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Abstract1

Pregnancy and childbirth involve maternal brain adaptations that promote attachment to and protection2

of the newborn. Using brain imaging and machine learning, we provide evidence for a positive relation-3

ship between number of childbirths and a ‘younger-looking’ brain in 12,021 women, which could not be4

explained by common genetic variation. The findings demonstrate that parity can be linked to brain5

health later in life.6
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During pregnancy and postpartum, fundamental biological processes are instigated to support maternal7

adaptation and ensure protection of the offspring [1]. In rodents, brain adaptations across pregnancy8

and postpartum include altered neurogenesis in the dentate gyrus [2], and changes in volume, dendritic9

morphology, and cell proliferation in the hippocampus [1, 3]. In humans, reduction in total brain vol-10

ume has been observed during pregnancy, with reversion occurring within six months of parturition [4].11

Regional changes in brain structure are evident during the postpartum period, with effects depending12

on region and time since delivery [5–8]. While some maternal brain changes revert postpartum, others13

extend well beyond this phase [1, 7–9] and may influence the course of neurobiological aging later in14

life. Some regional grey matter changes have been found to endure for at least 2 years post-pregnancy15

in humans [1], and aged parous rats have increased hippocampal long-term potentiation and show fewer16

signs of brain aging [1, 10]. In addition to the direct and indirect bodily and environmental adaptations17

in response to pregnancy and child-rearing, such long-lasting effects on brain health in humans could18

also reflect genetic pleiotropy, as reproductive behaviors are complex, heritable traits with a polygenic19

architecture that partly overlaps with a range of other traits that influence brain-health trajectories [11].20

Based on the evidence of long-lasting effects of parity on the maternal brain, we investigated struc-21

tural brain characteristics in 12,021 women from the UK Biobank, hypothesizing that women who had22

given (live) birth (n = 9568) would show less evidence of brain aging compared to their nulliparous peers23

(n = 2453). We used machine learning and brain age prediction to test I) if a classifier could identify24

women as parous or nulliparous based on morphometric brain characteristics, and II) whether brain age25

gap (estimated brain age − chronological age) differed between parous and nulliparous women. Mean26

age (± SD) was 54.72 (7.29) years for the full sample; 55.23 (7.22) years for parous and 52.79 (7.23)27

years for nulliparous women. To investigate the impact of number of childbirths, we tested for associa-28

tions between number of births and the probabilistic scores from the group classification and brain age29

gap, respectively, in addition to comparing women who had given 1-2 births, 3-4 births, and 5-8 births30

to nulliparous women, respectively. To parse the effects of common genetic variation, we performed a31

Page 3 of 23

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 27, 2019. ; https://doi.org/10.1101/650952doi: bioRxiv preprint 

https://doi.org/10.1101/650952
http://creativecommons.org/licenses/by-nc-nd/4.0/


Population-based neuroimaging reveals traces of childbirth in the maternal brain – de Lange et. al., 2019

genome-wide association study (GWAS) on the phenotype number of births in 271,312 healthy women in32

the UK Biobank (excluding our MRI subsample). We then computed polygenic score for each European33

individual in our MRI subsample (N = 10,289, Online Methods), and tested for associations between34

polygenic scores and the probability score from the group classification and brain age gap, respectively.35

To estimate genetic overlap between number of births and a range of other complex traits, we used linkage36

disequilibrium score regression based on previously published GWAS results [12–17].37

Figure 1 and Table 1 show the results from the group classification and the brain age prediction.38

The probability of being classified as parous was positively related to number of births (r = 0.05, p =39

2.30 × 10−4, CI = [-0.02, -0.08]), indicating a higher probability for multiparous women to be labeled40

correctly. In the brain age analysis, the correlation between predicted and chronological age was r = 0.61,41

p =< .0001, CI = [0.6, 0.62], and RMSE = 5.78 (SD = 0.10), p =< .0001. To account for age-related bias42

in the predicted age [18, 19], we employed a quadratic regression to the data (Equation 1, Online Methods).43

Bias-corrected brain age gap correlated negatively with number of births (r = 0.07, p = 5.00 × 10−16, CI44

= [-0.09, -0.06]), indicating a ‘younger looking’ brain in multiparous women. The correlation remained45

significant when including only parous women (r = 0.03, p = 3.14 × 10−3, CI = [-0.05, -0.01]). To assess46

the reproducibility of these effects, the brain age analysis was rerun using predicted brain age estimates47

based on an independent approach and training set [20–22]. In brief, the results were consistent with the48

main findings (see Online Methods for full description). To investigate relevant confound variables, we49

performed additional analyses testing the associations between brain age gap and number of childbirths50

when accounting for ethnic background, education, body mass index, and age at first birth. None of these51

variables fully explained the differences in brain age gap between parous and nulliparous women. The52

