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Abstract 

Nervous systems are incredibly diverse, with myriad neuronal subtypes that can be 

defined by gene expression. Some features appear binary, with genes that are either on or off, 

whereas others are graded, with a range of gene expression. How binary and graded cell fate 

characteristics are controlled within individual cells to pattern tissues is poorly understood. To 

address this question, we quantitatively analyzed cone subtype specification in the mouse 

retina. Cone cells in the mouse retina express two photopigments; UV light-detecting S-opsin 

and green light-detecting M-opsin. We developed an automated image analysis approach to 

identify individual cones and assess their opsin expression. Cones make a binary decision 

between S-opsin only and co-expression competent fates. Co-expression competent cells 

express graded levels of both S- and M-opsins, depending on their position in the dorsal to 

ventral axis of the retina. M- and S-opsin expression levels display differential, inverse patterns 

of expression. Whereas M-opsin is highly expressed in the dorsal retina and slowly decreases in 

the central and ventral retina, S-opsin is lowly expressed in the dorsal retina and increases 

rapidly from the dorsal to central retina. Previous studies found that thyroid hormone signaling 

plays a critical role in controlling cone opsin expression. We developed a quantitative model 
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based on thyroid hormone pathway activity that describes the patterning of the binary and 

graded features of cone fate in the mouse retina. Our studies provide a paradigm describing 

how differential responses to regulatory inputs generate complex patterns of binary and graded 

cell fates. 

 

Introduction 

How the numerous neuronal subtypes of the vertebrate nervous system are patterned is 

an ongoing puzzle in developmental neurobiology. Studies using single cell RNA-seq 

technologies suggest that there are thousands of different neuronal subtypes (Darmanis et al., 

2015; Konstantinides et al., 2018; Loo et al., 2019; Macosko et al., 2015; Shekhar et al., 2016; 

Tasic et al., 2016; Usoskin et al., 2015; Zeisel et al., 2015). These same studies also raise new 

questions about the definition of a cell subtype. Are neuronal subtypes distinct states generated 

by binary gene expression decisions? Or are they highly complex with ranges of graded gene 

expression? The answers likely lie somewhere in between, with some genes expressed in a 

simple switch-like fashion and other genes expressed across a range of levels to define cell 

fate. A challenge is to understand how cells interpret regulatory inputs to generate complex 

patterns of binary and graded cell fates across tissues. Here, we address this question in the 

context of cone photoreceptor patterning in the mouse retina. 

Photoreceptors detect and translate light information into electrical signals, triggering the 

neuronal network yielding visual perception. There are two main classes of image-forming 

photoreceptors: rods and cones. Rods are mainly used in night vision, while cones are used in 

daytime and color vision. In most mammals, cones express S-opsin, which is sensitive to blue 

or UV-light, and M-opsin, which is sensitive to green light (Calderone and Jacobs, 1995; Wang 

et al., 2011b).  

The common laboratory mouse, Mus musculus, displays complex patterning of cone 

opsin expression across its retina. The dorsal third of the retina is mostly comprised of cones 
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that express M-opsin, and a minority that exclusively express S-opsin. In the central region, 

most cones co-express S- and M-opsin, with small subsets that express only S- or only M-opsin. 

The majority of the ventral region contains cones that co-express S- and M-opsin, with 

significantly higher levels of S-opsin compared to M-opsin (Applebury et al., 2000; Baden et al., 

2013; Calderone and Jacobs, 1995; Rohlich et al., 1994; Szel et al., 1994). This complex 

patterning provides a paradigm to model binary and graded features of cell fate specification. 

Cone subtype patterning in the mouse retina is regulated by thyroid hormone (TH) 

signaling. TH and the nuclear thyroid hormone receptor Thrβ2 are important for activating M-

opsin and repressing S-opsin expression (Roberts et al., 2006). Additionally, RXRγ, a hetero-

binding partner of Thrβ2, is necessary for repressing S-opsin in dorsal cones (Roberts et al., 

2005). The transcription factors Vax2 and Coup-TFII, which respond to and regulate retinoic 

acid, have also been implicated in photoreceptor patterning (Alfano et al., 2011; Satoh et al., 

2009). For this study, we focus on modeling the contributions of TH and Thrβ2 to cone cell 

patterning in the mouse (strain C57BL/6). 

