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Abstract

While many transcriptional profiling experiments measure dynamic processes that change over time,

few include enough time points to adequately capture temporal changes in expression. This is especially

true for data from human subjects, for which relevant samples may be hard to obtain, and for develop-

mental processes where dynamics are critically important. Although most expression data sets sample

at a single time point, it is possible to use accompanying temporal information to create a virtual time

series by combining data from different individuals.

We introduce TEMPO, a pathway-based outlier detection approach for finding pathways showing

significant temporal changes in expression patterns from such combined data. We present findings from

applications to existing microarray and RNA-seq data sets. TEMPO identifies temporal dysregula-

tion of biologically relevant pathways in patients with autism spectrum disorders, Huntington’s disease,

Alzheimer’s disease, and COPD. Its findings are distinct from those of standard temporal or gene set

analysis methodologies.

Overall, our experiments demonstrate that there is enough signal to overcome the noise inherent in

such virtual time series, and that a temporal pathway approach can identify new functional, temporal,

or developmental processes associated with specific phenotypes.

Availability: An R package implementing this method and full results tables are available at

bcb.cs.tufts.edu/tempo/.

1 Introduction

Understanding the dynamic aspects of molecular processes is essential, especially for inherently temporal

functions such as those involved in development, disease progression, or aging (Przytycka et al., 2010; Yosef

and Regev, 2011). Transcriptional profiling, whether by microarrays, RNA-seq, or other technologies, has

proven useful for identifying temporal regulatory programs.

However, the collection of data from large numbers of time points has proven to be prohibitively expensive

and fraught, particularly in cases involving human subjects (Zinman et al., 2013). Thus the number of

available data sets that include sufficient temporal resolution to solve key problems of interest remains
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limited. In most available human data sets, samples are taken only during medically indicated procedures,

often yielding a single time point per individual.

If temporal information is available, however, it is possible to combine multiple samples from individuals

at different ages or times into a single virtual time-series. Here we describe a method using temporal models

of expression and functional gene sets to identify how and why those models break down in disease states.

We do this using existing data sets featuring a single time point per individual, and we demonstrate that by

so doing we can learn new things about the temporal and developmental processes associated with specific

phenotypes.

1.1 Previous Work

The analysis of time series is a well-established field of data science whose relevance to expression data

analysis has long been known. Computational methods specifically developed for the analysis of time series

expression data are the subject of many papers and reviews (Spies and Ciaudo, 2015; Bar-Joseph, 2004;

Bar-Joseph et al., 2012)). For example, several approaches to clustering temporal gene expression profiles

have been proposed (e.g., (Ernst and Bar-Joseph, 2006; Androulakis et al., 2007; Bar-Joseph et al., 2012;

Ramoni et al., 2002)).

Other methods have been designed to detect significantly different temporal expression profiles across

experimental groups, conditions, or phenotypes. Most methods that do so (e.g., (Conesa et al., 2006; Bar-

Joseph et al., 2003; Stegle et al., 2010)) use similar paradigms: each gene in each condition has an expression

profile that is modeled as a function of time. A score is generated for each gene, capturing the difference

between the models for the different conditions; genes are then ranked by their scores.

Most effective approaches, including those cited here, were designed specifically for time series expression

data sets, which typically include only small numbers of samples for each condition and few time points.

Notably, none of these methods explicitly scores gene sets or pathways, though it would be possible to adapt

any of them to do so by using the gene scores as ranks and assessing gene set enrichment among the ranked

gene lists.

However, of the methods we surveyed, only maSigPro (Conesa et al., 2006) provides publicly released code

and has properties suitable for use with virtual time-series. Specifically, because virtual time series combine

the availability of data from whatever time points appear in the static source data, they rarely feature

matched case and control samples taken at consistent time points. This property rules out straightforward

utilization of time series analysis methods that require the same set of time points across both conditions,

that don’t allow for missing data, or that don’t allow for multiple samples at the same time point. How to

adjust such methods or their input data to allow their use with virtual time series is not readily apparent.

1.2 Our Contributions

Here, we introduce an approach we call TEMPO (TEmporal Modeling of Pathway Outliers) to identify

pathways or gene sets that show phenotype-associated temporal dysregulation. Given a gene expression

data set where each sample is characterized by an age or time point as well as a phenotype (e.g. control

or disease), and a collection of gene sets or pathways, TEMPO includes the following steps. First, for

each set of genes in the gene set collection, it builds a partial least squares model to predict the age of

the control samples as a function of the expression of the genes in that gene set. Prediction accuracy in
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controls is assessed by cross validation. It then uses the same model, trained on all the control samples, to

predict age in the samples with the phenotype of interest. The gene sets are ranked by a scoring function

that prioritizes models that predict age well in the controls but poorly in the disease samples, suggesting

temporal dysregulation. We assess the significance of the observed scores via permutation.

Note that finding models that perform well in control samples but break down in other conditions is the

underlying theme of several existing outlier detection methods, including our own (Noto et al., 2010, 2012).

Such strategies have therefore been widely used in a variety of contexts. However, this is the first application

of this methodology to temporal models of transcriptional profiles.

We compare the ranked lists of gene sets output by TEMPO to those from two other analyses of the

same data sets: Gene Set Enrichment Analysis (GSEA) (Subramanian et al., 2005), a standard gene-set

enrichment approach to differential expression analysis that makes no explicit use of temporal information,

and maSigPro (Conesa et al., 2006), the only comparator method whose use on virtual time series data is

straightforwardly feasible for the reasons indicated above. Still, because maSigPro itself does not look at

functional enrichment, we need to translate its results at the gene level to the level of gene sets. To do so,

we rank the genes by their maSigPro scores and then use GSEA to identify functional enrichment in the

ranked list.

We demonstrate TEMPO’s utility on four previously published expression data sets, three of which

examine peripheral blood in patients with neurological conditions. The first of these is a developmental

microarray data set comparing gene expression in children with or without autism spectrum disorders. The

next two data sets examine neurodegenerative disorders whose progression correlates with age: a microarray

data set measuring expression in the blood of people with or without Alzheimer’s disease; and an RNA-seq

data set that measures gene expression in adults of different ages with Huntington’s disease, either before

or after the onset of symptoms, or in controls. The fourth data set looks at expression in airway epithelial

cells of smokers with and without COPD.

We initially chose Gene Ontology (GO) Biological Process terms (Ashburner et al., 2000) as our gene

set collection for the experiments described here. However, for the autism data set, we augmented the

GO annotations with annotations from the DFLAT project, which incorporates additional developmentally

relevant annotations into the GO framework (Wick et al., 2014).

Comparing the output of different analytical methods can be complex, because related functional terms

often involve similar groups of genes, so the gene sets are not independent of each other. For example, if one

method implicates “neuron apoptotic process” and another “regulation of neuron death,” two terms that

share a common parent in the GO hierarchy (“neuron death,” GO:0070997), we would like to capture this

relationship. We therefore use a measure based on semantic similiarity (Resnik, 1999) to assess relationships

between the top gene-set lists output by different analytical methods.

Our examples demonstrate that TEMPO can identify age- and phenotype-related changes in expression

that differ from those found by either the static analysis of GSEA or the traditional temporal modeling

analysis in maSigPro. Further, our work illustrates the power of combining existing static data into virtual

time series to study pathway-related temporal changes in dynamic processes.
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Figure 1: PLSR prediction for an arbi-

trary gene set G1. For j training samples,

ages are predicted using j PLSR models in

cross-validation. For the k− j disease sam-

ples, ages are predicted using a single PLSR

model trained on all training samples. The

difference between the predicted and actual

ages for sample Si is the prediction error

EG,Si
.

Figure 2: Predicted age v. actual age for

hypothetical gene sets G1, G2, and G3 for

control (left) and disease (right) samples.

Gene sets like G1 have higher scores (Eq.

1).

