
ARTICLE PREPRINT 

 1 

 

Promoters adopt distinct dynamic manifestations 
depending on transcription factor context  
Anders S. Hansen1,2* and Christoph Zechner3,4* 

 

1Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA; 2Department of Biological Engineering, 
Massachusetts Institute of Technology, Cambridge, MA, USA; 3Max Planck Institute of Molecular Cell Biology & Genetics, Germany 
4Center for Systems Biology Dresden, Germany; *corresponding authors, alphabetical order 
Contact: anders.sejr.hansen@berkeley.edu and zechner@mpi-cbg.de  
 

Cells respond to external signals and stresses by activating transcription factors (TF), which induce gene 
expression changes. Previous work suggests that signal-specific gene expression changes are partly achieved 
because different gene promoters exhibit varying induction dynamics in response to the same TF input signal. 
Here, using high-throughput quantitative single-cell measurements and a novel statistical method, we 
systematically analyzed transcription in individual cells to a large number of dynamic TF inputs. In particular, we 
quantified the scaling behavior among different transcriptional features extracted from the measured trajectories 
such as the gene activation delay or duration of promoter activity. Surprisingly, we found that even the same 
gene promoter can exhibit qualitatively distinct induction and scaling behaviors when exposed to different 
dynamic TF contexts. That is, promoters can adopt context-dependent “manifestations”. Our analysis suggests 
that the full complexity of signal processing by genetic circuits may be significantly underestimated when 
studied in specific contexts only. 
 

INTRODUCTION 

Exquisite regulation of gene expression underlies 
essentially all biological processes, including the 
remarkable ability of a single cell to develop into a fully 
formed organism. Transcription factors (TFs) control gene 
expression by binding to the promoters of genes and 
recruiting chromatin remodelers and the general 
transcriptional machinery. Recruitment of RNA Polymerase 
II enables the initiation of transcription, which produces 
mRNAs that are exported to the cytoplasm, where they are 
finally translated into proteins by the ribosome. Gene 
expression is primarily regulated at the level of promoter 
switching dynamics and initiation of transcription in a highly 
stochastic manner1. For practical reasons, however, gene 
expression is typically analyzed at the level of mRNAs (e.g. 
FISH) or proteins (e.g. immunofluorescence or GFP-
reporters) using bulk or single-cell approaches. Although 
powerful, these data provide only partial and indirect 
information about the underlying promoter states and 
transcription initiation dynamics. Moreover, although gene 
regulation is complex in both time (e.g. time-varying 
signals) and space (e.g. signaling gradients), experimental 
measurements tend to be limited to simple perturbations 

such as ON/OFF or dose-dependent responses under 
steady-state conditions.  

Ideally, gene regulation should be studied at the 
level of promoter switching dynamics and transcription 
initiation events, using experimental approaches that 
capture gene expression in a sufficiently large number of 
cells in response to a broad range of dynamic inputs. 
Several elegant studies have addressed some, but not all, 
of these challenges1–5. Here, through an integrated 
experimental and computational approach, we make a first 
attempt to realize this goal. We focus on a simple feedback-
free system, where a single inducible TF activates a target 
gene. Surprisingly, our approach reveals that even the 
simplest gene networks can display complex and counter-
intuitive behaviors, which cannot be explained by simple 
kinetic models. In particular, we show that genes exhibit 
“context-dependent manifestations”, such that the same 
gene can switch between qualitatively different kinetic 
behaviors depending on which dynamic input it is exposed 
to. 