TH exists in two main forms: T4, the circulating form, and T3, the form that binds with 

high affinity to nuclear receptors and acts locally to control gene expression (Samuels et al., 

1974; Schroeder et al., 2014). T3 levels are highest in the dorsal part of the mouse retina and 

decrease ventrally (Roberts et al., 2006). Thrβ2, a receptor for TH, is expressed in all cones of 

the retina (Roberts et al., 2005; Sjoberg et al., 1992). Thrβ2 acts as a transcriptional repressor 

in the absence of T3 binding, and as a transcriptional activator when T3 is bound (Bernal, 

2005). Thrβ2 activity is required for expression of M-opsin and repression of S-opsin (Applebury 

et al., 2007; Eldred et al., 2018; Ng et al., 2001; Pessoa et al., 2008; Roberts et al., 2006; 

Suzuki et al., 2013). Additionally, Deiodinase 2 (Dio2), an enzyme that converts T4 to T3, is 

expressed at high levels in the dorsal region of the mouse retina, and is thought to maintain the 

gradient of T3 in the adult retina (Bedolla and Torre, 2011; Corbo et al., 2007). Moreover, T3 is 

sufficient to induce M-opsin expression and repress S-opsin expression (Roberts et al., 2006). 
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Though TH signaling induces M-opsin and represses S-opsin, co-expression of these opsins in 

a large subset of cones suggests that these gene regulatory processes do not occur as simple, 

complementary switches. 

Our current theoretical understanding of cell fate determination within a tissue describes 

individual cell types as distinct valleys on an "epigenetic landscape" (Furusawa and Kaneko, 

2012; Micheelsen et al., 2010; Wang et al., 2011a; Zhang and Wolynes, 2014; Zhou et al., 

2012). Cells make fate decisions by transitioning to one of these "attractor" states on the 

landscape (Olsson et al., 2016). Differences in gene expression between the states give rise to 

phenotypic differences between cell types. However, clustering based on single-cell 

transcriptomics data alone misses subpopulations unless hidden variables are accounted for 

(Buettner et al., 2015; Setty et al., 2019). Recently, computational work has also focused on 

developing mechanistic models of cell-fate decisions (Olariu and Peterson, 2019; Rothenberg, 

2019; Teles et al., 2013), especially the formation of patterns in time and space (Formosa-

Jordan, 2018; Liang et al., 2015). Multiscale approaches that combine stochastic and 

deterministic models of tissues at the scale of individual cells have shown promise in helping to 

elucidate the details of tissue patterning (Coulier and Hellander, 2018; Engblom, 2018; Engblom 

et al., 2018; Folguera-Blasco et al., 2019; Johnston et al., 2011). The zebrafish retina has been 

studied to model cell fate decision making based on anticlustering mechanisms that give rise to 

a lattice structure of differentiated cell types (Cameron and Carney, 2004; Ogawa et al., 2017; 

Tyler et al., 2005). The near perfect grid of cone subtypes in the zebrafish eye is in stark 

contrast with the variable patterning of cone subtypes in the D-V axis of the mouse retina (Viets 

et al., 2016).   

To assess the patterning of cones in the mouse retina, we identified and mapped cone 

cells based on S- and M-opsin protein expression from immunostaining data and then 

developed a mathematical model of cone cell fate decisions. We observed that cones of the 

mouse retina can be classified into two main subtypes: S-only cones and co-expression 
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competent (CEC) cones. The S-only cones express S-opsin only, whereas the CEC cones 

express M- and/or S-opsins in opposing dorsal-ventral gradients, with higher levels of M-opsin 

in cones in the dorsal retina and higher levels of S-opsin in cones in the ventral retina. Our 

analysis suggests that cone subtype patterning is a two-step process. Step one is a binary 

choice between S-only fate and CEC fate. If CEC fate is selected, a second mechanism 

regulates S- and M-opsin expression in a reciprocal, graded manner, along the dorsal-ventral 

axis. Our quantitative modeling shows that the expression of S- and M-opsins in CEC cells are 

differentially activated based on dorsal-ventral patterning inputs from T3. Our model also closely 

recapitulates cone patterning observed in the mouse retina, and is a paradigm for how spatial 

patterning inputs regulate binary and graded features of cell fate in parallel.  

   

Results 
  

Characterization of cone subtype patterning in the mouse retina 

To characterize patterning of opsin expression in the mouse retina, we immunostained 

and imaged S- and M-opsin protein at 100X magnification. Following image acquisition, we 

manually rotated each image so that the dorsal to ventral (D-V) axis was aligned vertically (Fig. 

1A, E, I). At this resolution, individual cells cannot be identified, so we instead subdivided each 

image using a 25 pixel x 25 pixel grid, which is an area containing approximately one to two 

cells. Within each bin of the grid, we counted the number of pixels that had significant S-opsin 

signal alone, M-opsin signal alone, or both M- and S-opsin signals. We then normalized each 

bin by the total number of pixels with expression in that bin. This calculation gave us the relative 

density of each photoreceptor type by location in the retina (Fig. 1B, F, J).  