2 Methods

2.1 TEMPO

2.1.1 Computational model to predict age

For a gene set G, TEMPO trains a partial least squares regression (PLSR) model (Wold, 1985), using the

pls package in R, to predict age as a function of the expression of all genes in G. Ages for all the control

samples C = {S1, S2, ...Sj} are predicted in leave-one-out cross-validation using j separate PLSR models

M1,M2, ...Mj (Figure 1). PLSR models with up to 10 components were built for each gene set; we then chose

the most accurate of these models in leave one out cross-validation on the control samples, and used that

model for predicting ages in the test samples. (Note that this step is not illustrated in Figure 1 to improve

readability.) The best single size is chosen and used to train one final model Mj+1 on the control samples

C = {S1, . . . , Sj}. We then determine if the model is significantly predictive via permutation testing. For a

gene set G, we compare to 500 randomly generated gene sets made up of |G| randomly selected genes, and

train predictive models using those gene sets using the same process. We compare the control mean-squared

error in cross validation for the model for G to that of each of the randomly generated gene sets, and say

the model for G is significant if its control MSE is in the bottom 5% of the distribution of MSEs derived

from these random sets (i.e., that the p-value associated with the control MSE for G is below 0.05). Then,

if the model is significant by these criteria, ages for disease samples D = {Sj+1, . . . , Sk} are predicted using

Mj+1. Note that we also considered using other regression models in place of PLSR (see Appendix A), but

we found PLSR to be most effective.
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2.1.2 Scoring gene sets by performance on cases and controls

For each gene set G that has a significant model by the criteria described above, we have a set of age

predictions for all control samples C and all disease samples D. We obtain a vector of prediction errors for

G, the differences between the predicted ages for G and the actual ages. We call this vector of prediction

errors EG, where EG,s is the prediction error for sample s under gene set G. Using these errors, we determine

the degree to which G is temporally dysregulated by calculating a score that incorporates the accuracy of

the predictions for the control samples and the inaccuracy of the predictions for the disease samples.

If our data sets behave as expected, these errors can be assumed to be normally distributed (although

we assess and relax this assumption in Appendix B). Let µG and σG be the mean and standard deviation

of the observed prediction errors on the control samples for gene set G, and let NG(x) be the probability of

seeing an error at least as large as x under the normal distribution with mean µG and standard deviation

σG.

We then calculate the following score for gene set G, control sample set C, and disease sample set D:

Score(G) =
|C|

∑
s∈D −log(NG(EG,s))

|D|
∑

s∈C −log(NG(EG,s))
(1)

This is essentially a normalized ratio of the average “surprisal” score (Shannon, 1948) of the disease

samples to that of the control samples. It is highest when the disease sample predictions are surprisingly

bad, using an accurate model trained on the controls.

This score also captures our criteria for interesting gene sets. In gene sets where a reliable temporal

pattern of expression in the controls breaks down in disease, we would be able to build a regression model

that accurately predicts age in the control samples, but is unable to predict age accurately in disease, yielding

many samples with improbable prediction errors and a high score. In gene sets where this is not the case,

the regression model will have the same predictive power regardless of class label, yielding low scores (Figure

2).

The |C|
|D| factor normalizes the score for the size of the control and disease sample sets, allowing meaningful

comparison of results across experiments.

2.1.3 Significance of Observed Scores

We estimate statistical significance via a permutation testing procedure. Specifically, we generate a set of

500 random permutations of size-matched gene sets. We permute by size-matched gene sets instead of the

more traditional permutation of class labels because the ratio of the average surprisal scores used in our

scoring function can be sensitive to differences in the age distribution between cases and controls, a common

confounding factor in many data sets. Such differences can result in situations where even extremely poor

models of age as a function of gene expression would be reported as significant, as in the hypothetical example

in Figure 3.

For each permutation P in this set, we build a new temporal model on the same set of “control” samples

and recompute the score of the gene set for that permutation (we call this Score(P )). The reported p-value

for G is simply the percentage of all permutations where Score(P ) ≥ Score(G). To account for multiple

hypothesis testing, we calculate false discovery rates using the Benjamani-Hochberg procedure (Benjamini

and Hochberg, 1995).
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Figure 3: Predicted age v. actual age for a hypothetical gene set with no age-related signal, for control

samples on the left and disease samples on the right. PLSR has no true predictive power in this gene set;

it predicts almost the same age regardless of input. However, due to the different age distributions in the

control and disease sets, the average surprisal ratio term of Equation 1 is relatively high, because the control

predictions are close to the ideal x = y line, while the disease predictions are farther from it. Permuting

by size-matched gene sets, rather than scrambling class labels, preserves this property in the permutations,

ensuring that such gene sets are not inappropriately reported as significant.

We report results for gene set G only if raw p ≤ 0.05 and FDR ≤ 0.25. Since this method is primarily

intended for hypothesis generation, we might still be interested in gene sets with a false discovery rate this

large; this is the default cutoff for the GSEA software as well (Subramanian et al., 2005). Both of these

values (raw p and FDR) are reported in our full results tables online.

2.2 Expression data sets

Autism spectrum disorders: The autism data set, referred to as ASD, is based on a study by Mark Alter,

et al. (Alter et al., 2011), that includes expression microarray data from peripheral blood lymphocytes for

59 control patients and 72 patients with autism spectrum disorders, with ages ranging from two to fourteen

years. The data are available as GSE25507 in the Gene Expression Omnibus (GEO) database (Edgar et al.,

2002); from this data set, we used all the samples for which subject ages were available.

Alzheimer’s Disease: The Alzheimer’s disease data set, referred to as AD, is based on a subset of the

data used in a study by Sood, et al. (Sood et al., 2015) from the AddNeuroMed consortium (Lovestone et al.,

2009). We include all samples from Batch 1 (available as GSE63060 on GEO) marked as “included in the

case-control study,” for a data set consisting of blood gene expression data for 49 samples from Alzheimer’s

patients and 67 from roughly similar-aged controls. All of these samples were annotated with patient ages

in integer years.

Huntington’s disease: The Huntington’s disease data set, referred to as HD, includes normalized gene

counts from an RNASeq experiment characterizing blood from Huntington’s disease patients (Mastrokolias

et al., 2015). Its GEO accession number is GSE51779. The data set includes 33 control samples and 91

Huntington’s disease carriers, 27 of whom are asymptomatic (defined as patients for whom the motor score

component of the Unified Huntington’s Disease Rating Scale (van Duijn et al., 2008) is 5 or less). All of

these samples were annotated with patient ages in years to .01 precision, ranging from about 20 to 80 years.

COPD: The COPD data set is based on microarray data from studies by Carolan, et al. (Carolan et al.,

2006) and Tilley, et al. (Tilley et al., 2009), available as GSE5058 on GEO. This data set contains small

airway gene expression data from 15 smokers with COPD and 12 smokers who are apparently healthy. Each
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patient has an integer age in years.

2.3 Gene set collections

For the HD, AD, and COPD data sets, we used Gene Ontology (Ashburner et al., 2000) (GO) Biological

Process gene sets. However, for the ASD data set, we used a version of the GO collection augmented with

additional developmentally relevant annotations from the DFLAT project (Wick et al., 2014). Specifically,

the Feburary 19, 2016 gene set gmt files were downloaded from the DFLAT web site (dflat.cs.tufts.edu). The

Gene Ontology collection, generated at the same time as the DFLAT gene sets, was obtained from the same

web site. Both the DFLAT and GO collections were filtered to remove all gene sets of size greater than 500

or less than 5, resulting in a total of 8416 DFLAT gene sets and 6484 GO gene sets.

2.4 Comparator methods

2.4.1 GSEA

To account for differences in expression that are not related to age or time, we compare to Gene Set

Enrichment Analysis (Subramanian et al., 2005). GSEA ranks gene sets by how represented genes from

a given gene set are at the top (or bottom) of the list of all genes ranked by differential expression between

two conditions. In this mode, using the actual expression data as input, GSEA does not account for any

differences in expression as a function of time.

2.4.2 maSigPro

To apply maSigPro to our temporal data sets, we first translated each of our static expression data sets into

a suitable time series data set, with the number of replicates equal to the number of patients and each with

a single time point.

We used the R package released with maSigPro (Conesa et al., 2006) to generate scores for each of the

genes measured in each of our data sets. We then needed to extend these results to identify implicated gene

sets rather than individual genes. We therefore used the “preranked” option in GSEA, with the rankings

corresponding to the maSigPro scores, to identify differentially-expressed gene sets. It is worth noting that

with preranked data, GSEA assesses significance by permuting gene sets, since it cannot permute class labels.

2.5 Comparing gene set lists

Semantic similarity: To compare the similarity of the top-scoring gene sets from different analyses,

exact-match methods are insufficient, because different analyses may find different but related terms; one

may discover “apoptotic process” while another may highlight “neuron apoptotic process.” To capture these

semantic relationships, we use pairwise Resnik semantic similarity scores (Resnik, 1999). All scores were

calculated using the GoSemSim (Yu et al., 2010) R package. Although GoSemSim offers tools for calculating

semantic similarity between sets of GO terms, we found these numbers difficult to assess in absolute terms.

To address this, we instead examine which terms have significantly similar matches in the other term set.

That is, given two collections of terms T1 and T2, for each term ti in T1, we want to know if there exists a

semantically similar term tj in T2. Given the distribution of pairwise Resnik similarity scores involving ti, we
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Table 1: Number of semantically similar gene sets (with significance) from the top 40 TEMPO results for the data set in each

row and the top 40 results of the indicated comparator method run on the same data set.