RESULTS 

Inferring promoter induction dynamics from 
quantitative single-cell trajectories 
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 To study how genes respond to complex and 
dynamic TF inputs, we focus on a large data-set that we 
previously generated (Supplementary Fig. 1)4,6. Here, 
addition of a small molecule causes the budding yeast TF, 
Msn2, to rapidly translocate to the nucleus and activate 

gene expression (Fig. 1a). Using microfluidics, 
rapid addition or removal of 1NM-PP1 allowed us 
to control both pulse length, pulse interval and 
pulse amplitude of the TF (fraction of Msn2 that is 
activated) and simultaneously measure the 
single-cell response of natural and mutant Msn2 
target genes using fluorescent reporters4,6–8 (Fig. 
1a). We note that Msn2 naturally exhibits 
complex signal-dependent activation dynamics3, 
that the system is not subject to feedback3,4, that 
we replaced the target gene ORF with YFP and 
measured the endogenous gene response4,6 and 
that the target genes are strictly Msn2- 
dependent4. Our extensive dataset contains 30 
distinct dynamical Msn2 inputs for 9 genes (210 
conditions) and ~500 cells per condition, 
numbering more than 100,000 single-cell 
trajectories in total (Fig. 1b).  

Gene promoters can generally exist in a 
number of transcriptionally active and inactive 
states9,10. To understand the occupancy, 
dynamics and switching between these states, 
we used mathematical modeling in combination 
with our experimental data (Fig. 1c). Here we 
focus on a three-state promoter architecture 
(Supplementary text S.1), which was the 
simplest model that could recapitulate the single-
cell responses of all promoters at individual Msn2 
concentrations (Supplementary text S.2.1). This 
model accounts for Msn2-dependent activation of 
the promoter after which mRNA can be 
transcribed at a certain rate. Transcription can be 
further tuned (for instance by recruitment of 
additional factors), which is captured by a third 
state with distinct transcription rate (Fig. 1c).  

This model in combination with a robust 
statistical approach allows us to determine the 
promoter switching- and transcription dynamics in 
individual cells across different promoters and 
conditions (see Box 1). However, existing 
inference approaches for trajectory data are 
limited in throughput and thus cannot handle 
extensive datasets like the one considered 
here11–13. We have therefore developed a novel 
recursive Bayesian inference method, which 
achieves accurate reconstructions while 
maintaining scalability (Supplementary Text 
S.1). The method processes single-cell 
trajectories and extracts from them time-varying 
transcription rates and promoter state 
occupancies (Fig. 1d). From the reconstructions, 
in turn, we computed a number of transcriptional 
features that summarize the single-cell 
expression dynamics of each promoter and 

condition (Fig. 1e and Supplementary text S.1.7). This 
combined experimental and computational approach 
allowed us to quantitatively compare different promoters 
under a wide range of Msn2 contexts.  

 
Figure 1. Overview of Msn2 system and inference approach. (a) Overview of 
microfluidic control of Msn2 activity and read-out of gene expression. (b) Overview 
of range of Msn2 input dynamics. (c) Stochastic model of gene expression. The 
promoter (left) can switch from its inactive state to its active state in an Msn2-

dependent manner. Once active, mRNA can be transcribed at a certain rate 𝑧1. 
Transcription can be further tuned by recruitment of additional factors, which is 
captured by a third state with distinct transcription rate 𝑧2. Messenger RNA and 
protein dynamics are described as a two-stage birth-and-death process (right). A 
detailed description of the model can be found in Supplementary text S.1.1). (d) 
Statistical reconstruction of promoter switching and transcription dynamics. Gene 
expression output trajectories were quantified for diverse Msn2 inputs in a large 
number of cells. From the experimental inputs and outputs, transcription rates and 
promoter state occupancies were reconstructed using Bayesian inference (Box 1 
and Supplementary Text S.1). (e) Determination of promoter features from single-
cell data. Several features characterizing the promoter and transcription dynamics 
were calculated from the single-cell reconstructions for each promoter and 
experimental condition. (f) Clustering of promoters revealed by PCA (Supplementary 
text S.2.3).  
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To gain an overview of this high-
dimensional dataset, we analyzed the gene 
expression responses to single pulses of nuclear 
Msn2 of different amplitudes (25%, 50%, 75% or 
100%) for each promoter. Using Principal 
Component Analysis (PCA) to reduce the 
dimensionality (Supplementary text S.2.3), we 
uncovered the known categories of the 
promoters4 for most conditions (Fig. 1f): slow 
activation, high amplitude threshold promoters 
(SIP18, TKL2) clustered together and fast 
activation, low amplitude threshold promoters 
(HXK1, DCS2) also clustered together. 
Surprisingly, however, DDR2 (green; Fig. 1f) 
clustered with the slow, high threshold promoters 
at low Msn2 amplitudes (25%, 50%), but with the 
fast, low threshold promoters at high Msn2 
amplitudes (75%, 100%). To explain this 
phenomenon, we introduce the concept of 
“context-dependent manifestations”. 
Operationally, we define a context-dependent 
manifestation of a promoter as a situation where 
the same promoter exhibits qualitatively distinct 
kinetic behaviors under different input contexts. 
Here for instance, DDR2 behaves like one 
promoter class at low Msn2 amplitudes, but a 
distinct class at high Msn2 amplitudes. 

