitive deficits in MS are common, also early in the disease 

course. We aimed to identify if estimated brain age from MRI could serve as an imaging 

marker for early cognitive symptoms in a longitudinal MS study. 

 

Methods: A group of 76 MS patients (mean age 34 years, 71% females, 96% relapsing-

remitting) was examined 1, 2 and 5 years after diagnosis. A machine-learning model using 

Freesurfer-processed T1-weighted brain MRI data from 3208 healthy controls, was applied to 

develop a prediction model for brain age. The difference between estimated and chronological 

brain age was calculated (brain age gap). Tests of memory, attention and executive functions 

were performed. Associations between brain age gap and cognitive performance were 

assessed using linear mixed effects (LME) models and corrected for multiple testing. 

 

Results: LME models revealed a significant association between the Color Naming condition 

of Color-Word Interference Test and brain age gap (t=2.84, p=0.005). 

 

Conclusions: In this study, decreased information processing speed correlated with increased 

brain age gap. Our findings suggest that brain age estimation using MRI provides a useful 

semi-automated approach applying machine learning for individual level brain phenotyping 

and correlates with information processing speed in the early course of MS.  
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INTRODUCTION 

MS is a chronic inflammatory disease of the CNS, mostly diagnosed in young adults. 

Cognitive deficits, affecting up to 70 % of all MS patients, are associated with psychiatric 

symptoms, reduced quality of life and ability to participate in work-related and social 

activities 1. Cognitive deficits may appear early in the disease course and are only mildly 

associated with physical disability 2, 3. The domains most frequently affected in MS are 

information processing speed and memory, followed by executive functions, verbal fluency 

and visuospatial processing 4-6. 

 MRI is an essential tool for diagnosing and monitoring of disease activity and 

progression in MS 7, 8. MRI is highly sensitive to MS related pathological processes such as 

inflammation, demyelination and loss of neurons and is an important tool for visualizing the 

neuropathological substrates in MS 9. 

 Cross-sectional studies have revealed cognitive deficits to be associated with several 

structural MRI (sMRI) markers. Longitudinal studies have shown correlation between corpus 

callosum atrophy 10, thalamus atrophy 11, 12, whole-brain atrophy 13 and reduction in grey and 

white matter volumes 14, 15 and cognitive performance. Especially, thalamus has shown to be 

highly susceptible to retrograde degeneration and scan-scan correlations with longitudinal 

data 16. Thalamus is recognized to be subject to atrophy from the earliest stages of MS, 

especially for primary progressive (PP) MS patients but also in general for MS patients 14. 

Thalamus structure has been linked to decline in cognitive performance in MS 12. 

 A multiparametric MRI study identified that deep reduced gray matter volume and 

regional white matter atrophy were the strongest predictors of overall cognitive dysfunction in 

MS 17. Cognitive decline is found to be associated with increase in T2 lesion volume, cerebral 

atrophy, microstructural damage and cortical lesions 4. 

 Despite extensive research efforts concerning MRI markers in MS, most studies show 

weak associations between neuroradiological disease markers and cognitive performance (the 

cognitive clinico-radiological paradox)4, 18, 19. There is a need to establish new MRI markers 

that robustly relate to cognitive function, with the ability to predict future progression and 

monitor the effects of treatments on the individual level 4. 

 Brain age estimation has emerged as a robust MRI marker, combining sensitive 

measures of MRI-based brain morphometry using machine learning models, to estimate an 

individual brain age when correlating with a large MRI data set of healthy controls 20, 21. 

Having an older-appearing brain is associated with advanced physiological and cognitive 

ageing and mortality in several neurodegenerative and neurodevelopmental disorders 20, 22, 23. 
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To our knowledge, no studies elaborating cognitive function in association with brain age in 

MS have yet been performed. 

 By using data from our prospective, longitudinal study of newly diagnosed MS 

patients, we aimed to evaluate if regional brain age estimation is sensitive to subtle changes in 

cognitive performance. 