results are provided in Supplementary Tables 2-5.53
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Figure 1: Panel 1 A) The distributions of classifier probability scores in nulliparous and parous women. The
x-axis refers to the estimated percentage probability of having given birth. The dark vertical lines mark the deciles
of the distributions. The matching deciles in the two groups are joined by colored lines, showing a uniform, positive
shift in the group of parous women. B) The portion of the x-axis in plot A marked by the grey shaded area at
the bottom of the plot. The y-axis shows the group differences between deciles (parous group minus nulliparous
group), while the x-axis shows the deciles of the parous group. C) Left plot: The distribution of individual-level
classifier probability scores in subgroups of women based on number of childbirths. The plot shows a positive shift
in the distribution with a larger number of births. The plot is displayed with balanced group samples (n nulliparous
women = 2453, 1-2 births = 1773, 3-4 births = 645, and 5-6 births = 35, see Online Methods for details). Darker
color indicates a larger number of births. Right plot: Mean classifier probability for each of the subgroups. The
red vertical line shows the mean classifier probability in the groups of parous women. The lighter grey colored
area illustrates the standard deviation. The error bars represent the standard error on the means. The dashed line
indicates 0.5 on the x-axis. Panel 2 A) The distributions of bias corrected, estimated brain age gap in nulliparous
and parous women. Negative values indicate a predicted brain age that is lower than chronological age, i.e. a
‘younger-looking’ brain. The plot shows a uniform, negative shift in the group of parous women. B) The y-axis
shows the group differences between deciles (parous group minus nulliparous group), while the x-axis shows the
deciles of the parous group. C). Left plot: The distribution of estimated brain age gap in subgroups of women
based on number of childbirths. The plot shows a negative shift in the distribution with a larger number of births.
Number of subjects: nulliparous women = 2453, 1-2 births = 6945, 3-4 births = 2497, and 5-8 births = 126. Darker
color indicates a larger number of births. Right plot: Difference in brain age gap between each of the subgroups
and nulliparous women as measured by Cohen’s d. The error bars represent the standard deviation of the effect
size [23]. Higher values on the x-axis indicate a larger effect size. The dashed line indicates 0 on the x-axis.
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Classifier probability score and number of childbirths
Pearson’s r Logistic regression

r p 95% CI β SE z p
0.05 2.30 × 10−4 0.02, 0.08 2.19 0.73 3.01 2.69 × 10−3

Brain age gap and number of childbirths
r p 95% CI β SE z p

−0.07 5.00 × 10−16 -0.09, -0.06 -0.06 0.01 -8.22 2.07 × 10−16

Group differences in brain age gap
Group Mean diff (SD) t p Cohen’s d
> 1 birth 0.56 (3.76) 8.27 1.54 × 10−16 0.15
1-2 births (n = 6945) 0.50 (2.98) 7.11 1.29 × 10−12 0.17
3-4 births (n = 2497) 0.72 (2.99) 8.42 4.93 × 10−17 0.24
5-8 births (n = 126) 0.82 (2.96) 3.02 2.53 × 10−3 0.28

Table 1: Results from the group classification and brain age prediction, including correlation analyses,
logistic regression, and differences in brain age gap between the subgroups of parous women compared
to nulliparous women, respectively. SE = standard error. Number of women with > 1 birth = 9568,
nulliparous women = 2453.

The mean polygenic scores for number of births in each of the subgroups are shown in Figure 2. A54

positive correlation was found between polygenic scores and number of births (r = 0.09, p = 3.60×10−21,55

CI = [0.07, 0.11]). The correlation between number of births and classifier probability score persisted56

when partialling out polygenic scores (r = 0.08, p = 1.26 × 10−7, CI = [0.05, 0.11]). Polygenic scores and57

classifier probability scores showed a correlation of r = 0.04 (p = 0.07, CI = [-0.0, 0.08]) for parous women,58

and r = 0.00 (p = 0.99, CI = [-0.04, 0.04]) for nulliparous women (full sample: r = 0.03, p = 0.07, CI =59

[-0.0, 0.06]). Polygenic scores and brain age gap showed a correlation of r = 0.02 (p = 0.06, CI = [-0.0,60

0.04]) for parous women and r = 0.04 (p = 0.10, CI = [-0.01, 0.08]) for nulliparous women (full sample:61

r = 0.03, p = 0.07, CI = [-0.0, 0.06]). The correlation between number of births and brain age gap also62

persisted when partialling out polygenic scores (r = −0.08, p = 1.75 × 10−14, CI = [-0.09, -0.06]). To63

estimate the genetic overlap between number of births and other traits including height, BMI, education,64

schizophrenia, bipolar disorder, and major depression, we used linkage disequilibrium score regression65

based on previously published GWAS results [12–17]. The results are provided in Supplementary Figure 1.66
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Figure 2: The x axis shows the mean polygenic score for number of births in each of the subgroups showed on
the y-axis. Red points indicate positive scores, blue points indicate negative scores. The red vertical line and the
grey shaded area show the mean polygenic score and the standard deviation in the groups of parous women. The
error bars represent the standard error on the means. The dashed line indicates 0 on the x-axis.