 

Promoters exhibit context-dependent 
scaling behaviors 

Having established that a single gene 
promoter can exhibit distinct context-dependent 
manifestations, we next considered specific 
examples of this. We analyzed the scaling 
behavior among different transcriptional features 
under all input contexts. While certain promoters 
behaved consistently under all contexts, others 
exhibited complex and context-dependent scaling 
behaviors. In Fig. 2a, for instance, we plotted the 
time it took to activate the promoter and the time 
the promoter was active (Fig. 2b) against the 
maximal transcription rate for single pulse inputs 
for DDR2. Surprisingly, at low amplitude Msn2 
input, the time it takes to activate DDR2 for the 
first time increases with pulse length (Fig. 2a) 
without strongly changing the active duration 
(Fig. 2b) while the maximal transcription rate 
remained constant (Fig. 2a). In contrast, at high 
Msn2 amplitude, the time to activate is fixed at 
around 5 min, but now the maximal transcription 
rate increases with pulse duration. Thus, we 
observe qualitatively distinct scaling behaviors 
depending on Msn2 context (here, amplitude) 
and refer to this phenomenon as a context-
dependent manifestation.  

Having observed qualitatively distinct 
scaling behaviors for a natural promoter (DDR2), 
we next tested whether context-dependent 
behaviors are tunable by analyzing wild-type 
SIP18 and two mutants6 of SIP18 (Fig. 2c). 

BOX 1. Bayesian reconstruction of promoter switching dynamics from 
time-lapse data. 
We developed an efficient Bayesian method to quantify promoter switching 
and transcription dynamics from time-lapse fluorescent reporter 
measurements (Fig 1, Supplementary text S.1.1). The dynamic state of 
the gene expression system at time 𝑡 is denoted by 𝑠(𝑡) = (𝑧(𝑡), 𝑚(𝑡), 𝑛(𝑡)), 
with 𝑧(𝑡) as the instantaneous transcription rate and 𝑚(𝑡) and 𝑛(𝑡) as the 
mRNA and YFP reporter copy numbers, respectively. The dynamics of 𝑠(𝑡) 
are described by a continuous-time Markov chain (CTMC) as described in 
Supplementary Text S.1. Let us denote by 𝑠0:𝐾 = {𝑠(𝑡) | 0 ≤ 𝑡 ≤ 𝑡𝐾} a 
complete trajectory of 𝑠(𝑡) on the time interval 𝑡 ∈ [0, 𝑡𝐾]. We assume that 
we can collect a sequence of 𝐾 partial and noisy measurements 𝑦1, … , 𝑦𝐾  at 
times 𝑡1 < 𝑡2 < ⋯ < 𝑡𝐾  along the trajectory. The statistical relationship 

between the measurements and the underlying state of the system is 
captured by a measurement density 𝑝(𝑦𝑘 | 𝑠𝑘) with 𝑠𝑘 = 𝑠(𝑡𝑘) for all 𝑘 =
1, … , 𝐾. In the scenario considered here, the measurements 𝑦1, … , 𝑦𝐾 
represent noisy readouts of the reporter copy number extracted from time-
lapse fluorescence movies (Materials and Methods). In order to infer 𝑠0:𝐾 
from a measured trajectory 𝑦1, … , 𝑦𝐾, we employ Bayes’ rule, which is stated 
as 