 

MATERIALS AND METHODS 

 

Participants 

In total 76 MS patients were recruited as described previously 15, 24. The patients were 

diagnosed in 2009-2012 in accordance with the at that time current McDonald Criteria 25. The 

patients were examined at three time points after being diagnosed with MS; time point 1 after 

15 months (±12, n=76), time point 2 after 28 months (±9, n=75) and time point 3 after 66 

months (±13, n=62). No Evidence of Disease Activity (NEDA-3) was defined as absence of 

both clinical relapses, disease progression and new or contrast enhancing lesions on MRI. 

Disease-modifying treatments (DMTs) were categorized within the following groups; no 

treatment (group 0); glatiramer acetate, interferons, teriflunomide or dimetylfumarate (group 

1) and fingolimod, natalizumab or alemtuzumab (group 2). The disease course was defined 

according to the Lublin criteria 26. 

 

MRI acquisition 

All MS patients were scanned using the same 1.5 T scanner (Avanto, Siemens Medical 

Solutions; Erlangen, Germany) equipped with a 12-channel head coil for up to three times in 

the study with the same MRI scanning sequence across all timepoints. Structural MRI data 

were collected using a 3D T1-weighted MPRAGE (Magnetization Prepared Rapid Gradient 

Echo) sequence, with the following parameters: TR (repetition time) / TE (echo time) / flip 

angle / voxel size / FOV (field of view) / slices / scan time / matrix / time to inversion = 2400 

ms / 3.61 ms / 8° / 1.20 x 1.25 x 1.25 mm / 240 / 160 sagittal slices / 7:42 minutes / 192 × 192 

/ 1000 ms. 

 

MRI pre and postprocessing 

The MRI pre and postprocessing for this data has been described previously 24. Manual 

quality control of the MRI scans from patients was performed by trained research personnel to 

identify and edit segmentation errors where possible (done for 15 MRI scans) and exclude 
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data of insufficient quality or missing sequences (11 MRI scans). Lesions have been shown to 

not substantially influence the output data from Freesurfer or the brain age estimations 24, 27. 

Detailed information on MRI variables is given in supplementary material. 

 

Brain age estimation model 

Detailed information on the brain age estimation model has been described previously 21, 24. 

To summarize we utilized a training set based on MRI scans from 3208 HC (54 % women, 

mean age 47.5 (±19.8) years, age range 12-95 years) obtained from several publicly available 

datasets and processed in the same MRI pipeline (Supplementary Fig. 1). Based on robust 

performance in previous machine learning competitions we chose the xgboost package in R 28 

to create the brain age estimation model. To estimate the performance of the estimation 

model, a 10-fold cross-validation showed consistent performance and generalizability for the 

combined model for both genders (r = 0.91, Supplementary Fig. 2). 

 

Neuropsychological assessment 

The participants were evaluated using a battery of 13 neuropsychological tests at all three 

time points, detailed information regarding the tests can be found in the supplementary 

material. Results from baseline and the first follow-up have been published previously 15, 29. 

We used the raw scores in the analyses. 

 

Statistical analysis 

We used R (R Core Team, Vienna, 2018, version 3.7.0) for statistical analyses. To assess 

reliability of brain age and cognitive tests across time we computed the intraclass correlation 

coefficient (ICC) using the R package “irr” (https://CRAN.R-project.org/package=irr). 

Figures were made using “ggplot2” 30 and “cowplot” (https://CRAN.R-

project.org/package=cowplot) in R. 

 The linear mixed effects (LME) models were performed using the R package “nlme” 

(https://CRAN.R-project.org/package=nlme). All LME models accounted for age, gender and 

months since time point 1 31. To control for multiple testing, we calculated the degree of 

independence between the resulting cognitive data only, by making a 13 x 13 correlation 

matrix based on the Pearson´s correlation between all pair-wise combinations of the cognitive 

variables. Utilizing the ratio of observed eigenvalue variance to its theoretical maximum, the 

estimated equivalent number of independent traits in our analyses was 9.0 32. To control for 
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multiple testing, our significance threshold was therefore adjusted accordingly from 0.05 to 

5.6 x 10-3 32. 