Summarized, the results show that parity can be linked to women’s brain structure in midlife, in line67

with a recent analysis that tested for associations between brain age and a range of phenotypes in the68

UK Biobank [18]. We found no evidence that common polygenetic variation or confound variables (see69

Supplementary Material) could fully explain the differences in brain age gap between parous and nulli-70

parous women. In light of the existing literature, the findings indicate that parity involves long-lasting71

changes in brain structure [8, 24–28] that may entail a protective effect on brain health later in life [9,72

29]. Such enduring effects may also be more prominent following multiple childbirths, as multiparous73

women were more likely to be classified as parous based on their brain characteristics, and also had the74

‘youngest-looking’ brains in terms of brain age gap.75

Endocrinological modulations play an important role in the increased brain plasticity that occur76

during and after pregnancy [26, 28]. Changes in sex steroid hormones are known to influence human77

brain structure through regulation of neuronal morphology [30–32], and hormones such as estradiol,78
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progesterone, prolactin, oxytocin, and cortisol are known to regulate brain plasticity [26, 30]. Hormonal79

profiles are thus likely to contribute to maternal brain adaptations during pregnancy and postpartum,80

and their fluctuations may have long-term implications for brain health. Lifetime duration of endogenous81

exposure to estrogen, which has neuroprotective effects, has been linked to risk for Alzheimer’s disease82

(AD) later in life [33].83

Another proposed mechanism for enduring effects is the long-lasting presence of fetal cells in the ma-84

ternal body [34–36], and such fetal microchimerism provides an avenue for biological interactions between85

fetal and maternal cells long after delivery. In an evolutionary framework, this has been conceptualized as86

a mother-offspring negotiation [35], providing an intriguing link to the maternal immune system. There is87

strong evidence for a crucial role of immune factors in pregnancy [37], which represents a state of low-level88

inflammation characterized by a balance between anti-inflammatory and pro-inflammatory cytokines [1,89

38]. Pregnancy is known to influence and modify inflammatory disease activity and symptomology in90

conditions such as multiple sclerosis, asthma, and rheumatoid arthritis [39], and the pregnancy-induced91

increase in concentration of regulatory T cells may have implications for inflammatory susceptibility later92

in life. A higher cumulative time spent pregnant in the first trimester, which is when the proliferation93

of regulatory T cells is highest, has been shown to protect against AD [39], of which the pathogenesis is94

known to involve inflammatory processes [40]. Genetic differences have also been shown to interact with95

age and parity to influence AD neuropathology, cognitive function, and expression of proteins related96

to synaptic plasticity in mice [41], indicating differential genotype-dependent effects of parity on brain97

health across life.98

In conclusion, our results provide evidence that parity is linked to brain health in midlife, and99

that this association cannot be explained by common genetic variability. Parity may thus involve neural100

changes that extend beyond the postpartum period and confer a protective effect on the aging brain.101

Page 8 of 23

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 27, 2019. ; https://doi.org/10.1101/650952doi: bioRxiv preprint 

https://doi.org/10.1101/650952
http://creativecommons.org/licenses/by-nc-nd/4.0/


Population-based neuroimaging reveals traces of childbirth in the maternal brain – de Lange et. al., 2019

Acknowledgements102

This research has been conducted using the UK Biobank Resource under Application Number 27412,103

and was supported by the Research Council of Norway (273345, 249795, 276082), the South-East Norway104

Regional Health Authority (2015073), and the European Research Council (ERC StG 802998).105

References

1. Hillerer, K. M., Jacobs, V. R., Fischer, T. & Aigner, L. Neural plasticity 2014 (2014).
2. Rolls, A, Schori, H, London, A & Schwartz, M. Molecular psychiatry 13, 468 (2008).
3. Kinsley, C. H. et al. Hormones and behavior 49, 131–142 (2006).
4. Oatridge, A. et al. American Journal of Neuroradiology 23, 19–26 (2002).
5. Kim, P., Dufford, A. J. & Tribble, R. C. Brain Structure and Function 223, 3267–3277 (2018).
6. Kim, P. et al. Behavioral neuroscience 124, 695 (2010).
7. Duarte-Guterman, P., Leuner, B. & Galea, L. A. Frontiers in neuroendocrinology (2019).
8. Hoekzema, E. et al. Nature Neuroscience 20, 287 (2017).
9. Orchard, E. R. et al. bioRxiv, 589283 (2019).
10. Pawluski, J. L., Lambert, K. G. & Kinsley, C. H. Hormones and behavior 77, 86–97 (2016).
11. Barban, N. et al. Nature genetics 48, 1462 (2016).
12. Lee, J. J. et al. Nature genetics 50, 1112 (2018).
13. Bulik-Sullivan, B. K. et al. Nat Genet 47, 291–5 (2015).
14. Wray, N. R. et al. Nature genetics 50, 668 (2018).
15. Wood, A. R. et al. Nature genetics 46, 1173 (2014).
16. Locke, A. E. et al. Nature 518, 197 (2015).
17. Stahl, E. A. et al. Nature genetics, 1 (2019).
18. Smith, S. M., Vidaurre, D., Alfaro-Almagro, F., Nichols, T. E. & Miller, K. L. BioRxiv, 560151 (2019).
19. Le, T. T. et al. Frontiers in aging neuroscience 10 (2018).
20. Cole, J. H., Leech, R., Sharp, D. J. & Initiative, A. D. N. Annals of neurology 77, 571–581 (2015).
21. Cole, J. H. et al. NeuroImage 163, 115–124 (2017).
22. Cole, J. H. et al. Molecular psychiatry 23, 1385 (2018).
23. Hedges, L. V. & Olkin, I. Statistical methods for meta-analysis (Academic press, 2014).
24. Barha, C. K., Lieblich, S. E., Chow, C. & Galea, L. A. Neurobiology of aging 36, 2391–2405 (2015).
25. Champagne, F. A. & Curley, J. P. New directions for child and adolescent development 2016, 9–21 (2016).
26. Galea, L. A., Leuner, B. & Slattery, D. A. Journal of neuroendocrinology 26, 641–648 (2014).
27. Kim, P., Strathearn, L. & Swain, J. E. Hormones and behavior 77, 113–123 (2016).
28. Kinsley, C. H. & Lambert, K. G. Journal of neuroendocrinology 20, 515–525 (2008).
29. Kinsley, C. H., Franssen, R. A. & Meyer, E. A. in Behavioral Neurobiology of Aging 317–345 (Springer, 2011).