𝑝(𝑠0:𝐾| 𝑦1, … , 𝑦𝐾) ∝ 𝑝(𝑦1, … , 𝑦𝐾 | 𝑠0:𝐾)𝑝(𝑠0:𝐾) =  ∏ 𝑝(𝑦𝑘 | 𝑠𝑘)

𝐾

𝑘=1

𝑝(𝑠0:𝐾), 

with 𝑝(𝑠0:𝐾) as the probability distribution over trajectories 𝑠0:𝐾 . The latter is 
governed by the CTMC model of gene expression, which summarizes the 
statistical knowledge about the system that is available prior to performing 
the experiment. The corresponding posterior distribution on the left-hand 
side captures the knowledge about 𝑠0:𝐾 that we gain once we take into 
account the experimental measurements. However, analytical expressions 
to analyze the posterior distribution are generally lacking and one is typically 
left with numerical approaches. Sequential Monte Carlo (SMC) methods22 
have been successfully applied to address this problem in the context of 
time-lapse reporter measurements11–13. The core idea of these approaches 

is to generate a sufficiently large number of random sample paths 𝑠0:𝐾
(𝑖)

 

consistent with the posterior distribution from eq. (3). This is performed 
sequentially over individual measurement time points, which allows splitting 
the overall sampling problem into a sequence of smaller ones that can be 
solved more efficiently (Supplementary Text S.1.4). The resulting SMC 
methods, however, are still computationally very expensive since the 

generation of an individual sample path 𝑠0:𝐾
(𝑖)

 can span thousands or even 

millions of chemical events when considered on realistic experimental time 
scales. In the Msn2 induction system, for instance, trajectories involve a 
large number of transcription and translation events, which would render 
conventional SMC approaches inefficient. To address this problem, we 
developed a hybrid SMC algorithm, in which only the promoter switching 
events have to simulated explicitly, while the transcription and translation 
dynamics are eliminated from the simulation. More precisely, the scheme 
targets the marginal posterior distribution 

𝑝(𝑧0:𝑘 | 𝑦1, … , 𝑦𝑘) ∝ 𝑝(𝑦1 | 𝑧0:1) ∏ 𝑝(𝑦𝑘 | 𝑦1, … , 𝑦𝑘−1 , 𝑧0:𝑘)

𝐾

𝑘=2

 𝑝(𝑧0:𝐾), 

where the mRNA and reporter dynamics 𝑚(𝑡) and 𝑛(𝑡) have been 
integrated out. We derived expressions for the marginal likelihood functions  
𝑝(𝑦𝑘 | 𝑦1, … , 𝑦𝑘−1 , 𝑧0:𝑘) using an analytical approximation based on 
conditional moment equations (Supplementary Text S.1.5). Using this 
hybrid SMC algorithm, the sampling space could be significantly reduced, 
which makes the method scale to large datasets as the one considered in 
this study. Prior to applying the scheme to the dataset, the model 
parameters were inferred using a subset of the data (Supplementary Text 
S.2.1 and Supplementary Table 1). A complete description of the method 
and additional details can be found in Supplementary Text S.1 and S.2. 
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Specifically, we analyzed the mean number of state 
transitions between active and inactive promoter states for 
a single Msn2 pulse of variable duration (10, 20, 30, 40 or 
50 min) as a function of the amplitude (25%, 50%, 75% or 
100% Msn2 activation) and calculated the mean number of 
state transitions normalized by pulse duration. Within the 
context of a traditional “random-telegraph” model, high 
transcription is normally associated with a large number of 
state transitions1,4. Surprisingly however, SIP18 exhibited 
an unusual “U-shaped” scaling where low and high Msn2 
amplitudes were associated with fast switching kinetics, 
whereas intermediate Msn2 amplitudes showed ~2-3 fold 
slower switching kinetics (Fig. 2d). A simple model where 
the switching rates increase with Msn2 amplitude cannot 
explain this behavior. To further investigate this scaling 
behavior, we compared the behavior of the wild-type SIP18 
promoter to two mutants6, A4 and D6 (Fig. 2a). While D6 
(Fig. 2f) displayed the expected scaling behavior of 
monotonically increasing switching kinetics with increasing 
Msn2 amplitude, A4 (Fig. 2e) also showed unusual scaling 
behavior of “increasing→decreasing→increasing” switching 
kinetics with Msn2 concentration. In summary, these results 
demonstrate that a single promoter can exhibit context-
dependent scaling behavior that cannot be explained by 
one simple model, and additionally, that only a few 
promoter mutations are sufficient to completely alter this 
behavior.  