Next, we quantified differences in patterning in the D-V and temporal-to-nasal (T-N) 

dimensions. We averaged the binned density values to obtain the relative density as a function 

of either D-V (Fig. 1C, G, K) or T-N position (Fig. 1D, H, L). We observed distinct transitions in 
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both S- and M-opsin expression along the D-V axis. High levels of M-opsin in the dorsal region 

exhibit a gradual transition to low levels in the ventral region (Fig. 1C). In contrast, S-opsin 

shows a rapid transition from zero to high expression in the D-V axis (Fig. 1G). As these opsins 

display an inverse yet non-complementary relationship, co-expression was most prominent in 

the middle third of the retina where these two transitions overlap (Fig. 1K). We observed 

minimal variation in S- and M-opsin signal in the T-N axis (Fig. 1D, H, L). We imaged and 

analyzed six wild-type retinas at this resolution and saw a similar pattern in each (Table S1). 

Together, we observed differential graded patterning for S- and M-opsin expression along the 

D-V axis (Fig 1C, G, K). 

 

Analysis at single cell resolution reveals two distinct cone sutype populations 

To further investigate photoreceptor patterning along the D-V axis, we next analyzed 

cone subtype specification at the single-cell level. For the same six retinas, we imaged S- and 

M-opsin expression at 200X magnification in a strip measuring approximately 0.6 mm x 6 mm 

aligned vertically along the D-V axis (Fig. 2A). At this resolution we were able to distinguish 

individual cells. We developed an analysis pipeline to identify the position, size, and boundaries 

of each cell, a process known as segmentation (see SI Methods, 1.1.1). Overall, we identified 

~250,000 total cells across six retinas. Using these cell boundaries we calculated the 

expression intensity of M- and S-opsin for each cell. We classified cones into groups expressing 

M-opsin only (Fig. 2E, K, Q), S-opsin only (Fig. 2F, L, R), and S- and M-opsin co-expression 

(Fig. 2G, M, S). The pipeline did not identify distinct morphological or size differences among 

the cones (data not shown). We found that the pipeline’s accuracy and false positive rate were 

comparable to hand-scored retinas (see SI Methods 1.1.2). 

After obtaining the cell boundaries, we quantified the density of cone subtypes based on 

opsin expression relative to D-V position. Consistent with our low-resolution analysis, we 

observed a gradual decrease in the abundance of cones expressing M-opsin in the dorsal to 
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ventral direction (Fig. 3A), contrasted by a sharp increase in S-opsin expressing cones (Fig. 

3B). We fit these curves to Hill functions to quantify the steepness of the transition (Fig. S1). 

The transition in the S-opsin expressing cells is extremely sharp with an average Hill coefficient 

of ~30 while the M-opsin transition is much more gradual with a coefficient of ~2-3. 

To compare the transition region between retinas, we established a reference point to 

align the images. Since the S-opsin transition is sharp and an external reference is absent, we 

used the midpoint of the S-opsin transition from the fit as the reference point. We aligned all of 

the retinas and overlaid the transition fits (Fig. S2). The relative position of the S-opsin and M-

opsin transitions are consistent from retina to retina, suggesting that the transitions in S-opsin 

and M-opsin expression are driven by a common effector. M-opsin only expressing cones 

decline at the transition point (Fig. 3C), coincident with the dramatic increase in S-opsin 

expression (Fig. 3B). At this transition point, cones begin to express both S- and M-opsins (Fig. 

3E). The fraction of S-only cells gradually increases from ~1% of cones in the dorsal region to 

~20-30% in the ventral region (Fig. 3D, S3). These analyses show the differential, inverse 

responses of S- and M-opsin expression to D-V patterning inputs on the individual cell level.  

To refine our classification of cone subtypes, we calculated the joint probability 

distribution for S- and M-opsin intensity in individual cells for each retina (Fig. 4A, S4). When 

considering all cones in the retina, there appear to be three clusters of cell-types corresponding 

to the three classifications that we defined earlier: S-only, M-only, and co-expressing. However, 

when the data are analyzed by D-V position (Fig. 4B-F, S5), a different pattern emerges. First, 

we see an S-only cluster than has high and consistent expression of S-opsin while increasing in 

abundance along the D-V axis (Fig. 4). Interestingly, the other two clusters resolve into a single 

cluster that changes position in a continuous way, gradually moving from low S-opsin 

expression and high M-opsin expression in the dorsal region, to moderate S-opsin expression 

and low M-opsin expression in the ventral reigion (Fig. 4). Thus, these data suggest that the 

mouse retina contains only two main subtypes of cones: 1. S-only cones that have high S-opsin 
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expression independent of D-V position and 2. co-expression competent (CEC) cones that 

express S- and/or M- opsins dependent upon D-V position. 

 

Expression levels of S- and M-opsin in cone cell subtypes  

Having classified the major subtypes of cones and related their positions and opsin 

expression states, we next evaluated the intensity of opsin expression in individual cones. We 

quantified opsin expression for all M-opsin expressing cones (Fig. 5A, F), all S-opsin expressing 

cones (Fig. 5B, G), M- and S-opsin CEC cones (Fig. 5C, H), M-opsin only CEC cones (Fig. 5D, 

I), and S-opsin only cones (Fig. 5E, J) relative to their D-V positions within the retina.  