Page 9 of 23

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 27, 2019. ; https://doi.org/10.1101/650952doi: bioRxiv preprint 

https://doi.org/10.1101/650952
http://creativecommons.org/licenses/by-nc-nd/4.0/


Population-based neuroimaging reveals traces of childbirth in the maternal brain – de Lange et. al., 2019

30. Simerly, R. B. Annual review of neuroscience 25, 507–536 (2002).
31. Peper, J., Pol, H. H., Crone, E. & Van Honk, J. Neuroscience 191, 28–37 (2011).
32. Toffoletto, S., Lanzenberger, R., Gingnell, M., Sundström-Poromaa, I. & Comasco, E. Psychoneuroendocrinol-

ogy 50, 28–52 (2014).
33. Fox, M., Berzuini, C. & Knapp, L. A. Psychoneuroendocrinology 38, 2973–2982 (2013).
34. Barha, C. K. & Galea, L. A. Nature neuroscience 20, 134 (2017).
35. Boddy, A. M., Fortunato, A., Wilson Sayres, M. & Aktipis, A. BioEssays 37, 1106–1118 (2015).
36. Zeng, X. X. et al. Stem cells and development 19, 1819–1830 (2010).
37. Mor, G., Cardenas, I., Abrahams, V. & Guller, S. Annals of the New York Academy of Sciences 1221, 80–87

(2011).
38. Luppi, P. Vaccine 21, 3352–3357 (2003).
39. Fox, M., Berzuini, C., Knapp, L. A. & Glynn, L. M. American Journal of Alzheimer’s Disease & Other

Dementias® 33, 516–526 (2018).
40. Wyss-Coray, T. & Rogers, J. Cold Spring Harbor perspectives in medicine 2, a006346 (2012).
41. Cui, J. et al. Molecular neurobiology 49, 103–112 (2014).
42. Fischl, B. et al. Neuron 33, 341–355 (2002).
43. Kaufmann, T. et al. bioRxiv, 303164 (2018).
44. Glasser, M. F. et al. Nature 536, 171 (2016).
45. Rosen, A. F. et al. Neuroimage 169, 407–418 (2018).
46. Rousselet, G. A., Pernet, C. R. & Wilcox, R. R. European Journal of Neuroscience 46, 1738–1748 (2017).
47. Chang, C. C. et al. Gigascience 4, 7 (2015).
48. Bulik-Sullivan, B. et al. Nature genetics 47, 1236 (2015).
49. Euesden, J., Lewis, C. M. & O?reilly, P. F. Bioinformatics 31, 1466–1468 (2014).
50. Alnæs, D. et al. JAMA psychiatry (2019).

Page 10 of 23

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 27, 2019. ; https://doi.org/10.1101/650952doi: bioRxiv preprint 

https://doi.org/10.1101/650952
http://creativecommons.org/licenses/by-nc-nd/4.0/


Population-based neuroimaging reveals traces of childbirth in the maternal brain – de Lange et. al., 2019

Online Methods106

Sample107

The sample was drawn from the UK Biobank (www.ukbiobank.ac.uk), and included 12,021 women.108

Sample demographics are provided in Table 2 and 3.109

Births N Age (M ± SD) Ethnic background % Educational qualification %

0 2453 52.79 (7.23) W97.02|B0.78|M0.73|A0.65|C0.37|O0.37 U51.90|A13.58|O20.42|C3.67|N2.41|P4.81
>1 9568 55.23 (7.22) W97.55|B0.52|M0.46|A0.68|C0.36|O0.40 U40.52|A14.14|O23.06|C4.54|N3.58|P6.26
1-2 6945 54.90 (7.17) W97.65|B0.53|M0.46|A0.59|C0.42|O0.30 U40.58|A14.27|O23.31|C4.84|N3.50|P5.86
3-4 2497 56.10 (7.30) W97.28|B0.52|M0.48|A0.92|C0.20|O0.60 U40.45|A13.86|O22.39|C3.80|N3.80|P7.17
5-8 126 56.33 (6.96) W97.62|B0.00|M0.00|A0.79|C0.00|O1.50 U38.89|A12.70|O22.22|C2.38|N3.97|P10.32

Table 2: Demographics for each group. M ± SD = mean ± standard deviation.
Ethnic background: W = white, B = black, M = mixed, A = Asian, C = Chinese, O = other.
Educational qualification: U = university/college degree, A = A levels or equivalent, O = O levels/GCSE
or equivalent, C = CSE or equivalent, N = NVQ/HNS/HNS or equivalent, P = professional qualification,
e.g. nursing/teaching. For the categories, see http://biobank.ctsu.ox.ac.uk/crystal/coding.cgi?id=100305 and
http://biobank.ctsu.ox.ac.uk/crystal/coding.cgi?id=1001

Births N Age at first birth | Years since first birth

>1 7935 26.09 (4.52) | 29.43 (9.21)
1-2 5313 26.81 (4.54) | 28.42 (9.23)
3-4 2496 24.72 (4.11) | 31.38 (8.89)
5-8 126 22.94 (3.70) | 33.38 (7.24)

Table 3: Age at first birth and years since first birth (M ± SD) for each group, including only subjects with
available data.