  

Context-dependent promoter manifestations control 
gene expression noise 

 Having analyzed population-averaged properties, 
we next asked whether manifestations exist at the single-
cell level. We began by analyzing the correlation between 
transcriptional output (the total number of mRNA produced) 
and the time the promoter was active (Fig. 3a) for TKL2 
and DCS2. For DCS2, transcriptional output at the single-
cell level is a nearly deterministic function of the time the 
promoter spends in an active state. To validate this, we 
performed a regression analysis and found that a simple 
linear model where transcriptional output is proportional to 
time spent in the active promoter states (with coefficient β) 
can explain nearly all the variation in transcriptional output 
(R2~1; Fig. 3a). Thus, for a given Msn2 amplitude, the rate 
of DCS2 transcription is fixed and the single-cell expression 
level is determined almost exclusively by the time the 
promoter is active. However, the rate of transcription is set 
by the Msn2 amplitude (i.e. β increases with Msn2 
amplitude). Thus, DCS2 is remarkably simple and 
regulation by time active and transcription rate can be 
decoupled.   

In contrast, TKL2 resembles DCS2 at low and high 
Msn2 amplitudes, but at 50% Msn2 activation (Fig. 3a, 
blue), TKL2 becomes highly stochastic and time active 
becomes a poor predictor of transcriptional output (R2<<1; 
Fig. 3a). Thus, surprisingly, time active is an almost 
deterministic predictor of TKL2 transcriptional output at low 
and high Msn2 amplitudes (R2~1), but a fairly poor predictor 
at intermediate Msn2 amplitude (R2<<1). This demonstrates 

that TKL2 exhibits an unusual 
“inverse-U” 
“deterministic→stochastic→determinis
tic” scaling behavior and further 
highlights how promoters exhibit 
context-dependent single-cell 
manifestations, in this case dependent 
on the Msn2 amplitude.  

The analysis above 
considered the single-cell responses 
to a single 50 min Msn2 pulse at 
different amplitudes. To generalize our 
analysis, we next analyzed how 
transcriptional noise (quantified using 
CV: std/mean) scales with mean 
transcriptional output under all 
conditions (Fig. 3b). As expected from 
previous studies14,15, transcriptional 
noise uniformly decreases as 
transcriptional output increases for 
some genes such as DCS2. In 
contrast, SIP18 exhibits the same 
“inverse-U” scaling as TKL2: low noise 
during low transcription, high noise 
during intermediate levels of 
transcription and again low noise 
during high levels of transcription (Fig. 
3c). To further investigate the 
“inverse-U” scaling, we compared the 
behavior of the wild-type SIP18 

promoter to the two mutants A4 and D66 (Fig. 2c). Mutant 
A4 behaves like DCS2, demonstrating that only a few 

 
Figure 2: Context-dependent scaling behaviors. (a) Scaling behavior for DDR2. Scaling of time 
to activate (top) and total time active (bottom) for DDR2 with the maximal transcription rate. Time 
to activate is defined as the time from when Msn2 enters the nucleus until the promoter converts 
into a transcriptionally active state. Similarly, time active is defined as the total duration the 
promoter is in a transcriptionally active state. Cells that never switched into a transcriptionally 
active state (non-responders) were excluded from the analysis. The maximal transcription rate is 
defined as the maximum of the average transcription rate calculated across the whole population. 
(b) Overview of wild-type and mutant SIP18 promoters6. (c-f) Plots of the total number of state 
transitions normalized by pulse duration for 100% Msn2 input for wild-type (c), mutant A4 (d) and 
mutant D6 (f).  
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promoter mutations are sufficient to switch scaling and 
manifestation behavior.  