 

Data availability 

Summary data as published in this paper will be available, but other data are not publicly 

available because of patient privacy restrictions decided by the Regional Ethical Committee. 

We may apply for permission to share data with new collaborators, still adhering to patient 

privacy requirements of the “Law of Health Research”. All code needed to replicate our 

described analyses is available upon request from the corresponding author. 

 

RESULTS 

 

Participant demographics and characteristics 

A full summary of the demographic and clinical characteristics is provided in Table 1. At time 

point 1, the MS patients had a mean age of 35.3 years (range 21.3-49.5 years), 71% were 

females and they were diagnosed with MS 15 months previously (range 0-36 months). Mean 

age increased to 36.3 (range 22.7-50.6 years) and 40.4 years (range 25.5-53.7 years) at time 

point 2 and 3, respectively. 96% were diagnosed with relapsing-remitting MS (RRMS). 

NEDA-3 was achieved for a subset of 53% and 44% at time point 2 and 3, respectively. The 

proportion of patients using group 1 DMTs decreased during follow-up period with 65%, 48 

% and 37% at time point 1, 2 and 3. Correspondingly, the use of group 2 DMTs increased 

among the subjects in the same time period from 13% at time point 1 to 23% and 32% at time 

point 2 and 3. 

 

Table 1. Demographic and clinical characteristics of the multiple sclerosis patients. 

 

 
Time point 1 Time point 2 Time point 3 

n = 76 n = 75 n = 62 

(a) Demographic and clinical characteristics    

Female, n (%) 54 (71) 54 (72) 44 (71) 

Age, mean years (range) 35.3 (21-49) 36.3 (22-50) 40.5 (25-53) 

EDSS, median (SD, range) 2.0 (0.9, 0-6) 2.0 (0.9, 0-4) 2.0 (1.3, 0-6) 

Number of total attacks, mean (SD, range) 1.8 (1.0, 0-5) 2.0 (1.0) 2.6 (1.3) 

Months since MS diagnosis, mean (SD, range) 15.2 (9.7, 0-34) 27.8 (9.1, 13-49) 66.4 (13.4, 17-95) 

Years since first symptom, mean years (SD, range) 4.8 (4.4, 0.2-19.4) 5.9 (4.3, 1.3-20.6) 10.0 (4.6 (4.5-23.6) 

NEDA-3, n (%) - 40 (53) 27 (44) 
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Multiple sclerosis classification    

RRMS, n (%) 73 (96) 72 (96) 60 (96) 

PPMS, n (%) 2 (3) 2 (3) 1 (2) 

SPMS, n (%) 1 (1) 1 (1) 1 (2) 

Education    

Years, mean (SD, range) 15.3 (2.3, 10-18) - 16.0 (1.9, 10-18) 

> 15 years education, n (%) 53 (70) - 50 (81) 

DMT    

Group 0, n (%) 17 (22) 22 (29) 19 (31) 

Group 1, n (%) 49 (65) 36 (48) 23 (37) 

Group 2, n (%) 10 (13) 17 (23) 20 (32) 

(b) Self-reported questionnaires    

FSS, mean (SD) 4.2 (1.7) 3.8 (1.9) 4.1 (1.9) 

Clinically significant fatigue (FSS mean ≥ 4), n (%) 38 (51) 25 (45) 33 (53) 

BDI-II sum, mean (SD) 9.1 (6.6) 8.2 (6.2) 7.8 (6.0) 

Clinically significant depressive symptoms (BDI sum ≥ 14(, n (%) 23 (31) 13 (24) 11 (17) 

BDI-II: Beck Depression Inventory-II, DMT: Disease Modifying Treatment, FSS: Fatigue Severity Scale, Group 0; No Treatment, Group 1; 

Glatiramer Acetate, Interferons, Teriflunomide or Dimetylfumarate, Group 2; Fingolimod, Natalizumab or Alemtuzumab, NEDA: No Evidence of 

Disease Activity, PPMS: Primary progressive MS, RRMS: Relapsing-remitting MS, SPMS: Secondary progressive MS 

 

Changes in brain age and brain morphometry over time 

Summary statistics from the brain morphometry, cognitive tests and corresponding principal 

component analysis (PCA) (see supplementary material) are provided in Table 2. Estimated 

brain age gap (BAG, the difference between estimated and chronological brain age). increased 

from 2.8 at time point 1 to 4.6 at time point 3 (LME estimated effect of time: t=0.36, p=0.72). 