MRI processing110

Raw T1-weighted MRI data for all participants were processed using a harmonized analysis pipeline, in-111

cluding automated surface-based morphometry and subcortical segmentation as implemented in FreeSurfer112

5.3 [42]. In line with a recent large-scale implementation [43], we utilized a fine-grained cortical parcellation113

scheme [44] to extract cortical thickness, area, and volume for 180 regions of interest per hemisphere, in114
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addition to the classic set of subcortical and cortical summary statistics from FreeSurfer [42]. This yielded115

a total set of 1118 structural brain imaging features (360/360/360/38 for cortical thickness/area/volume,116

as well as cerebellar/subcortical and cortical summary statistics, respectively).117

To remove outliers, the Euler numbers [45] were extracted from FreeSurfer and averaged across the118

left and right hemispheres. The average values were then residualized with respect to age and scanning site119

using linear models, before subjects with average Euler numbers of SD ± 4 were identified and excluded120

(n = 109). In addition, subjects with SD ± 4 on the global MRI measures mean cortical or subcortical121

gray matter volume were excluded (n = 10 and n = 12, respectively), yielding a total of 12,021 subjects122

for the main analyses.123

As a data quality cross check, the main analyses (binary classification and brain age prediction) were124

re-run using MRI data that was first residualized with respect to the average Euler numbers in addition125

to the other covariates. In brief, the results were consistent with the main findings (see Supplementary126

Table 1 for full results).127

For the binary classification, we residualized all variables with respect to age, scanning site, ethnic128

background, education, and ICV using linear models. For the brain age prediction, we residualized all129

variables with respect to scanning site, ethnic background, education, and ICV using linear models.130

Principal component analysis131

Principal component analyses (PCA) were run with z-transformed MRI variables z = (x − µ)/σ, where132

x is an MRI variable of mean µ and standard deviation σ). The top 100 components were used in the133

subsequent analyses, explaining 56.77% of the total variance for the classifier variables, and 56.78% for the134

brain age prediction variables, as shown in Figure 3. As a cross check, the correlations between number of135

births and a) classifier prediction value and b) brain age gap were re-run with 200 components, explaining136

71.62% and 70.98% of the total variance, respectively. With 200 components included, the correlation137

between number of births and classifier prediction value was r = 0.04, p = 0.01, CI = [0.01, 0.06], while138
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the correlation between number of births and brain age gap showed r = −0.07, p = 2.65 × 10−14, CI =139

[-0.09, -0.05]. As the results were consistent, 100 components were chosen to reduce computational time.140

A) B)

a

Figure 3: A) Cumulative explained variance for the PCA components based on 1118 z-transformed
MRI variables used in the brain age analysis. B) Explained variance ratio shown for the top 10 PCA
components used in the brain age analysis.

Binary classification141

Gradient boosting classification was performed using Scikit-learn (https://scikit-learn.org). Parameters142

were set to max depth = 1, number of estimators = 100, and learning rate = 0.1 (defaults). To account143

for differences in group size, under-sampling was performed using Imbalanced-learn (https://imbalanced-144

learn.readthedocs.io/en/stable/user_guide.html), randomly selecting samples (without replacement) in145

order to balance the group size. The classifier probability score was estimated based on a 10-fold cross146

validation, assigning a probability of being labeled as parous (having given birth) to each of the subjects.147

An average AUC value was generated in the cross validation, and then compared to a null distribution148

based on 10,000 permuted datasets. The result is shown in Figure 4.149
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Figure 4: Gradient boosting classifier with PCA components based on the MRI data. AUC = 0.54 (SD
± 0.02), p = 6.00 × 10−4, based on a 10-fold cross validation (red vertical line). The null distribution
calculated from 10,000 permutations is shown in gray, with an average AUC of 0.50 (SD = 0.01).