 

Memory dependent promoter manifestations 
revealed by pulsatile Msn2 activation 

We next analyzed how promoters respond to 
pulsatile Msn2 activation. Cells were exposed to four 5-min 
Msn2 pulses separated by 5, 7.5, 10, 15 or 20 min intervals. 
Some promoters behaved relatively simply, e.g. DCS2 (Fig. 
4a). Essentially all cells activate the DCS2 promoter during 
the first pulse (Fig. 4b), and the promoter displays limited 
“positive memory” between pulses. By “positive memory”, 
we refer to the fact that successive pulses of Msn2 
activation increase the susceptibility of the promoter to 
become activated and induce higher gene expression. This 
has also been termed the “head-start” effect3. In contrast, 
the SIP18 mutant D6 promoter6 exhibited very curious 

behavior: at 5-min intervals (Fig. 4b, top row), 
there was significant positive memory and most 
cells only activated expression in the 2nd, 3rd or 
4th pulse (Fig. 4b, top row). In contrast, with 20 
min intervals, we observed “negative memory”: 
there was much lower expression during pulse 
2-4, than during pulse 1. In other words, 
exposure to 1 pulse of Msn2 inhibited 
transcription during subsequent pulses. 
Furthermore, comparing the different pulse 
intervals we observed a transition from positive 
memory at 5 and 7.5 min intervals to negative 
memory at 15 and 20 min intervals (Fig. 4b). 
While positive memory has previously been 
reported3,4, a context-dependent switch from 
positive to negative memory has not. We note 
that no simple model can explain a sharp 
transition from positive to negative promoter 
memory and that this type of behavior only 
becomes visible once the response to diverse 
dynamic inputs are analyzed. Although the 
underlying molecular mechanism is unknown, 
we show in Supplementary Fig. 2 a 
hypothetical toy model that could explain this 
switch from positive to negative memory. In 
conclusion, these data provide another 
example of how the same promoter can exhibit 
very different quantitative and qualitative 
behaviors depending on the context – in this 
case, depending on the interval between Msn2 
pulses. 

 
 

DISCUSSION 

Here we quantitatively analyze the 
input-output relationship in a simple feedback-

free system. We show that even under these relatively 
simple conditions, the same promoter can exhibit context-
dependent scaling and induction behaviors. To describe 
this observation, we introduce the concept of context-
dependent “manifestations”. The underlying number of 
molecular states of a promoter is potentially enormous: 
when we measure a dose-response, we likely observe only 
certain rate-limiting regimes or manifestations of the system 
(Fig. 4c). What we show here is that the particular 
observed rate-limiting manifestation is highly context-
dependent and very distinct quantitative behaviors can be 
observed under different contexts – even in systems that 
are seemingly simple. It appears likely that many other 
genes and pathways exhibit similar context-dependencies, 
when analyzed at high resolution and under a wide range of 
experimental conditions.  

 
Figure 3: Single-cell manifestations control gene expression noise. (a) Scaling of 

transcriptional output with time transcribing, defined as the time the promoter spends 
in any of the two transcriptionally permissive states (see Fig. 1c). Transcriptional 
output is defined as the expected number of transcripts produced along the duration 
of the experiment. The left panel plots transcr. output against time transcribing for 
individual cells for a 50min pulse with 25%, 50%, 75% and 100% Msn2 input. Linear 