TEMPO on GSEA maSigPro+GSEA

Autism 0 (1.000) 1 (0.958)

Huntington’s 0 (1.000) 1 (0.958)

Alzheimer’s 0 (1.000) 0 (1.000)

COPD 2 (0.838) 1 (0.958)

say a term tj is semantically similar to ti if Resnik(ti,tj) is above some chosen cutoff c. For our experiments

here, we chose c = 0.6, which corresponds to approximately the top 0.3% of pairwise Resnik scores between

all biological process gene sets, and compare between collections of gene sets of size 40. The number 40 was

not tuned, but was chosen (somewhat arbitrarily) to represent a good variety of top functions in the output.

We note that it is likely that some number of gene set pairs between two collections are semantically

similar by chance alone. We quantify this likelihood by permutation. For each permutation i, we generate

two random collections of 40 terms and determine the number of terms ni from the first collection that have

semantically similar terms in the second. We do this 500 times, and compare the number of similar terms

n from T1 to T2 to this distribution to obtain the likelihood of seeing as much similarity by chance; this is

simply the fraction of permutations where ni ≥ n. For |T1| = |T2| = 40, we found that an overlap of at least

8 semantically similar gene sets is required for the likelihood of seeing such overlap by chance to be below

0.05.

Correlation: We also consider the Spearman’s rank-correlations between full gene set lists from two

different analyses. While such an approach penalizes changes in the rankings of even insignificant gene sets,

it has the advantage that it involves all gene sets equally. While high TEMPO and high GSEA scores denote

something comparable, low TEMPO scores denote a lack of temporal expression patterns and low GSEA

scores can indicate enrichment in the control condition. Thus we do not consider Spearman correlations

between either GSEA or maSigPro and TEMPO to be meaningful. Using the absolute value of the GSEA

score might be more appropriate for such comparisons, but again it is not clear that such values would be

comparable with rankings by other methods.

3 Results and Discussion

3.1 TEMPO finds unique temporal dysregulation in disease classes

In all four data sets, TEMPO identifies pathways that are known to change with age, but whose normal

temporal trajectory is disrupted in disease. The observed temporal dysregulation is in many cases consistent

with prior knowledge and sometimes consistent with identified or proposed therapeutic targets for treating the

indicated disease. Thus, novel findings from this approach may suggest possible new targets or interventions.

The TEMPO results differ in many respects from the gene sets returned by comparator methods GSEA

and maSigPro. No exactly identical gene sets appeared in the top 40 listed in any TEMPO analysis and any

comparator method. Table 1 shows the number and significance of semantically similar gene sets observed

between TEMPO and the comparator methods. Furthermore, in several cases, either GSEA or maSigPro

does not identify any significant gene sets. In such cases, we nonetheless compared the semantic similarity
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Figure 4: Predicted age vs. actual age for both control (black circles, left) and autistic (orange squares,

right) subjects for genes with the annotation “Regulation of serotonin uptake” on the ASD data. Each

dot represents one patient. Predicted ages are those produced by TEMPO using the model built from the

controls, based only on the expression values of genes in the regulation of serotonin uptake pathway.

of the top 40 highest-scoring gene sets from each method to those in the TEMPO results.

The differences between the TEMPO and GSEA results are not unexpected. Gene sets with high GSEA

scores will not necessarily have high TEMPO scores, because gene sets where there is no pattern of expression

as a function of time will not be scored highly by TEMPO regardless of any time-independent differential

expression that may exist.

For space reasons, full results tables and scatter plots for all methods and data sets are available online

at bcb.cs.tufts.edu/tempo/tempoV4/ and top results for all methods and data sets are available in the

supplemental material. However, we discuss some example results for each data set, and we reproduce part

of the TEMPO results table for the ASD data set in the main manuscript as an example.

3.2 ASD developmental dysregulation: neurotransmitters and inflammation

In the ASD expression data, TEMPO identified 235 significant gene sets. A selection of the highest-scoring

of these is shown in Table 2. Common themes in this list include inflammation, angiogenesis, PTEN activity,

developmental processes, and neurotransmitter signaling.

Results from both a static GSEA analysis and the maSigPro-plus-enrichment analysis on the same data

set are also available on the TEMPO web site. Neither GSEA nor maSigPro analysis returns any gene sets

with FDR ≤ .25, though both have several hundred gene sets with raw p ≤ .05.

The role of serotonin and other neurotransmitters in the etiology of ASD has long been investigated (Ritvo

et al., 1970; Cook et al., 1997). Although serotonin activity is evident very early in human development (Mur-

rin et al., 2007), the nature and expression of serotonin response pathways change considerably during both

childhood and adolescence (Crews et al., 2007), consistent with observations that children and adults respond

differently to drugs targeting this system (Varigonda et al., 2015). Further, while SSRIs are often used to

treat ASD patients, there is considerable evidence of increased adverse events in the pediatric autistic popu-

lation, suggesting increased care is needed in the use of these drugs (Kolevzon et al., 2006). Understanding

specifically how the expression of serotonin-related genes is expected to change with age in the neurotypical

population, and how autistic patients differ from these expectations, may be key to the better prediction of

tolerance and appropriate dosage in this population.
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Table 2: A selection of high-scoring gene sets in ASD, ranked by TEMPO score.

Control MSE Score Score

Rank Gene Set MSE Score p-value p-value FDR

1 positive regulation of glomerulus development 3.816 3.899 0.036 0.002 0.075

2 secretion by cell 2.760 2.581 0.004 0.004 0.075

4 phosphatidylinositol biosynthetic process 3.224 2.456 0.004 0.004 0.075

5 positive regulation of growth 3.076 2.405 0.008 0.002 0.075

8 phospholipid metabolic process 3.154 2.343 0.012 0.002 0.075

9 myeloid leukocyte activation 3.092 2.343 0.008 0.002 0.075

11 phosphatidylinositol metabolic process 3.522 2.310 0.036 0.004 0.075

13 positive regulation of sequence-specific DNA 2.746 2.283 0.006 0.006 0.075

binding transcription factor activity

14 regulation of integrin-mediated signaling pathway 2.932 2.274 0.002 0.004 0.075

19 inflammatory response 3.281 2.189 0.018 0.010 0.086

22 negative regulation of neurotransmitter uptake 3.248 2.169 0.002 0.002 0.075

23 regulation of serotonin uptake 3.248 2.169 0.004 0.002 0.075

24 negative regulation of serotonin uptake 3.248 2.169 0.004 0.002 0.075

27 myeloid dendritic cell activation 3.036 2.139 0.006 0.006 0.075

31 central nervous system neuron differentiation 3.333 2.122 0.020 0.012 0.086

32 phospholipid biosynthetic process 3.324 2.120 0.016 0.010 0.086

40 nervous system development 3.225 2.090 0.048 0.010 0.086

44 positive regulation of extrinsic apoptotic 3.421 2.046 0.006 0.004 0.075

signaling pathway in absence of ligand

46 cytokine production 3.470 2.028 0.018 0.010 0.086

48 positive regulation of cysteine-type endopeptidase 3.418 2.021 0.024 0.014 0.086

activity involved in apoptotic process

Figure 4 plots the actual and TEMPO-predicted ages for the gene set “regulation of serotonin uptake.”

The plot on the left shows the relatively accurate predictive age models in the controls, while that on the

right show how the developmental program of the genes in the pathway breaks down in the group of subjects

with ASD.

Inflammatory pathways have also been linked to ASD (Croonenberghs et al., 2002), and an increase in

the circulating frequency of myeloid dendritic cells, which modulate immune response, has been observed in

children with ASD compared to controls (Breece et al., 2013). NFKB signaling has been implicated as well

(Ziats and Rennert, 2011), possibly contributing to the dysregulation of inflammatory cytokines (Lawrence,

2009).

Programmed cell death is known to play a key role in normal brain development (Yeo and Gautier,

2004). Disruption of apoptotic pathways has been shown to contribute to the development of ASD and to

symptoms suggestive of it in animal models (Margolis et al., 1994; Wei et al., 2014). It has been suggested

that abnormal PTEN function, which has been documented in a subset of the autism patients (Kyrylenko

et al., 1999), may contribute to apoptosis in neural development by regulating PI3K / AKT signaling (Zhou

and Parada, 2012; Wei et al., 2014). Both PTEN (also known as “phosphatase and tensin homolog”) and

PI3K (“phosphatidylinositol-3-kinase”) are involved in phosphatidylinositol metabolism; this pathway has

even been suggested as a possible therapeutic target for autism (Enriquez-Barreto and Morales, 2016).

PTEN has also been shown to regulate angiogenesis (Choorapoikayil et al., 2013), which has itself been

implicated in autism spectrum disorders (Azmitia et al., 2016) .
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Figure 5: Predicted age vs. actual age for control (left), pre-symptomatic, and symptomatic Huntington’s

(right) subjects for a top-scoring pathway on the Huntington’s Disease data, “Regulation of ERBB signaling

pathway.” Each dot represents one patient in the control group; squares represent HD patients, and triangles

represent HD patients who are still pre-symptomatic. Predicted ages are those produced by TEMPO using

the model built from the controls, based only on the expression values of genes in the EERB signaling

pathway.