Both thalamus volume (t=-2.27, p=0.03) and normalized thalamus volume (t=2.73, p=7.2 x 

10-3) showed significant longitudinal decrease. We also found significant decrease in white 

matter volume (t=-2.30, p=0.02), normalized white matter volume (t=-3.56, p=5.3 x 10-4) and 

normalized brain volume (t=-2.60, p=0.01). Raw morphometric volumes and normalized 

volumes showed significant correlations with white matter volume (r=0.49, p=9.8 x 10-13) and 

thalamus (r=0.59, p=2.2 x 10-16) and non-significant correlations with total brain volume 

(r=0.08, p=0.25) and grey matter volume (r=0.07, p=0.37). 

 

 
Time point 1 Time point 2 Time point 3 All time points (LME models) 

n = 76 n = 75 n = 62 t p Annual change 

(a) MRI characteristics      

Intracranial volume, mean mL (SD) 1593.3 (142.6) 1593.3 (142.6) 1593.3 (142.6) - -  

Brain age, mean years (SD) 38.2 (12.5) 39.9 (13.0) 45.1 (13.3) 0.36 0.72  

BAG, mean (SD) 2.8 (9.0) 3.3 (9.4) 4.6 (9.8) 0.36 0.72  

Brain volume, mean mL (SD) 1144.1 (94.7) 1140.6 (98.9) 1123.0 (98.0) -1.59 0.11  
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WM volume, mean mL (SD) 526.4 (52.7) 526.1 (54.1) 519.3 (56.8) -2.30 0.02 -1.84 ml 

GM volume, mean mL (SD) 642.9 (49.4) 639.8 (52.1) 628.3 (51.1) -0.58 0.56  

Thalamus volume, mean mL (SD) 14.8 (1.5) 14.7 (1.5) 14.3 (1.6) -2.27 0.03 -0.06 ml 

Normalized brain volume (SD) 71.9 (2.5) 71.7 (2.8) 70.8 (2.6) -2.60 0.01 -0.001 

Normalized WM volume (SD) 33.0 (1.5) 33.0 (1.6) 32.7 (1.7) -3.56 5.3 x 10-4 -0.001 

Normalized GM volume (SD) 40.4 (1.9) 40.2 (2.0) 39.7 (2.0) -0.53 0.59  

Normalized thalamus volume (SD) 9.3 (0.7) 9.3 (0.8) 9.1 (0.8) -2.73 7.2 x 10-3 -3.6 x 10-5 

WM hypointensities, mean ml (SD) 3.3 (3.2) 3.06 (3.1) 3.9 (4.5) -0.61 0.54  

(b) Cognitive characteristics     

Processing speed and working memory    

SDMT, mean (SD) 52.4 (9.6) 53.8 (10.0) 54.5 (10.9) 3.51 6.5 x 10-4 0.87 

PASAT 3", mean (SD) 45.8 (10.6) - 48.0 (9.0) 1.62 0.11  

D-KEFS CWIT: Color Naming, mean seconds (SD) 29.7 (5.2) 28.4 (4.8) 27.4 (4.1) -4.25 4.3 x 10-5 -0.50 seconds 

D-KEFS CWIT: Word Reading, mean seconds (SD) 22.8 (4.6) 21.4 (3.7) 21.0 (3.5) -3.47 7.2 x 10-4 -0.34 seconds 

Verbal memory      

CVLT-II: Immediate free recall for list A, n (SD) 61.6 (10.8)3 65.0 (9.6)4 64.9 (10.5)3 2.46 0.02 0.73 

CVLT-II: Immediate free recall for list B, n (SD) 7.4 (2.8)3 9.3 (3.2)4 8.0 (2.9)3 1.85 0.07  