regression analysis was performed to determine the 𝑅2  and slope 𝛽 between transcr. 
output and time transcribing as shown in the center and right panels. (b) Scaling of 
noise with average transcriptional output for different pulse lengths and Msn2 
induction levels. Noise is defined as the squared coefficient variation of the 
transcriptional output calculated across individual cells. (c) Like (b), but for wild-type 
and mutant SIP18 promoters6. 
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Our results have two important implications. First, 
system identification efforts based on limited sets of 
experimental conditions within complex systems are 
unlikely to be successful in the sense of capturing the full 
range of behaviors of the underlying molecular pathways. In 
extreme cases, we may arrive at very different and possibly 
contradictory conclusions about a pathway’s inner working 
depending on which experimental context we choose. The 
only solution to this problem is to resort to experimental and 
computational approaches that capture a pathway’s 
response to a sufficiently broad range of dynamic 
experimental contexts. Much more work on simple systems 
will be necessary to truly understand the relevant 
complexity of signal processing in cells.  

Second, a major conundrum in quantitative biology 
has been how to reconcile the remarkable spatiotemporal 
precision of biological systems with the high degree of gene 
expression noise observed at the single-cell level16,17. For 
example, when information transduction capacities have 
been measured for simple pathways, such systems appear 
to be barely capable of reliable distinguishing ON from OFF 
(~1 bit)18–21. Since these studies were done under strict 
experimental conditions, it is likely that they captured only 
one out of multiple manifestations. Our results suggest that 
if all physiologically relevant manifestations could be 
captured, the estimated information transduction capacity of 
biochemical pathways could be substantially greater than 
previously estimated. This may, in part, explain the 
remarkable signal processing capacity of biological 
systems.  

 
 
 
 
 
 
 
 
 

MATERIALS AND METHODS; 
SUPPLEMENTARY FIGURES 

 
Overview of experiments and source data 
The data in concentration units of arbitrary fluorescence 
were previously described4,6. Here, we performed absolute 
abundance quantification as previously described23 to 
convert the data to absolute numbers of YFP and CFP 
proteins per cell. All the source data supporting this 
manuscript are freely available together with a detailed 
ReadMe file at https://zenodo.org/record/2755026 . 
 
Microfluidics and time-lapse microscope 
Since the unnormalized data was previously acquired, here 
we only briefly describe the experimental methods. 
Microfluidic devices were constructed as previously 
described4. We furthermore refer the reader to a detailed 
protocol describing how to construct microfluidic devices 
and computer code for controlling the solenoid valves8. 
Briefly, for microscopy experiments, diploid yeast cells were 

grown overnight at 30C with shaking at 180 RPM to an 

OD600 nm of ca. 0.1 in low fluorescence medium without 
leucine and tryptophan, quickly collected by suction filtration 
and loaded into the five channels of a microfluidic device 
pretreated with concanavalin A (4 mg/mL). The setup was 
mounted on an inverted fluorescence microscope kept at 

30C. The microscope automatically maintains focus and 

acquires phase-contrast, YFP, CFP, RFP and iRFP images 
from each of five microfluidic channels for 64 frames with a 
2.5 min time resolution corresponding to imaging from -5 
min to 152.5 min. Solenoid valves control delivery of 1-NM-
PP1 to each microfluidic channel. For full details on the 
range of input conditions, please see source data at 
https://zenodo.org/record/2755026 . 
 
Image analysis and YFP quantification and 
normalization 
Time-lapse movies were analyzed using custom-written 
software (MATLAB) that automatically segments yeast cells 

 
Figure 4. Promoter memory and model. (a-b) Interval-dependent regulation of promoter memory. Single-cell reconstructions are shown for DCS2 
and SIP18 mutant D6 for the pulse-sequence experiments in which cells where treated with four consecutive Msn2 pulses (75% induction level) with 
5-minute duration. The interval between the pulses were chosen to be 5, 7.5, 10, 15 and 20min. (a) Reconstructed transcription rates across all 
cells. Solid lines correspond to population means and shaded areas mark one standard deviation above and below the mean. (b) Distribution of 
responding cells across individual pulses. The histograms count for each pulse i the percentage of cells that had their first activation event during 
pulse i. The total percentage of responding cells p is provided for each histogram. (c) Model of context-dependent promoter manifestations.  
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based on phase-contrast images and tracks cells between 
frames. The image analysis software and a protocol 
describing how to use it is available elsewhere8. The 
arbitrary fluorescence units were converted to absolute 
abundances by comparing fluorescence to strains with 
known absolute abundances and by segmenting the cell to 
calculate the total number of YFP molecules per cell per 
timepoint as described previously23. 
 