3.3 Temporal dysregulation of apoptosis in Alzheimer’s disease

In the Alzheimer’s data set, TEMPO identified 140 significant gene sets. The pathways implicated include

several processes known to have relevance in Alzheimer’s disease, including apoptosis, immunity, the DNA

damage response, and regulation of phosphorylation.

Amyloid beta plaques have been observed to induce apoptosis in Alzheimer’s disease (AD) patients (Ghavami

et al., 2014). Intrinsic apoptosis through altered mitochondrial permeability, triggered by accumulations of

amyloid beta precursor protein, has been proposed as the mechanism by which amyloid plaques induce mi-

tochondrial oxidative stress in AD Bartley et al. (2012). Four of the top 40 and 16 of the 140 significant

gene sets identified by TEMPO in the Alzheimer’s population are related to apoptosis, including “positive

regulation of apoptotic signaling pathway,” “regulation of apoptotic signaling pathway,” “intrinsic apoptotic

signaling pathway,” and “regulation of intrinsic apoptotic signaling pathway,” with scores ranking 8th, 9th,

17th, and 25th, and all with FDR ≤ 0.1.

The substantial role of the immune system and cytokine signaling in Alzheimer’s is well explored (Rubio-

Perez and Morillas-Ruiz, 2012), and has been proposed as the basis of new immunotherapeutic approaches (Mon-

sonego et al., 2013). Previous work has shown changes in immune processes and signaling in healthy aging.

For example, T-cell populations change and pro-inflammatory cytokine signaling increases with age (Garg

et al., 2014; van der Geest et al., 2014). TEMPO’s identification of cytokine signaling and T-cell activa-

tion pathways in this context confirms that it is finding likely pathways that have a predictable age-related

pattern that breaks down in disease, and that may suggest therapeutic targets.

3.4 Age-related expression dysregulation in pre-symptomatic HD patients

Huntington’s disease (HD) is known to be caused by a trinucleotide repeat expansion of the huntingtin (HTT)

gene. However, many other genes have been found to modify the effects of these expansions, reflecting age of

onset, severity, and specific characteristics of the disorder (Munoz-Sanjuan and Bates, 2011). Such modifiers

are actively sought as potential avenues for devising new treatment approaches.

For this data set, 166 gene sets met the significance criteria, suggesting that there are age-specific ex-

11

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 27, 2019. ; https://doi.org/10.1101/651018doi: bioRxiv preprint 

https://doi.org/10.1101/651018
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 3: Number of semantically similar or identical gene sets (with significance) from the top 40 TEMPO results for the

Huntington’s subset in each row to the top 40 TEMPO results for the subset in the corresponding column.

All Symptomatic Asymptomatic

All - 34 (0.00) 29 (0.00)

Symptomatic 35 (0.00) - 25 (0.00)

Asymptomatic 30 (0.00) 21 (0.00) -

pression patterns for many biological processes that are disrupted in the disorder. In contrast, neither Gene

Set Enrichment Analysis nor maSigPro returns any significant gene sets for this data set. The full results

for all these analyses are available at the TEMPO web site.

Two of the ten highest scoring gene sets in the TEMPO analysis are “regulation of ERBB signaling

pathway” and “regulation of EGFR signaling pathway.” Prior evidence has implicated the ERBB pathway

and EGFR signaling in the pathogenesis of HD (Kalathur et al., 2012; Liu YF, 1997). Mechanistic studies

suggest that mutant HTT interferes with EGFR signaling, and ERBB signaling defects have been implicated

in other neurodegenerative diseases including Alzheimer’s (Bublil and Yarden, 2007). Ion channel signaling,

another top-scoring function, is known to be affected in HD (Wong et al., 2008), but whether this is a cause

of or a reaction to Huntington’s pathology is not yet known(Mackay et al., 2018).

Another notable observation is the relative temporal dysregulation of telomere maintenance genes in

HD, consistent with the second-ranked TEMPO hit “telomere maintenance via recombination.” Telomere

length in HD has recently been verified to be shorter than in controls, and more so than in other forms

of dementia (Kota et al., 2015). This process is known to reflect aging in general, but identifying further

disruption of the normal aging patterns in HD represents an important finding with potential therapeutic

implications.

These results are based on comparing controls to both symptomatic and pre-symptomatic patients to-

gether, but many of the same observations hold when symptomatic and pre-symptomatic patients are con-

sidered separately. The pairwise Spearman correlations between the TEMPO scores for just symptomatic,

just pre-symptomatic, and the combined data set are all extremely high (≥ 0.99). The top-scoring gene sets

returned by TEMPO for each of these three comparisons are also very similar, with a minimum of 21 out of

the top 40 gene sets being semantically similar or identical in each pairing, as shown in Table 3. In general,

there is more significant disruption of age-specific patterns in the symptomatic patients, but such disruptions

are still detectable when comparing the pre-symptomatic patients to the controls (see e.g. Figure 5).

Our results suggest a pattern of expression disruption for many of these gene sets that is detectable

before disease onset. This is perhaps not surprising; prior imaging work has identified differential aging in

a transgenic rat model of HD (Blockx et al., 2011), even before the onset of symptoms, and some critical

expression changes have been documented in pre-symptomatic human HD patients (Chang et al., 2012).

Still, the presence of a coherent change in age-related regulation prior to symptom onset may yield novel

therapeutic insights.

3.5 Age-dependent dysregulation of immune pathways in COPD

In the COPD data set, TEMPO identified 176 significant gene sets whose predictable age-related expression

relationships in airway epithelial cells from healthy smokers are disrupted in COPD.
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Previous work has shown increased expression of pro-inflammatory cytokines and decreased NK cell

activity in asymptomatic smokers (Zeidel et al., 2002). Increased inflammatory signaling correlates with

pack-years, and therefore with age, even in smokers without apparent disease (Hacievliyagil et al., 2013).

Unexpectedly early aging-like changes in vascular smooth muscle cells have been correlated with the inflam-

matory cytokines and oxidative stress likely to result from smoking (Trindade et al., 2017).

Consistent with this prior information, TEMPO finds excellent predictive models of age using the GO gene

sets “positive regulation of interferon-gamma secretion,” “T-helper cell lineage commitment,” and “vascular

smooth muscle cell development” that break down in COPD. These gene sets are ranked 2, 4, and 7 of those

identified in the COPD data (ranking of gene set G is by Score(G)); the raw p-values for all of these are

0.004, and the corresponding adjusted FDR is less than 0.01.

Age related changes specific to alanine and glutamine transport have been observed in rat blood cells (Fe-

lipe et al., 1992). Although there is little data describing amino acid transport with age in human airway

epithelial cells, it is intriguing that exactly these two have been observed with disrupted age related patterns

in the COPD patients. Other immune and inflammatory processes, including activin receptor signaling,

regulation of adaptive immunity, cytokine signaling, and B-cell activation, were found to be significantly

disrupted in the COPD data as well.

3.6 Modest similarities between Huntington’s and Alzheimer’s

The number of semantically similar gene sets between the top TEMPO results in each of the three data

sets from peripheral blood in neurodevelopmental or neurodegenerative disorders is not significant, with the

maximal overlap between Alzheimer’s and Huntington’s, which share just two identical gene sets within the

top 40 (“ammonium ion metabolic process” and “positive regulation of transporter activity”). However, the

TEMPO scores between these two data sets are modestly Spearman rank correlated (0.309), and the control

mean-squared errors for the age models in these two data sets are also modestly rank correlated (0.307). No

other pair of data sets has as strong a similarity between either the TEMPO scores or the control mean-

squared errors. This correlation is reasonable because the Alzheimer’s and Huntington’s disease data sets

both feature older patients (52-90 and 22-76, respectively) experiencing neurodegenerative processes, while

the Autism data set features younger patients (2-14). Patterns of normal aging would be expected to differ

between these age ranges. Although the COPD controls are in a similar-aged population to the AD and HD

controls, we note that the COPD controls are all smokers, the samples are measuring expression in small

airway epithelial cells rather than blood, and COPD is not a neurodegenerative disorder. All of these points

likely contribute to explain the lack of overlap.

4 Conclusions

Many studies have focused on identifying dynamic expression changes in temporal processes. Most of these,

however, use either static or traditional time series analyses on self-contained temporal data sets with a

limited number of time points (Zinman et al., 2013). Generating additional time points for such analyses

involves a cost-benefit tradeoff that has recently been explored (Sefer et al., 2016). Although there is typically

greater benefit from adding time points at the expense of replicates, the costs of sampling adequately to

identify medically-relevant changes in temporal dynamics may be prohibitive, especially when the dynamic
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processes are not already well understood.