Brain age prediction150

The XGBRegressor model from XGBoost was used to run the brain age prediction analysis151

(https://xgboost.readthedocs.io/en/latest/python/index.html). Parameters were set to max depth = 3,152

number of estimators = 100, and learning rate = 0.1 (defaults). The predicted age based on the PCA153

components was estimated in a 10-fold cross validation with 10 repetitions per fold, assigning an estimated154

brain age to each individual. Brain age gap was calculated using estimated brain age - true age. The155

average RMSE was 5.80, as shown in Figure 5.156

In order to adjust for a frequently observed bias leading to generally overestimated age predictions at low157

age and underestimated predictions at high age [18, 19], we employed the following regression:158

Predicted age = A + B × True Age + C × True Age2 (1)

where the coefficients A, B and C parameterize the relationship between the true and predicted age.159

These coefficients were then used to remove the effect of the bias, in order to achieve a linear dependence160

with slope = 1 between the true and predicted age values, as illustrated in Figure 6.161
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A) B)

Figure 5: A) Average RMSE ± SD = 5.78 ± 0.10, p < 0.0001, based on a 10-fold cross validation with 10
repetitions per fold (red vertical line). The null distribution calculated from 10,000 permutations is shown in gray,
with an average RMSE of 7.325 ± 0.009. B) Average R2 = 0.37 ± 0.02, p < 0.0001, based on a 10-fold cross
validation with 10 repetitions per fold (red vertical line). The null distribution is shown in gray, with an average
R2 of -0.011 ± 0.002.

A) B)

Figure 6: A) Machine performance is biased towards the mean age, resulting in overestimated predictions at low
age and underestimated predictions at high age. B) After bias correction using Eq. 1, the predictions follow the
expected dependence.
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To assess the reproducibility of the effects, the brain age analysis was rerun using predicted brain age162

estimates based on an independent approach and training set from the brainageR software163

(https://github.com/james-cole/brainageR) [20–22]. The brainageR model is trained on voxel-based164

morphometry maps (VBM) based on T1-weighted MRI scans from 2001 healthy individuals (male/female165

= 1016/985, mean age ± SD = 36.95 ± 18.12, age range 18–90 years), and uses a Gaussian Processes166

regression with the kernlab package in R. See [21] for details.167

The predicted brain age values from the brainageR dataset were corrected for age using Equation168

1, and outliers with a value of < 0 and > 90 were removed (n = 15). The brain age that was estimated169

using brainageR and the brain age that was estimated using our current approach showed a correlation of170

r = 0.61, p =< 0001, CI = [0.60, 0.62]. When using the brain age values from the brainageR estimation, a171

negative correlation was found between number of childbirths and brain age gap (r = 0.04, p = 3.00×10−6,172

CI = [-0.06, -0.02]), and the group differences showed 0.72 (SD = 8.05) years for > 1 births (t = 4.98,173

p = 6.52 × 10−7, d = 0.09), 0.61 (SD = 6.33) years for 1-2 births (t = 4.10, p = 4.31 × 10−5, d = 0.10),174

0.92 (SD = 6.40) years for 3-4 births (t = 5.08, p = 3.95 × 10−7, d = 0.14), and 2.50 years (SD = 6.48) for175

5-8 births, t = 4.18, p = 3.00 × 10−5, d = 0.38), relative to nulliparous women, respectively. The results176

are shown in Figure 7.177
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Figure 7: A) The distributions of bias corrected brain age gap in nulliparous and parous women. Negative values
indicate a predicted brain age that is lower than chronological age, i.e. a ‘younger-looking’ brain. The plot shows a
uniform, negative shift in the group of parous women. B) The y-axis shows the differences between deciles (parous
group minus nulliparous group), while the x-axis shows the deciles of the parous group. C) The distribution of brain
age gap in subgroups of women based on number of childbirths. The plot shows a negative shift in the distribution
with a larger number of births. Number of subjects: nulliparous women = 2453, 1-2 births = 6945, 3-4 births =
2497, and 5-8 births = 126. Darker color indicates a larger number of births. C). Left plot: The distribution of
estimated brain age gap in subgroups of women based on number of childbirths. The plot shows a negative shift
in the distribution with a larger number of births. Darker color indicates a larger number of births. Right plot:
Difference in brain age gap between each of the subgroups and nulliparous women as indexed by Cohen’s d. The
error bars represent the standard deviation of the effect size [23]. Higher values on the x-axis indicate a larger effect
size. The dashed line indicates 0 on the y-axis.

The differences between the quantiles of the groups of parous and nulliparous women were investigated178

using the shift function in the Robust Graphical Methods For Group Comparisons package in R [46]179

(https://github.com/GRousselet/rogme). In brief, the shift function shows the difference between the180

quantiles of two groups as a function of the quantiles of one group.181
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Genome-wide association study (GWAS)182

A GWAS was run on the women in the UK Biobank cohort (n = 271,312, excluding the MRI subsample),183

using PLINK 2.0 [47] and the UKB v3 imputed genetic data, filtering out SNPs with a minor allele184

frequency below 0.001 or failing the Hardy-Weinberg equilibrium test at p < 1.00×10−9. Non-Caucasians185

and individuals with a brain disorder as indicated by ICD10 were excluded from the study. We then ran186

a linear regression on the continuous measure number of childbirths, covarying for age and the first ten187

genetic principal components, as provided by UK Biobank under field 22009. PRSice v1.25 [49] was used188

to calculate polygenic scores for number of births across p-value thresholds from 0.001 to 0.5, with intervals189

of 0.001, using PRSice default settings. This includes the removal of the major histocompatibility complex190

(MHC; chromosome 6, 26-33Mb) and thinning of SNPs based on linkage disequilibrium and p-value. A191

PCA was run on the polygenic scores across all p-value levels [50], and the first component explaining192