Quantification of nuclear Msn2 dynamics 
Msn2 was visualized as an Msn2-mCherry fusion protein. 
This allows accurate quantification of the nuclear 
concentration of Msn2 over time (Msn2 only activates gene 
expression when nuclear) as previously described3,4,6. From 
the resulting time courses, we extracted continuous 
functions 𝑢(𝑡), which served as inputs to our stochastic 

promoter model (Supplementary Text S.1). Since we 
found nuclear Msn2 concentration to vary very little 
between cells (Supplementary Figure 1), we considered 
𝑢(𝑡) to be deterministic. We performed this as described 

previously4 and elaborated on here. We model nuclear 
Msn2 import with first-order kinetics: 

u(t)=𝐴(1 − 𝑒−𝑐1𝑡). 
That is, if Msn2 is cytoplasmic at time t=0, the nuclear level 
of Msn2 at a later time, t, is given by the above expression 
where A is the maximal level of nuclear Msn2 for the given 
concentration of 1-NM-PP1. We chose the 1-NM-PP1 
concentrations as 100 nM, 275 nM, 690 nM and 3000 nM 
such that they would correspond to approximately 25%, 
50%, 75% and 100% of maximal nuclear Msn2. 𝑐1 is a fit 

parameter describing the rate of nuclear import, which we 
found to vary slightly depending on the 1-NM-PP1 
concentration.  
Similarly, we model export of Msn2 from the nucleus as a 
first-order process: 

u(𝑡2) = u(𝑡1)𝑒
−𝑐2(𝑡2−𝑡1). 

Here, u(𝑡1) is the nuclear level of Msn2 when the 

microfluidic device was switched to medium without 1-NM-
PP1. Correspondingly, u(𝑡2) is the nuclear level of Msn2 at 

some later time 𝑡2>𝑡1. This is to account for the fact that, 

depending on the pulse duration, Msn2 may not have 
reached its maximal nuclear level, A.  

The parameters A, 𝑐1 and 𝑐2 were determined 

through fitting. Specifically, we took the full 30 different 
pulses and inferred the best-fit values for A, 𝑐1 and 𝑐2 using 

least squares fitting. 
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Supplementary Figure 1. Overview of Msn2 input experiments. Left: heatmap overview of the 30 different Msn2-mCherry input. Right: Raw 
experimentally measured Msn2-mCherry input (black) and standard deviation (black error bars) for each of the 30 Msn2 inputs. The fitted Msn2-mCherry 
input is overlaid in red. This figure has been partially reproduced with permission from Molecular Systems Biology4.  
 

 
Supplementary Figure 2. Toy model with interval-dependent promoter memory. (a) Model scheme. Once Msn2 binds to the promoter, activator 
molecules can be recruited, which causes the promoter to switch into a transcriptionally active state with a rate proportional to the number of 
activators present. Once the promoter switches back into the Msn2-unbound state, the activator can be converted into an inhibitor, which causes the 
promoter to switch into a transcriptionally inactive state with a rate proportional to the number of inhibitors present. (b) Average transcription rate for 
5 min and 20 min pulse intervals as a function of time obtained by forward simulation of the model. Blue lines indicate averages computed from 
stochastic simulations (n=2000). (c) Corresponding average transcriptional output for 5min and 20min pulse intervals. A detailed reaction scheme 
and parameters used for simulation can be found in Supplementary text S.3. We emphasize that this Toy model only serves to illustrate one 
possible scenario, which could result in a pulse-interval dependent switch from positive to negative memory, as observed in Fig. 4a-b. We do not 
currently understand the mechanism underlying the observation in Fig. 4a-b.  
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