CVLT-II: Short-delay free recall for list A, n (SD) 13.2 (3.2)3 14.1 (2.6)4 14.0 (2.5)3 1.83 0.07  

CVLT-II: Short-delay cued recall for list A, n (SD) 13.4 (2.6)3 14.4 (2.1)4 14.6 (1.9)3 3.33 1.2 x 10-3 0.24 

Visuospatial memory      

BVMT-R: Total recall, mean (SD) 28.2 (5.6)5 29.2 (4.9)5 29.7 (4.4)5 2.99 3.4 x 10-3 0.35 

Executive functions      

D-KEFS CWIT: Inhibition, mean seconds (SD) 49.8 (13.4) 46.7 (11.1) 45.8 (9.5) -3.38 9.9 x 10-4 -1.14 seconds 

D-KEFS CWIT: Inhibition/Switching, mean seconds (SD) 59.4 (18.9) 53.0 (11.1) 55.4 (11.1) -2.02 0.05 -0.86 seconds 

Inhibition minus mean of Color Naming and Word Reading, mean seconds (SD) 23.5 (11.9) 25.3 (12.5) 21.6 (7.7) -2.16 0.03 -0.72 seconds 

Inhibition/Switching minus mean of Color Naming and Word Reading, mean seconds (SD) 33.1 (17.8) 28.1 (9.3) 31.2 (9.7) -1.10 0.28  

COWAT: Letter fluency, total, mean (SD) 44.4 (10.2)6 39.9 (8.9)7 43.4 (11.9)6 1.03 0.30  

COWAT: Category fluency, total, mean (SD) 23.8 (4.7)8 21.9 (4.3)9 24.7 (5.0)8 2.63 9.7 x 10-3 0.43 

Principal Component analysis     

PC 1, mean (SD) 0.67 (2.3) -0.24 (1.9) -0.43 (2.0) -4.38 2.6 x 10-5 -0.23 

PC 2, mean (SD) 0.00 (1.7) -0.16 (1.2) 0.04 (1.1) 1.34 0.18  

Longitudinal changes are estimated using LME models, accounting for time since time point 1, age and gender. Annual change is reported where we found significant longitudinal change (adjusted for age and gender).  

BAG: Brain age gap, BVMT-R: Brief Visuospatial Memory Test – Revised Edition, COWAT: Controlled Oral Word Association Test, CVLT-II: California Verbal Learning Test – Second Edition, D-KEFS CWIT: Delis-Kaplan 

Executive Function System Color-Word Interference Test, PASAT: Paced Auditory Serial Addition Test, SDMT: Symbol Digit Modalities Test. 
1Written version; 2Oral version; 3Standard form; 4Alternate form; 5BVMT-R: Form 1, 2, and 3 were used at their respective time points; 6FAS; 7BIL; 8Animals; 9Clothes 

 

  

Longitudinal cognitive changes 

LME models revealed significant longitudinal improvements in performance for the following 

cognitive tests: SDMT (t=3.51, p=6.5 x 10-4), immediate free recall list for list A of California 

Verbal Learning Test – Second Edition (CVLT-II) (t=2.46, p=0.02), short-delay cued recall 
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trail for list A of CVLT-II (t=3.33, p=1.2 x 10-3), Brief Visuospatial Memory Test -Revised 

(BVMT-R) (t=2.99, p=3.4 x 10-3), category fluency test (t=2.63, p=9.7 x 10-3), the Color 

Naming (t=-4.25, p=4.3 x 10-5) (Fig. 1A; Fig. 1C), Word Reading (t=-3-47, p=7.2 x 10-4) (Fig. 