92.24% of the total variance was used in the subsequent analyses. The PCA component correlated r = 0.9193

with the PGS at threshold p = .05. Cross-trait linkage disequilibrium score regression [48] was applied to194

calculate genetic correlation between number of children and height, BMI, education, major depressive195

disorder, schizophrenia, and bipolar disorder [12–17].196
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Supplementary material197

Supplementary Figure 1: Genetic overlap between number of childbirths and other traits. Red points indicate
positive correlation, blue points indicate negative correlation. The error bars indicate the standard error. BMI =
Body mass index, MDD = Major depressive disorder, BD = Bipolar disorder, SCZ = Schizophrenia, Male_Nch
= male number of children fathered. Linkage disequilibrium score regression revealed genetic correlations between
number of childbirths and height (rg = -0.11 (SE = 0.03), p = 1.31 × 10−5), BMI (rg = 0.08 (SE = 0.03),
p = 5.40 × 10−3), education (rg = -0.28 (SE = 0.03), p = 4.32 × 10−28), and major depressive disorder (rg = 0.12
(SE = 0.04), p = 9.15 × 10−4). The genetic correlation between parity and bipolar disorder (rg = 0.07 (SE = 0.04),
p = 0.11), and schizophrenia (rg = 0.05 (SE = 0.03), p = 0.14) did not survive Bonferroni correction (p threshold =
0.007). A genetic correlation of rg = 0.67 (SE = 0.06), p = 9.30 × 10−30 was found for number of births in women
and number of children fathered in men.
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Classifier probability score and number of childbirths
Pearson’s r Logistic regression

r p 95% CI β SE z p
0.06 8.00 × 10−6 0.04, 0.09 2.18 0.70 3.11 1.86 × 10−3

Brain age gap and number of childbirths
r p 95% CI β SE z p

−0.08 1.62 × 10−16 -0.09, -0.06 -0.06 0.01 -8.60 7.76 × 10−18

Group differences in brain age gap
Group Mean diff (SD) t p Cohen’s d
> 1 birth 0.60 (3.86) 8.66 5.45 × 10−18 0.16
1-2 births (n = 6945) 0.55 (3.06) 7.67 1.94 × 10−14 0.18
3-4 births (n = 2497) 0.72 (3.07) 8.30 1.39 × 10−16 0.24
5-8 births (n = 126) 0.85 (3.06) 3.03 2.49 × 10−3 0.28

Supplementary Table 1: Correcting for Euler numbers to control for data quality. The classification and
brain age prediction analyses were re-run using MRI data that were residualized with respect to the Euler numbers
in addition to the other covariates using linear models. Outliers were identified and removed using the procedure
described in Online Methods. The top 100 variables from a PCA were included in the regressor. The table shows
the results from correlation analyses and logistic regression, and differences in brain age gap between each group of
parous women compared to nulliparous women, respectively. The estimated brain age was corrected for age using
Equation 1 in the Online Methods. Number of women with > 1 birth = 9568, nulliparous women = 2453.

Brain age gap and number of childbirths
r p 95% CI β SE z p

−0.07 2.34 × 10−14 -0.09, -0.05 -0.06 0.01 -7.73 1.06 × 10−14

Group differences in brain age gap
Group Mean diff (SD) t p Cohen’s d

> 1 birth 0.53 (3.77) 7.77 8.31 × 10−15 0.14
1-2 births (n = 6779) 0.48 (2.97) 6.75 1.62 × 10−11 0.16
3-4 births (n = 2428) 0.68 (3.00) 7.80 7.75 × 10−15 0.22
5-8 births (n = 123) 0.73 (2.98) 2.67 2.71 × 10−3 0.25

Supplementary Table 2: Ethnic background. The brain age analysis was re-run on white subjects only.
Outliers were identified and removed using the procedure described in Online Methods. The top 100 variables from
a PCA were included in the regressor. The estimated brain age was corrected for age using Equation 1 in the Online
Methods. The table shows the results from correlation analyses and logistic regression for the white subsample.
Number of women with > 1 birth = 9330, nulliparous women = 2378.
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University/college. N = 3877 parous and 1273 nulliparous women

Brain age gap and number of childbirths

r p 95% CI β SE z p

−0.07 2.00 × 10−6 -0.09, -0.04 -0.07 0.01 -4.28 1.86 × 10−5

A level. N = 1353 parous and 333 nulliparous women

Brain age gap and number of childbirths

r p 95% CI β SE z p

−0.09 2.85 × 10−4 -0.14, -0.04 -0.07 0.02 -3.63 2.84 × 10−4

O level or equivalent. N = 2640 parous and 591 nulliparous women

Brain age gap and number of childbirths

r p 95% CI β SE z p

−0.07 1.29 × 10−4 -0.10, -0.03 -0.06 0.01 -4.02 5.90 × 10−5

Other professional (NVQ or similar). N = 942 parous and 177 nulliparous women

Brain age gap and number of childbirths

r p 95% CI β SE z p

−0.01 0.70 -0.07, 0.05 -0.03 0.03 -1.01 0.31

Supplementary Table 3: Education. A higher level of education was related to a lower number of childbirths
(r = −0.096, p = 3.32 × 10−26, CI = [0.08, 0.11]). The brain age analysis was re-run within groups of women with
a) university or college level education, b) A levels, c) O levels or equivalent, and d) other professional qualifications
(NVQ or similar). Outliers were identified and removed using the procedure described in Online Methods. The
top 100 variables from a PCA were included in the regressor. The estimated brain age was corrected for age using
Equation 1 in the Online Methods. The table shows the results from correlation analyses and logistic regression
within each of the educational categories.
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BMI < 18.5. N = 53 parous and 12 nulliparous women