We have therefore suggested integrating temporal information across static data sets to create a virtual

time series, and we introduced an approach based on outlier detection to identify functional pathways or

gene sets in which the temporal pattern of expression is disrupted. It is perhaps somewhat surprising that

the temporal signal in disease can be strong enough to overcome the noise inherent in combining data points

from different subjects, but that observation emphasizes the power to be gained by using an explicit temporal

model. Such an approach to data integration will be increasingly valuable as the collections of usable static

data in public repositories continue to grow.

This approach may also be applied to any continuous variable, not just time or age, that characterizes

high-dimensional data that likely reflects categorical phenotypes or sample characteristics. Potential appli-

cations are many, but it seems particularly likely that these methods could be of value in gaining a better

mechanistic understanding of developmental disorders or issues in geriatric medicine.

Diseases involving progressive decline or loss of function represent another important application area.

Although here we have focused on age as the relevant temporal variable, a more appropriate temporal

annotation might be time since diagnosis, or time since some other clinically-defined criterion, rather than

age per se. It is not then obvious what the appropriate temporal annotation to measure in the control patients

would be, but meaningful solutions could be derived for individual use cases. Such an approach might help

identify early degenerative or compensatory signals in the course of disease, with potential implications for

treatment.

At present, TEMPO identifies only dysregulation in predefined sets of genes. Another important direction

for future work is identification of de novo gene sets. Such a method could use the TEMPO dysregulation

score as a fitness metric in an optimization algorithm, expanding or recombining known dysregulated gene

sets to identify new ones.

Finally, many expression data sets include expression data taken from the same individual at a small

number of time points. An interesting and important question for future work is to develop methods for

integrating such short time series with static data in an intelligent way. Specifically, the method should

make use of dependencies between samples from the same individuals while allowing the use of unrelated

samples to learn more about the temporal or age-related expression variation. Doing so will enable better

exploitation of existing repositories of transcriptional data for novel discovery.
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Ana Conesa, Maŕıa José Nueda, Alberto Ferrer, and Manuel Talón. 2006. maSigPro: a method to identify

significantly differential expression profiles in time-course microarray experiments. Bioinformatics 22, 9

(2006), 1096–1102.

EH Cook, Rachel Courchesne, Catherine Lord, Nancy J Cox, Shuya Yan, Alan Lincoln, Richard Haas, Eric

Courchesne, and Bennett L Leventhal. 1997. Evidence of linkage between the serotonin transporter and

autistic disorder. Molecular psychiatry 2 (1997), 247–250.

F. Crews, J. He, and C. Hodge. 2007. Adolescent cortical development: a critical period of vulnerability for

addiction. Pharmacol. Biochem. Behav. 86, 2 (Feb 2007), 189–199.

Jan Croonenberghs, Eugene Bosmans, Dirk Deboutte, Gunter Kenis, and Michael Maes. 2002. Activation

of the inflammatory response system in autism. Neuropsychobiology (2002).

Harris Drucker, Chris JC Burges, Linda Kaufman, Alex Smola, Vladimir Vapnik, et al. 1997. Support vector

regression machines. Advances in neural information processing systems 9 (1997), 155–161.

Ron Edgar, Michael Domrachev, and Alex E Lash. 2002. Gene Expression Omnibus: NCBI gene expression

and hybridization array data repository. Nucleic acids research 30, 1 (2002), 207–210.

L. Enriquez-Barreto and M. Morales. 2016. The PI3K signaling pathway as a pharmacological target in

Autism related disorders and Schizophrenia. Mol Cell Ther 4 (2016), 2.

Jason Ernst and Ziv Bar-Joseph. 2006. STEM: a tool for the analysis of short time series gene expression

data. BMC bioinformatics 7, 1 (2006), 191.

H.A. Farahani, A. Rahiminezhad, L. Same, and K. Immannezhad. 2010. A Comparison of Partial Least

Squares (PLS) and Ordinary Least Squares (OLS) regressions in predicting of couples mental health

based on their communicational patterns. Procedia Social and Behavioral Sciences 5 (2010), 145963.

A. Felipe, O. Vinas, and X. Remesar. 1992. Changes in alanine and glutamine transport during rat red blood

cell maturation. Biosci. Rep. 12, 1 (Feb 1992), 47–56.

S. K. Garg, C. Delaney, H. Shi, and R. Yung. 2014. Changes in adipose tissue macrophages and T cells

during aging. Crit. Rev. Immunol. 34, 1 (2014), 1–14.

S. Ghavami, S. Shojaei, B. Yeganeh, S. R. Ande, J. R. Jangamreddy, M. Mehrpour, J. Christoffersson, W.

Chaabane, A. R. Moghadam, H. H. Kashani, M. Hashemi, A. A. Owji, and M. J. ?os. 2014. Autophagy

and apoptosis dysfunction in neurodegenerative disorders. Prog. Neurobiol. 112 (Jan 2014), 24–49.

16

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 27, 2019. ; https://doi.org/10.1101/651018doi: bioRxiv preprint 

https://doi.org/10.1101/651018
http://creativecommons.org/licenses/by-nc-nd/4.0/


S. S. Hacievliyagil, L. C. Mutlu, and I. Temel. 2013. Airway inflammatory markers in chronic obstructive

pulmonary disease patients and healthy smokers. Niger J Clin Pract 16, 1 (2013), 76–81.

Ravi Kiran Reddy Kalathur, Miguel A Hernández-Prieto, and Matthias E Futschik. 2012. Huntington’s

Disease and its therapeutic target genes: a global functional profile based on the HD Research Crossroads

database. BMC neurology 12, 1 (2012), 1.

A. Kolevzon, K. A. Mathewson, and E. Hollander. 2006. Selective serotonin reuptake inhibitors in autism:

a review of efficacy and tolerability. J Clin Psychiatry 67, 3 (Mar 2006), 407–414.

L.N. Kota, S. Bharath, M. Purushottam, N.S. Moily, P.T. Sivakumar, M. Varghese, P.K. Pal, and S. Jain.

2015. Reduced telomere length in neurodegenerative disorders may suggest shared biology. J Neuropsy-

chiatry Clin Neurosci. 27, 2 (2015), e92–6.

S. Kyrylenko, M. Roschier, P. Korhonen, and A. Salminen. 1999. Regulation of PTEN expression in neuronal

apoptosis. Brain Res. Mol. Brain Res. 73, 1-2 (Nov 1999), 198–202.

T. Lawrence. 2009. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect

Biol 1, 6 (Dec 2009), a001651.

Devys D Liu YF, Deth RC. 1997. SH3 domain-dependent association of huntingtin with epidermal growth

factor receptor signaling complexes. J Biol Chem. 272, 13 (1997), 8121–4.

Simon Lovestone, Paul Francis, Iwona Kloszewska, Patrizia Mecocci, Andrew Simmons, Hilkka Soininen,

Christian Spenger, Magda Tsolaki, Bruno Vellas, Lars-Olof Wahlund, et al. 2009. AddNeuroMedthe

European collaboration for the discovery of novel biomarkers for Alzheimer’s disease. Annals of the New

York Academy of Sciences 1180, 1 (2009), 36–46.

J. P. Mackay, W. B. Nassrallah, and L. A. Raymond. 2018. Cause or compensation?-Altered neuronal Ca2+

handling in Huntington’s disease. CNS Neurosci Ther 24, 4 (04 2018), 301–310.

R. L. Margolis, D. M. Chuang, and R. M. Post. 1994. Programmed cell death: implications for neuropsy-

chiatric disorders. Biol. Psychiatry 35, 12 (Jun 1994), 946–956.

Anastasios Mastrokolias, Yavuz Ariyurek, Jelle J Goeman, Erik van Duijn, Raymund AC Roos, Roos C

van der Mast, GertJan B van Ommen, Johan T den Dunnen, Peter AC’t Hoen, and Willeke MC van Roon-

Mom. 2015. Huntingtons disease biomarker progression profile identified by transcriptome sequencing in

peripheral blood. European Journal of Human Genetics 23, 10 (2015), 1349–1356.

A. Monsonego, A. Nemirovsky, and I. Harpaz. 2013. CD4 T cells in immunity and immunotherapy of

Alzheimer’s disease. Immunology 139, 4 (Aug 2013), 438–446.

I. Munoz-Sanjuan and G. P. Bates. 2011. The importance of integrating basic and clinical research toward

the development of new therapies for Huntington disease. J. Clin. Invest. 121, 2 (Feb 2011), 476–483.

L. C. Murrin, J. D. Sanders, and D. B. Bylund. 2007. Comparison of the maturation of the adrenergic and

serotonergic neurotransmitter systems in the brain: implications for differential drug effects on juveniles

and adults. Biochem. Pharmacol. 73, 8 (Apr 2007), 1225–1236.