1B; Fig. 1D), Inhibition (t=-3.38, p=9.9 x 10-4) and Inhibition/Switching (t=-2.02, p=0.05) 

conditions of the Color-Word Interference Test (CWIT). In addition, the difference between 

the Inhibition condition of CWIT and the mean of Color Naming and Word Reading 

conditions decreased over time (t=-2.16, p=0.03). The cognitive tests showed overall high 

ICC (0.32-0.97, Supplementary Table 2). When considering all three time points, the most 

reliable cognitive tests were SDMT (ICC=0.72, p=8.7 x 10-22), the Word Reading condition of 

CWIT (ICC=0.72, p=3.9 x 10-22) and the Color Naming condition of CWIT (ICC=0.66, p=1.1 

x 10-17). Longitudinal changes for all the other cognitive tests are provided in Supplementary 

Fig. 6-12, while a correlation matrix for all the cognitive tests are provided in Supplementary 

Fig. 13. 

 

 
 
Figure 1. Longitudinal results for the Color Naming and Word Reading conditions of the Color-Word 

Interference Test. In (A) and (C) the individual regression lines for all subjects are depicted for the Color 

Naming and Word Reading conditions of CWIT, respectively. The black lines in (A) and (C) are the summarized 

regression lines for all data across all time points with the surrounding confidence interval. Furthermore, in (B) 

and (D) the boxplots for all subjects at all time points are shown for Color Naming and Word Reading, 
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respectively. Both Color Naming (t=-4.25, p=4.3 x 10-5) and Word Reading (t=-3.47, p=7.2 x 10-4) displayed 

significantly decreasing results across the time points, as measured by LME models. 

 

Associations between brain age gap and cognitive performance 

A summary of the multiple regressions analyses for associations between brain imaging 

markers and the cognitive tests are provided in Table 3 (see Supplementary Table 4 for 

complete results). After correcting for multiple testing there was a significant positive 

association between the Color Naming condition of CWIT and estimated BAG across all time 

points (t=2.84, p=5.4 x 10-3), indicating slower speed with higher brain age gap (Fig. 2). The 

associations between BAG and the Color Naming condition of CWIT remained after 

accounting for fatigue, years of education, disease duration, depressive symptoms, intracranial 

volume (ICV) and raw scores from the vocabulary task of Wechsler Abbreviated Scale of 

Intelligence. LME revealed no significant association between the longitudinal changes in the 

Color Naming condition of CWIT and BAG (stats for the interaction term: t=0.68, p=0.50). 

 

Table 3. Summary of the correlations between the cognitive tests and MRI variables. 

 

  MRI variables 

  Brain age gap Thalamus volume 

Test variables t p t p 

Symbol Digit Modalities Test     

Time point 1 -1.58 0.12 1.49 0.14 

Time point 2 -0.48 0.63 0.67 0.51 

Time point 3 -0.39 0.70 1.85 0.07 

All time points -0.37 0.71 1.73 0.09 

CVLT-II: Immediate free recall for list A     

Time point 1 0.34 0.73 0.99 0.33 

Time point 2 1.11 0.27 0.49 0.63 

Time point 3 -0.27 0.79 3.1 2.8 x 10-3 

All time points 0.23 0.82 1.94 0.05 

CVLT-II: Immediate free recall for list B     

Time point 1 -1.12 0.27 3.04 3.4 x 10-3 

Time point 2 1.05 0.30 0.87 0.39 

Time point 3 0.64 0.53 2.69 0.01 
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All time points 0.34 0.73 2.71 7.8 x 10-3 