Brain age gap and number of childbirths

r p 95% CI β SE z p

−0.04 0.74 -0.28, 0.20 0.002 0.10 0.02 0.99

BMI 18.5 - 25. N = 3086 parous and 790 nulliparous women

Brain age gap and number of childbirths

r p 95% CI β SE z p

−0.06 6.40 × 10−5 -0.10, -0.03 -0.07 0.01 -5.33 9.96 × 10−8

BMI 26 - 30. N = 3076 parous and 842 nulliparous women

Brain age gap and number of childbirths

r p 95% CI β SE z p

−0.08 7.79 × 10−7 -0.11, -0.05 -0.06 0.01 -4.82 1.43 × 10−6

BMI > 30. N = 2351 parous and 563 nulliparous women

Brain age gap and number of childbirths

r p 95% CI β SE z p

−0.06 1.58 × 10−3 -0.09, -0.02 -0.05 0.02 -3.29 1.66 × 10−3

Supplementary Table 4: Body mass index (BMI). The general relationship between brain age gap and number
of births persisted when correcting for BMI (r = −0.07, p = 5.73×10−16, CI = [-0.09, -0.06]). To further investigate
the influence of BMI, the brain age analysis was re-run within groups of women with BMI values of a) < 18.5, b)
18.5 - 25, c) 26 - 30, and d) > 30. Outliers were identified and removed using the procedure described in Online
Methods. The top 100 variables from a PCA were included in the regressor. The estimated brain age was corrected
for age using Equation 1 in the Online Methods. The table shows the results from correlation analyses and logistic
regression within each of the BMI categories. 65 women had BMI below 18.5 (minimum BMI = 15), constituting
a group that was too small to run with PCA. In this group, all the MRI variables were included.
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Population-based neuroimaging reveals traces of childbirth in the maternal brain – de Lange et. al., 2019

AFB < 22 years. N = 1280 parous and 2453 nulliparous women
Brain age gap and number of childbirths

r p 95% CI β SE z p
−0.10 6.91 × 10−10 -0.13, -0.07 -0.07 0.01 -6.04 1.59 × 10−9

Group differences in brain age gap
Group Mean diff (SD) t p Cohen’s d
> 1 birth 0.63 (2.47) 6.09 1.22 × 10−9 0.25
1-2 births (n = 649) 0.55 (2.97) 4.16 3.34 × 10−5 0.18
3-4 births (n = 580) 0.66 (2.97) 4.85 1.29 × 10−6 0.22
5-8 births (n = 51) 1.02 (2.95) 2.88 4.00 × 10−3 0.41

AFB 22-29 years. N = 5013 parous and 2453 nulliparous women
Brain age gap and number of childbirths

r p 95% CI β SE z p
−0.10 9.98 × 10−18 -0.12, -0.08 -0.07 0.01 -9.14 6.03 × 10−30

Group differences in brain age gap
Group Mean diff (SD) t p Cohen’s d
> 1 birth 0.69 (3.51) 9.25 2.98 × 10−20 0.20
1-2 births (n = 3297) 0.64 (3.01) 7.92 1.17 × 10−12 0.19
3-4 births (n = 1646) 0.79 (3.05) 8.18 3.64 × 10−16 0.26
5-8 births (n = 70) 0.70 (3.03) 1.90 0.06 0.23

AFB > 30 years. N = 1642 parous and 2453 nulliparous women
Brain age gap and number of childbirths

r p 95% CI β SE z p
−0.06 5.60 × 10−5 -0.09, -0.03 -0.04 0.01 -3.99 6.72 × 10−5

Group differences in brain age gap
Group Mean diff (SD) t p Cohen’s d
> 1 birth 0.37 (2.57) 4.00 6.42 × 10−5 0.14
1-2 births (n = 1367) 0.34 (2.88) 3.49 4.89 × 10−4 0.12
3-4 births (n = 270) 0.53 (2.86) 2.88 4.03 × 10−3 0.18
5-8 births (n = 5) -1.07 (2.87) -0.83 0.41 0.37

Supplementary Table 5: Age at first childbirth (AFB). The correlation between brain age gap and number of
births was r = 0.02, p = 0.06, CI = [-0.04, -0.0]) when correcting for AFB in an analysis including only the parous
women. To further investigate the influence of AFB, the brain age analysis was re-run within groups of women
with AFB at a) < 22 years, b) 22 - 29 years, and c) > 30 years, as compared to nulliparous women, respectively, in
a subsample including the nulliparous women and the parous women who had data on AFB (N = 8017). Outliers
were identified and removed using the procedure described in Online Methods. The top 100 variables from a PCA
were included in the regressor. The estimated brain age was corrected for age using Equation 1 in the Online
Methods. The table shows the results from correlation analyses, logistic regression, and differences in brain age gap
between each of the groups of parous women compared to nulliparous women, respectively, within each of the AFB
categories.
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