17

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 27, 2019. ; https://doi.org/10.1101/651018doi: bioRxiv preprint 

https://doi.org/10.1101/651018
http://creativecommons.org/licenses/by-nc-nd/4.0/


K. Noto, C. Brodley, and D. Slonim. 2010. Anomaly Detection Using an Ensemble of Feature Models. Proc

IEEE Int Conf Data Min (Dec 2010), 953–958.

K. Noto, C. Brodley, and D. Slonim. 2012. FRaC: a feature-modeling approach for semi-supervised and

unsupervised anomaly detection. Data Min Knowl Discov 25, 1 (2012), 109–133.

T. M. Przytycka, M. Singh, and D. K. Slonim. 2010. Toward the dynamic interactome: it’s about time.

Brief. Bioinformatics 11, 1 (Jan 2010), 15–29.

M. F. Ramoni, P. Sebastiani, and I. S. Kohane. 2002. Cluster analysis of gene expression dynamics. Proc.

Natl. Acad. Sci. U.S.A. 99, 14 (Jul 2002), 9121–9126.

P. Resnik. 1999. Semantic similarity in a taxonomy: an information-based measure and its application to

problems of ambiguity in natural language. Journal of Artificial Intelligence Research (JAIR) 11 (1999),

95–130.

E. R. Ritvo, A. Yuwiler, E. Geller, E. M. Ornitz, K. Saeger, and S. Plotkin. 1970. Increased blood serotonin

and platelets in early infantile autism. Arch. Gen. Psychiatry 23, 6 (Dec 1970), 566–572.

J. M. Rubio-Perez and J. M. Morillas-Ruiz. 2012. A review: inflammatory process in Alzheimer’s disease,

role of cytokines. ScientificWorldJournal 2012 (2012), 756357.

E. Sefer, M. Kleyman, and Z. Bar-Joseph. 2016. Tradeoffs between Dense and Replicate Sampling Strategies

for High-Throughput Time Series Experiments. Cell Syst 3, 1 (Jul 2016), 35–42.

C.E. Shannon. 1948. A mathematical theory of communication (Part I). Bell Syst Tech J 27 (1948), 379–423.

Alex J Smola and Bernhard Schölkopf. 2004. A tutorial on support vector regression. Statistics and computing

14, 3 (2004), 199–222.

Sanjana Sood, Iain J Gallagher, Katie Lunnon, Eric Rullman, Aoife Keohane, Hannah Crossland, Bethan E

Phillips, Tommy Cederholm, Thomas Jensen, Luc JC van Loon, et al. 2015. A novel multi-tissue RNA

diagnostic of healthy ageing relates to cognitive health status. Genome biology 16, 1 (2015), 185.

D. Spies and C. Ciaudo. 2015. Dynamics in Transcriptomics: Advancements in RNA-seq Time Course and

Downstream Analysis. Comput Struct Biotechnol J 13 (2015), 469–477.

Oliver Stegle, Katherine J Denby, Emma J Cooke, David L Wild, Zoubin Ghahramani, and Karsten M

Borgwardt. 2010. A robust Bayesian two-sample test for detecting intervals of differential gene expression

in microarray time series. Journal of Computational Biology 17, 3 (2010), 355–367.

Aravind Subramanian, Pablo Tamayo, Vamsi K Mootha, Sayan Mukherjee, Benjamin L Ebert, Michael A

Gillette, Amanda Paulovich, Scott L Pomeroy, Todd R Golub, Eric S Lander, et al. 2005. Gene set enrich-

ment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proceedings

of the National Academy of Sciences of the United States of America 102, 43 (2005), 15545–15550.

Ann E Tilley, Ben-Gary Harvey, Adriana Heguy, Neil R Hackett, Rui Wang, Timothy P O’connor, and

Ronald G Crystal. 2009. Down-regulation of the notch pathway in human airway epithelium in association

with smoking and chronic obstructive pulmonary disease. American journal of respiratory and critical care

medicine 179, 6 (2009), 457–466.

18

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 27, 2019. ; https://doi.org/10.1101/651018doi: bioRxiv preprint 

https://doi.org/10.1101/651018
http://creativecommons.org/licenses/by-nc-nd/4.0/


Randall D. Tobias. 1995. An introduction to partial least squares regression. In SUGI: Proceedings of the

20th Annual SAS User’s Group International meeting. Orlando, Florida, 1250–7.

M. Trindade, W. Oigman, and M. Fritsch Neves. 2017. Potential Role of Endothelin in Early Vascular Aging.

Curr Hypertens Rev 13, 1 (2017), 33–40.

K. S. van der Geest, W. H. Abdulahad, S. M. Tete, P. G. Lorencetti, G. Horst, N. A. Bos, B. J. Kroesen,

E. Brouwer, and A. M. Boots. 2014. Aging disturbs the balance between effector and regulatory CD4+ T

cells. Exp. Gerontol. 60 (Dec 2014), 190–196.

Erik van Duijn, Elisabeth M Kingma, Reinier Timman, Frans G Zitman, Aad Tibben, Raymund AC Roos,

and Rose C van der Mast. 2008. Cross-sectional study on prevalences of psychiatric disorders in mutation

carriers of Huntington’s disease compared with mutation-negative first-degree relatives. The Journal of

clinical psychiatry 69, 11 (2008), 1–478.

A. L. Varigonda, E. Jakubovski, M. J. Taylor, N. Freemantle, C. Coughlin, and M. H. Bloch. 2015. Systematic

Review and Meta-Analysis: Early Treatment Responses of Selective Serotonin Reuptake Inhibitors in

Pediatric Major Depressive Disorder. J Am Acad Child Adolesc Psychiatry 54, 7 (Jul 2015), 557–564.

Hongen Wei, Ian Alberts, and Xiaohong Li. 2014. The apoptotic perspective of autism. International Journal

of Developmental Neuroscience 36 (2014), 13–18.

Heather C Wick, Harold Drabkin, Huy Ngu, Michael Sackman, Craig Fournier, Jessica Haggett, Judith A

Blake, Diana W Bianchi, and Donna K Slonim. 2014. DFLAT: functional annotation for human develop-

ment. BMC bioinformatics 15, 1 (2014), 45.

Herman Wold. 1985. Partial least squares. Encyclopedia of statistical sciences (1985).

H. K. Wong, P. O. Bauer, M. Kurosawa, A. Goswami, C. Washizu, Y. Machida, A. Tosaki, M. Yamada, T.

Knopfel, T. Nakamura, and N. Nukina. 2008. Blocking acid-sensing ion channel 1 alleviates Huntington’s

disease pathology via an ubiquitin-proteasome system-dependent mechanism. Hum. Mol. Genet. 17, 20

(Oct 2008), 3223–3235.

W. Yeo and J. Gautier. 2004. Early neural cell death: dying to become neurons. Dev. Biol. 274, 2 (Oct

2004), 233–244.

N. Yosef and A. Regev. 2011. Impulse control: temporal dynamics in gene transcription. Cell 144, 6 (Mar

2011), 886–896.

Guangchuang Yu, Fei Li, Yide Qin, Xiaochen Bo, Yibo Wu, and Shengqi Wang. 2010. GOSemSim: an

R package for measuring semantic similarity among GO terms and gene products. Bioinformatics 26, 7

(2010), 976–978.

A. Zeidel, B. Beilin, I. Yardeni, E. Mayburd, G. Smirnov, and H. Bessler. 2002. Immune response in

asymptomatic smokers. Acta Anaesthesiol Scand 46, 8 (Sep 2002), 959–964.

J. Zhou and L. F. Parada. 2012. PTEN signaling in autism spectrum disorders. Curr. Opin. Neurobiol. 22,

5 (Oct 2012), 873–879.

19

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 27, 2019. ; https://doi.org/10.1101/651018doi: bioRxiv preprint 

https://doi.org/10.1101/651018
http://creativecommons.org/licenses/by-nc-nd/4.0/


M. N. Ziats and O. M. Rennert. 2011. Expression profiling of autism candidate genes during human brain

development implicates central immune signaling pathways. PLoS ONE 6, 9 (2011), e24691.

G. E. Zinman, S. Naiman, Y. Kanfi, H. Cohen, and Z. Bar-Joseph. 2013. ExpressionBlast: mining large,

unstructured expression databases. Nat. Methods 10, 10 (Oct 2013), 925–926.

Appendix A

We suspected that, compared to linear regression, PLSR would be better able to handle the dimensions

and redundancy of gene expression data (Tobias, 1995). We also considered using Support vector regression

(SVR) models with either a linear or radial kernel function (Drucker et al., 1997; Smola and Schölkopf, 2004).