CVLT-II: Short-delay free recall for list A     

Time point 1 0.58 0.56 0.77 0.45 

Time point 2 1.79 0.08 -0.80 0.43 

Time point 3 -0.10 0.92 2.98 4.3 x 10-3 

All time points 1.11 0.27 0.99 0.32 

CVLT-II: Short-delay cued recall for list A     

Time point 1 0.64 0.53 -0.28 0.78 

Time point 2 1.17 0.25 0.86 0.39 

Time point 3 -0.26 0.80 2.93 4.9 x 10-3 

All time points 0.99 0.33 0.97 0.34 

D-KEFS CWIT: Color naming     

Time point 1 0.56 0.58 -1.26 0.21 

Time point 2 0.82 0.42 0.07 0.95 

Time point 3 0.73 0.47 -2.16 0.036 

All time points 2.84 5.4 x 10-3 -1.75 0.08 

D-KEFS CWIT: Word reading     

Time point 1 1.36 0.18 -3.28 1.6 x 10-3 

Time point 2 1.66 0.10 -0.79 0.43 

Time point 3 0.79 0.43 -3.02 3.8 x 10-3 

All time points 1.36 0.18 -3.09 2.5 x 10-3 

First PCA component     

Time point 1 1.08 0.28 -2.08 0.04 

Time point 2 -1.02 0.31 -1.02 0.31 

Time point 3 0.08 0.94 -3.80 3.6 x 10-4 

All time points -0.42 0.68 -2.23 0.03 

Second PCA component     

Time point 1 -1.62 0.11 1.43 0.16 

Time point 2 -1.79 0.08 0.40 0.69 

Time point 3 -0.33 0.75 0.35 0.73 

All time points -1.54 0.13 1.28 0.20 

All longitudinal tests were run in R using the "nlme" package to calculate LME models, also accounting for months since 

time point 1, age and gender as fixed parameters. The linear models are calculated using the "stats" package in R, also 
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accounting age and gender as fixed parameters. Brain age gaps are corrected for age and gender effects. Significant 

associations are marked as italic, while the associations still significant after correcting for multiple comparisons are marked 

bold and with thicker borders around. 

 

  

 
 

Figure 2. Associations between estimated brain age gap and the Color Naming condition of the Color-

Word Interference Test. In (A), (B), and (C) the linear regression lines and the corresponding individual results 

for the Color Naming condition of CWIT across the estimated brain age gaps are shown at time point 1, 2 and 3, 

respectively. In (D) the summarized results for Color Naming at all time points across the estimated brain age 

gaps are displayed. Using an LME model there was a significant positive association between estimated BAG 

and Color Naming (t=2.84, p=5,4 x 10-3), also significant after correcting for multiple testing. The test results for 

all subjects are depicted using unique coloured circles for each subject. 
 

Associations between thalamus volume and cognitive performance 

After correcting for multiple testing, LME revealed a significant negative association between 

the Word Reading condition of CWIT and thalamus volume across all time points (-3.09, 

p=2.5 x 10-3), suggesting slower performance with smaller thalamus volumes (Fig. 3). We 

found no significant association between the longitudinal changes in the Word Reading 

condition of CWIT and thalamus volume (stats for the interaction term: t=1.55, p=0.12). The 

association between thalamus volume and the Word Reading condition of CWIT remained 
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after accounting for fatigue, years of education, disease duration, depressive symptoms, ICV 

or raw scores from the vocabulary task of Wechsler Abbreviated Scale of Intelligence. 

 

 
 

Figure 3. Associations between thalamus volume and the Word Reading condition of the Color-Word 

Interference Test. In (A), (B), and (C) the linear regression lines and the corresponding individual results for 

the Word Reading condition of CWIT across the estimated brain age gaps are shown at time point 1, 2 and 3, 

respectively. In (D) the summarized results for Word Reading at all time points across the estimated brain age 

gaps are displayed. Using an LME model there was a significant negative association between thalamus volume 

and Word Reading (t=-3.09, p=2.5 x 10-3), also significant after correcting for multiple testing. The test results 

for all subjects are depicted using unique coloured circles for each subject. 

  

DISCUSSION 

Using established machine learning methods for brain age estimation, we tested if estimated 

brain age was associated with early cognitive decline in a longitudinal study of MS patients. 

In addition, we investigated associations with established MRI features and cognitive 

performance. We found that reduced information processing speed was associated with 

increased brain age gap and smaller thalamus volumes for patients in the early course of MS. 

Previous studies have shown that the first symptom of cognitive decline MS is impairment in 

information processing speed 4, 33, as our results also suggest with associations between MRI 

markers and decreased information processing speed. We show that brain age estimation 
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correlates with cognitive decline measured by information processing speed in the early 

course of MS. 

 In our study, increasing brain age gap were significantly associated with slower 

performance for the Color Naming condition of CWIT across all time points, corresponding 

to an estimated 0.13 seconds increase in completion time for every year increase in brain age 

gap. This finding is in line with a recent study reporting lower processing speed as measured 

using the Stroop test with higher brain age gap in healthy individuals covering large parts of 

the adult lifespan 22. Supporting the sensitivity to individual differences in relevant clinical 

and cognitive traits, brain age gap has also been linked to negative symptoms in patients with 

schizophrenia, cognitive impairment in patients with dementia, and symptom burden in 

patients with MS 21. A study investigating brain age prediction over the lifespan revealed that 

individuals with major objective cognitive impairment had 2.1 years higher estimated brain 

age compared with a group of individuals with no objective cognitive impairment 23. Reduced 

information processing speed is known to appear early and with an increasing prevalence 

throughout the disease course of MS 4. 

 We found that reduced Word Reading condition of CWIT performance was 

significantly associated with smaller thalamus volume across time points corresponding to 

0.87 seconds slower completion time for every ml reduction in thalamus volume. Previous 

studies have documented the importance of thalamic changes for cognitive performance in 

MS 12 while a longitudinal study has shown thalamic atrophy to be evident from the earliest 

stages in MS 14. Although the current results suggest a relevant role of the thalamus in 

processing speed, the extended brain networks supporting cognitive function are distributed 

and comprise large parts of the brain. Hence, combining information from various structures 

and imaging modalities is likely to improve sensitivity. Indeed, increased sensitivity and 

specificity to identify MS patients with severe cognitive impairment have been found when 

including other MRI modalities, such as resting-state functional MRI and diffusion tensor 

imaging 12, which is also in line with a study comparing the sensitivity to cognitive 

performance between various brain age estimations based on different combinations of 

structural MRI and diffusion tensor imaging 22. 

 Our results did not uncover relevant associations between imaging variables and 

SDMT. The SDMT is currently a widely used screening test for reduced information 

processing speed in a clinical setting and is the suggested sentinel test for cognitive 

impairment in MS 6, 33. The correlations between SDMT and the Color Naming and Word 

Reading conditions of CWIT were significant in our study. The lack of significant 
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correlations between SDMT and the MRI markers across all time points might be due to the 

fact that our patients were at an early stage in their disease course. In accordance with the 

national guidelines for MS care in Norway, a large proportion of the MS patients in this study 

were treated with high efficacy DMTs from early on, possibly resulting in the higher number 

of NEDA patients in the study. As described earlier, on average our MS patients even 

performed better on some cognitive domains compared to healthy controls 15. In the same 

study, patients with NEDA had on average stable cognitive performances one year after the 

first visit 15. Findings from another MS sample also related lower depressive symptoms with 

improved cognitive performance 3. 

 No significant longitudinal correlations between changes in MRI parameters and 

cognitive test performance after the five year follow-up were found. One contributing factor 

to this might be the subtle cognitive and morphological changes observed in our patients. 

Significant improvements were found across the larger part of our administered cognitive 

tests at time point 1, 2 and 3. These improvements were most likely due to practice-related 

effects 34. Similar increases in test performance was also observed for SDMT in a study of 

Danish MS patients, where they found continuous enhancement after repeated monthly testing 

and more pronounced practice effect at lower EDSS levels 35. 

 Some additional limitations have to be considered when interpreting our results. First, 

we did not have access to longitudinal matched healthy controls, which would have enabled 

us to directly compare both the brain imaging and cognitive data across time points. Secondly, 

our current brain age estimation model was based solely on structural brain imaging data 

whereas some studies have shown increased precision when incorporating additional imaging 

modalities such as diffusion tensor imaging and functional MRI. In addition, the study does 

not allow us to make causal interference. 

 To conclude, this longitudinal MS study showed reduced information processing 

speed to be associated with increased brain age gap for patients in the early course of MS. Our 

results fit with previous findings, where reduced information speed is found to be an early 

symptom of cognitive decline in MS. In conclusion, we show that brain age estimation using 

MRI provides a useful semi-automated method for individual level brain phenotyping and 

correlates with cognitive decline measured by information processing speed. 
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