On both the ASD autism data set and on an additional developmental data set from GEO (GSE32472),

we evaluated the predictive performance of linear regression (LR), PLSR, and SVR models, trained on all

control samples using all genes in leave-one-out cross validation. We implemented both LR and SVR in

R, the former via the lm() function from the stats package, the latter in the e1071 package with default

settings.

As hypothesized, linear regression predicted ages less accurately than other methods. On both data sets,

PLSR models had lower Mean Squared Error than either SVR model (see Table 4). However, we did not

explore the space of possible parameters for SVR.

Table 4: Mean squared errors for PLSR, SVR with both linear and radial kernels, and linear models on all control samples in

two data sets.

Method ASD MSE GSE32472 MSE

PLSR 3.65 2.33

SVR (linear kernel) 4.12 4.26

SVR (radial kernel) 4.29 4.25

Linear Regression 710.74 32.72

Appendix B

In Section 2.1.2, we model prediction errors using a normal distribution. To test this assumption, we assessed

normality using the Shapiro-Wilk normality test in R. On many data sets, we found that the observed error

distributions on the control set are in fact normal for nearly all gene sets. However, on some data sets, a

substantial fraction of the gene sets have slightly skewed error distributions that do not pass the criteria

for normality. We believe that such skewing arises from a lack of uniformity in the age distribution of the

control samples.

Some regression models rely on the assumption of normality. However, PLSR is considered relatively

robust to data that do not fit this assumption (Farahani et al., 2010). We found that, although there is a

modest negative correlation (-0.31) between the normality of the residuals for a gene set and the accuracy of

that gene set’s model on the training samples (Figure 6), there are many high-quality models with non-normal

residuals.
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Figure 6: Plot of model quality (control mean squared error) vs. model normality (p-value from the Shapiro-

Wilk test, with low p-values rejecting normality). Each dot represents a gene set; dots with low MSE and low

p-values represent relatively accurate models that fail to meet the criteria for normally distributed residuals.

We emphasize that even in these cases, the non-normality of the prediction errors does not appreciably

affect our results. This is because the scoring function does not make use of any specific properties of the

normal distribution.

To verify this, we assessed performance of an alternative, nonparametric scoring function:

Score′(G) =
|C|

∑
s∈D(EG,s)

2

|D|
∑

s∈C(EG,s)2
(2)

This score is the ratio of the mean squared errors for the disease and control sets. Using this scoring function

returns nearly identical ranked lists of gene sets (Spearman rank correlation ≥ .99 between Score and Score′

on all data sets used in this manuscript). We conclude that even if the error distributions are somewhat

skewed, the surprisal probabilities are close enough to those expected from the normal distribution that

our scoring function is capturing the intended relationship between prediction accuracies in the control and

disease sample sets.
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Appendix C

Table 5: The top 40 highest-scoring gene sets in ASD, ranked by TEMPO score.

Control MSE Score Score

Rank Gene Set MSE Score p-value p-value BH

1 positive regulation of glomerulus development 3.816 3.899 0.036 0.002 0.075

2 secretion by cell 2.760 2.581 0.004 0.004 0.075

3 secretion 2.780 2.578 0.008 0.002 0.075

4 phosphatidylinositol biosynthetic process 3.224 2.456 0.004 0.004 0.075

5 positive regulation of growth 3.076 2.405 0.008 0.002 0.075

6 regulation of growth 3.386 2.398 0.038 0.002 0.075

7 regulation of cell growth 3.141 2.397 0.010 0.004 0.075

8 phospholipid metabolic process 3.154 2.343 0.012 0.002 0.075

9 myeloid leukocyte activation 3.092 2.343 0.008 0.002 0.075

10 skeletal muscle cell differentiation 3.670 2.318 0.032 0.006 0.075

11 phosphatidylinositol metabolic process 3.522 2.310 0.036 0.004 0.075

12 glycerophospholipid metabolic process 3.236 2.285 0.012 0.006 0.075

13 pos. reg. of seq.-specific DNA binding transcription factor act. 2.746 2.283 0.006 0.006 0.075

14 regulation of integrin-mediated signaling pathway 2.932 2.274 0.002 0.004 0.075

15 positive regulation of NF-kappaB transcription factor activity 3.010 2.249 0.008 0.004 0.075

16 positive regulation of endothelial cell proliferation 3.132 2.240 0.004 0.006 0.075

17 pos. reg. of tyrosine phosphorylation of Stat3 protein 3.553 2.204 0.016 0.004 0.075

18 reg. of seq.-specific DNA binding transcription factor activity 2.756 2.192 0.008 0.006 0.075

19 inflammatory response 3.281 2.189 0.018 0.010 0.086

20 positive regulation of integrin-mediated signaling pathway 2.984 2.183 0.002 0.004 0.075

21 positive regulation of gene expression 2.915 2.171 0.020 0.010 0.086

22 negative regulation of neurotransmitter uptake 3.248 2.169 0.002 0.002 0.075

23 regulation of serotonin uptake 3.248 2.169 0.004 0.002 0.075

24 negative regulation of serotonin uptake 3.248 2.169 0.004 0.002 0.075

25 transition metal ion homeostasis 3.281 2.165 0.016 0.010 0.086

26 tissue homeostasis 3.423 2.142 0.022 0.006 0.075

27 myeloid dendritic cell activation 3.036 2.139 0.006 0.006 0.075

28 positive regulation of RNA metabolic process 3.344 2.135 0.044 0.010 0.086

29 glycerophospholipid biosynthetic process 3.339 2.131 0.026 0.012 0.086

30 formation of primary germ layer 3.032 2.131 0.006 0.002 0.075

31 central nervous system neuron differentiation 3.333 2.122 0.020 0.012 0.086

32 phospholipid biosynthetic process 3.324 2.120 0.016 0.010 0.086

33 protein polyglutamylation 3.062 2.119 0.002 0.004 0.075

34 regulation of meiotic cell cycle 3.571 2.118 0.020 0.006 0.075

35 soft palate development 3.746 2.116 0.040 0.006 0.075

36 membrane fusion 3.314 2.112 0.006 0.004 0.075

37 organophosphate biosynthetic process 3.156 2.109 0.018 0.010 0.086

38 morphogenesis of a polarized epithelium 3.502 2.100 0.018 0.004 0.075

39 regulation of RNA biosynthetic process 3.019 2.099 0.022 0.002 0.075

40 nervous system development 3.225 2.090 0.048 0.010 0.086
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Table 6: The top 40 highest-scoring gene sets in AD, ranked by TEMPO score.

Control MSE Score Score

Rank Gene Set MSE Score p-value p-value BH

1 peptidyl-tyrosine phosphorylation 6.573 2.972 0.012 0.004 0.099

2 peptidyl-tyrosine modification 6.573 2.972 0.014 0.004 0.099

3 phosphatidylcholine metabolic process 5.472 2.851 0.002 0.002 0.099

4 transcription elongation from RNA polymerase II promoter 6.823 2.729 0.010 0.008 0.099

5 ammonium ion metabolic process 7.238 2.649 0.042 0.008 0.099

6 double-strand break repair via nonhomologous end joining 6.351 2.647 0.004 0.004 0.099

7 ethanolamine-containing compound metabolic process 6.095 2.622 0.002 0.010 0.099

8 positive regulation of apoptotic signaling pathway 5.965 2.601 0.012 0.008 0.099

9 regulation of apoptotic signaling pathway 5.516 2.595 0.002 0.016 0.099

10 regulation of myeloid cell differentiation 7.081 2.586 0.016 0.008 0.099

11 non-recombinational repair 6.352 2.561 0.002 0.004 0.099

12 protein monoubiquitination 6.548 2.554 0.002 0.006 0.099

13 leukocyte cell-cell adhesion 6.913 2.537 0.022 0.010 0.099

14 positive regulation of transporter activity 7.933 2.528 0.042 0.012 0.099

15 alcohol metabolic process 6.294 2.516 0.006 0.036 0.101

16 cell cycle arrest 5.903 2.483 0.002 0.022 0.099

17 intrinsic apoptotic signaling pathway 5.805 2.478 0.004 0.026 0.099

18 stress-activated protein kinase signaling cascade 6.854 2.455 0.020 0.026 0.099

19 stress-activated MAPK cascade 6.854 2.455 0.020 0.022 0.099

20 glycerophospholipid metabolic process 6.617 2.447 0.020 0.040 0.106

21 regulation of leukocyte differentiation 7.183 2.439 0.036 0.026 0.099

22 phosphatidylserine acyl-chain remodeling 8.574 2.420 0.026 0.002 0.099

23 negative regulation of cell proliferation 6.280 2.420 0.004 0.044 0.110

24 positive regulation of mitochondrion organization 6.485 2.380 0.010 0.036 0.101

25 regulation of intrinsic apoptotic signaling pathway 6.780 2.369 0.012 0.032 0.099

26 nuclear import 6.957 2.353 0.008 0.018 0.099

27 protein acetylation 7.439 2.320 0.032 0.032 0.099

28 leukocyte migration involved in inflammatory response 7.534 2.310 0.004 0.002 0.099

29 positive regulation of leukocyte differentiation 7.150 2.309 0.022 0.036 0.101

30 peptidyl-lysine acetylation 7.269 2.302 0.018 0.026 0.099

31 membrane budding 7.199 2.296 0.034 0.042 0.107

32 regulation of Ras protein signal transduction 7.520 2.294 0.026 0.022 0.099

33 protein import 7.461 2.288 0.032 0.046 0.111

34 regulation of organelle assembly 6.741 2.275 0.008 0.026 0.099

35 internal protein amino acid acetylation 7.278 2.260 0.012 0.022 0.099

36 negative regulation of viral genome replication 7.849 2.252 0.040 0.030 0.099

37 mitochondrial fusion 7.055 2.245 0.002 0.002 0.099

38 protein targeting to mitochondrion 7.454 2.244 0.016 0.026 0.099

39 regulation of myeloid leukocyte differentiation 6.999 2.237 0.014 0.026 0.099

40 positive regulation of lymphocyte migration 8.102 2.219 0.028 0.018 0.099
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Table 7: The top 40 highest-scoring gene sets in HD, ranked by TEMPO score.

Control MSE Score Score

Rank Gene Set MSE Score p-value p-value BH

1 negative regulation of DNA recombination 55.689 3.830 0.002 0.002 0.050

2 telomere maintenance via recombination 55.109 3.215 0.002 0.002 0.050

3 pos. regulation of sodium ion transmembrane transport 65.303 2.982 0.004 0.004 0.050

4 phototransduction, visible light 52.178 2.957 0.006 0.006 0.058

5 phototransduction 55.145 2.835 0.002 0.002 0.050

6 regulation of anion transport 88.395 2.813 0.040 0.004 0.050

7 regulation of EGFR signaling pathway 65.323 2.739 0.012 0.004 0.050

8 negative regulation of transcription from RNA 66.673 2.660 0.004 0.002 0.050

polymerase II promoter in response to stress

9 regulation of ERBB signaling pathway 70.726 2.557 0.012 0.008 0.063

10 detection of visible light 65.855 2.519 0.008 0.008 0.063

11 tumor necrosis factor-mediated signaling pathway 60.396 2.486 0.006 0.004 0.050

12 ammonium ion metabolic process 54.216 2.473 0.008 0.008 0.063

13 detection of light stimulus 69.491 2.427 0.012 0.012 0.069

14 negative regulation of cation channel activity 63.369 2.421 0.004 0.008 0.063

15 intestinal absorption 60.407 2.339 0.002 0.004 0.050

16 negative regulation of protein acetylation 80.507 2.330 0.014 0.004 0.050

17 reg.n of sodium ion transmembrane transporter activity 84.293 2.327 0.020 0.008 0.063

18 regulation of peptidyl-lysine acetylation 88.258 2.310 0.050 0.008 0.063

19 regulation of cholesterol metabolic process 72.227 2.304 0.006 0.002 0.050

20 mitotic recombination 80.405 2.302 0.026 0.020 0.073

21 digestion 60.423 2.248 0.002 0.006 0.058

22 cellular response to biotic stimulus 72.764 2.242 0.026 0.012 0.069

23 negative reg. of protein exit from endoplasmic reticulum 65.601 2.223 0.004 0.004 0.050

24 neg. reg. of retrograde protein transport, ER to cytosol 65.601 2.223 0.006 0.004 0.050

25 negative regulation of peptidyl-lysine acetylation 82.606 2.204 0.012 0.004 0.050

26 cellular response to molecule of bacterial origin 84.347 2.192 0.048 0.018 0.073

27 regulation of leukocyte degranulation 61.048 2.186 0.006 0.020 0.073

28 bile acid and bile salt transport 62.671 2.176 0.004 0.004 0.050

29 organophosphate catabolic process 79.399 2.174 0.040 0.030 0.080

30 reg. of transcription from RNA polymerase I promoter 87.380 2.171 0.022 0.012 0.069

31 negative regulation of ERAD pathway 73.598 2.166 0.004 0.004 0.050

32 digestive system process 68.070 2.154 0.004 0.020 0.073

33 peroxisomal membrane transport 66.423 2.138 0.004 0.006 0.058

34 protein import into peroxisome membrane 66.423 2.138 0.002 0.004 0.050

35 cell communication involved in cardiac conduction 76.003 2.109 0.012 0.012 0.069

36 regulation of nitric oxide biosynthetic process 81.990 2.104 0.034 0.018 0.073

37 positive reg. of ion transmembrane transporter activity 70.092 2.096 0.012 0.026 0.079

38 CDP-choline pathway 72.253 2.085 0.006 0.002 0.050

39 intracellular protein transmembrane import 70.021 2.075 0.004 0.022 0.077

40 positive regulation of transporter activity 74.556 2.074 0.012 0.022 0.077
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Table 8: The top 40 highest-scoring gene sets in COPD, ranked by TEMPO score.

Control MSE Score Score

Rank Gene Set MSE Score p-value p-value BH

1 alanine transport 0.430 305.978 0.002 0.002 0.076

2 positive regulation of interferon-gamma secretion 0.145 272.491 0.002 0.004 0.093

3 positive regulation of phospholipid biosynthetic process 2.419 203.185 0.004 0.002 0.076

4 T-helper cell lineage commitment 5.208 194.402 0.004 0.004 0.093

5 T-helper 17 cell lineage commitment 5.208 194.402 0.004 0.006 0.093

6 transcytosis 0.759 192.616 0.002 0.002 0.076

7 vascular smooth muscle cell development 2.600 177.217 0.004 0.002 0.076

8 nephric duct development 1.756 175.896 0.002 0.002 0.076

9 mRNA transcription from RNA polymerase II promoter 1.468 137.089 0.002 0.002 0.076

10 opioid receptor signaling pathway 7.566 128.480 0.028 0.008 0.095

11 regulation of extracellular matrix organization 6.449 122.182 0.030 0.002 0.076

12 epithelial tube branching involved in lung morphogenesis 1.066 109.133 0.002 0.008 0.095

13 RNA surveillance 4.160 106.883 0.014 0.006 0.093

14 purine nucleobase transport 3.093 98.951 0.004 0.010 0.095

15 monocyte chemotaxis 4.356 96.412 0.008 0.006 0.093

16 cell proliferation in forebrain 6.000 95.990 0.014 0.002 0.076

17 regulation of cell-cell adhesion mediated by cadherin 5.771 93.285 0.012 0.006 0.093

18 negative regulation of extracellular matrix organization 4.058 88.945 0.006 0.008 0.095

19 regulation of protein complex stability 5.739 87.307 0.010 0.008 0.095

20 regulation of oligodendrocyte differentiation 4.785 86.896 0.010 0.004 0.093

21 adrenal gland development 8.023 85.309 0.048 0.006 0.093

22 glutamine family amino acid metabolic process 3.983 83.608 0.004 0.002 0.076

23 sulfide oxidation 4.087 83.123 0.010 0.010 0.095

24 sulfide oxidation, using sulfide:quinone oxidoreductase 4.087 83.123 0.004 0.012 0.105

25 regulation of cardiac muscle cell membrane potential 5.520 81.049 0.012 0.010 0.095

26 pyrimidine-containing compound transmembrane transport 2.909 79.713 0.004 0.006 0.093

27 neg. reg. of mitochondrial outer membrane permeabilization 4.213 79.237 0.008 0.010 0.095

involved in apoptotic signaling pathway

28 negative regulation of activin receptor signaling pathway 6.134 78.457 0.018 0.014 0.105

29 regulation of microvillus organization 5.683 77.186 0.014 0.014 0.105

30 regulation of microvillus assembly 5.683 77.186 0.014 0.012 0.105

31 glutamine transport 3.735 77.005 0.014 0.026 0.106

32 neuroblast proliferation 7.298 75.503 0.038 0.006 0.093

33 sequestering of metal ion 5.122 73.510 0.026 0.026 0.106

34 negative regulation of protein sumoylation 3.962 73.403 0.004 0.020 0.106

35 nucleobase-containing small molecule interconversion 1.875 71.447 0.002 0.006 0.093

36 bundle of His cell-Purkinje myocyte adhesion involved in cell 10.007 68.231 0.040 0.016 0.106

communication

37 positive regulation of Rho protein signal transduction 5.440 62.829 0.018 0.010 0.095

38 response to acid chemical 2.122 58.860 0.002 0.002 0.076

39 reg. of cardiac muscle contraction by calcium ion signaling 3.821 58.222 0.004 0.004 0.093

40 bicellular tight junction assembly 7.333 57.457 0.044 0.006 0.093
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