In CEC cones, M-opsin expression levels decrease in the D-V axis, with the midpoint of 

expression level located at the transition point (Fig. 5A, C, D, S6). In contrast, S-opsin 

expression in CEC cells is very low in the dorsal region and increases linearly in the D-V axis 

starting at the transition point (Fig. 5F, H, I, S6). The slope of increase for S-opsin is steeper 

than for the M-opsin decrease (Fig. S7). 

Compared to CEC cones, S-only cones have an overall higher expression level of S-

opsin, particularly in the dorsal region (Fig. 5J compared to G and H). M-opsin expression in S-

only cones is significantly lower than the lowest M-opsin expression seen in CEC cones (Fig. 

5E). In Fig. 5B, this difference can be seen as two distinct lines of density (Fig. 5B, arrow 

heads). Together, these analyses defined the expression of S- and M-opsin in the two cone 

populations in relation to their D-V positions in the retina. 

 

Modeling cone subtype fate decisions 

To interrogate how regulatory inputs could produce the complex pattern of binary and 

graded cell fates in the mouse retina, we developed a multiscale model describing the 

probability distributions of the cone subtype decisions (i.e. binary choice) and S- and M-opsin 

expression levels (i.e. graded) as functions of position along the D-V axis (Fig. 6, SI Methods 
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1.2). Briefly, we modeled a 5 mm x 1 mm x 5 µm section of the retina with the long dimension 

aligned with the D-V axis. TH signaling activates M-opsin expression and represses S-opsin 

expression (Ng et al., 2001; Roberts et al., 2006). Within the modeled volume, T3 molecules 

diffuse according to the deterministic diffusion equation with constant concentration boundaries, 

establishing a D-V gradient (Eq. S1, SI Methods). Also, within the volume, we stochastically 

modeled ~23,000 individual cones spaced on a hexagonal grid (Fig. 7). These cells 

stochastically exchange T3 molecules with the surrounding deterministic microenvironment. 

Within each cone, T3 can bind to and activate Thrβ2 (Thrβ2*), controlling both fate specification 

and opsin expression (Fig. 6B1-4). 

For the binary fate decision, we defined a fate determinant function, FD(X). 

Photoreceptors start in an undifferentiated fate, FD(U), and stochastically progress to either the 

FD(S) (S-only) fate or FD(C) (CEC) fate (Fig. 6B2). Selection of the FD(S) fate is negatively 

influenced by Thrβ2* (Fig. 6B2). Once cells enter the FD(S) fate, S-opsin is constitutively 

expressed at a high level regardless of D-V position (Fig. 6B2). In FD(C) cones, M-opsin 

expression is induced by Thrβ2* (Fig. 6B3). Conversely, S-opsin in FD(C) cells is negatively 

regulated by Thrβ2* and positively regulated by inactive Thrβ2 receptors (Fig. 6B4). Full details 

of the model are given in the SI Methods 1.2, along with parameterization details. 

 

Model-based simulations recapitulate experimental cone patterning 

To compare the output of our probabilistic model to experimental data sets, we ran a set 

of 100 individual simulations and calculated the probability distributions of various observables. 

Fig. 7 shows the output of one simulation. Moving from dorsal to ventral, the model reproduces 

the gradual increase in the fraction of S-only cones, FD(S) (Fig. 7A1-4), as well as the sharp 

transition in CEC cones, FD(C), expressing S-opsin at the transition zone (Fig. 7B1-4). 

Similiarly, we observed the gradual decrease in the fraction of CEC cones expressing M-opsin 

(Fig. 7C1-4). In the overlapping region, there are a significant number of cones that co-express 
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both S- and M-opsins (Fig. 7D1-4). In the dorsal region, a small number of S-only cones that 

highly express S-opsin are readily apparent (Fig. 7A1-2, E1-2).  

To characterize how well our model recapitulated the observed experimental cell 

distributions, we calculated the mean density of cells of various phenotypes as a function of D-V 

position (Fig. S8). These average density profiles compare well to the experimental density 

profiles shown in Fig. 3. Together, cone fate patterning and expression levels are highly similar 

in our model and the imaged retinas: S-only cells (Fig. 7A2-4 compared to Fig. 2F, L, R), S-

opsin expression in CEC cones (Fig. 7B2-4 compared to Fig. 2E, G, K, M, Q, S), and M-opsin 

expression in CEC cones (Fig. 7C2-4 compared to Fig. 2E, G, K, M, Q, S). 

We parameterized our model using the mean of all the retinas sampled, which exhibited 

retina-to-retina variability (Fig. S1, S3, S7). Therefore, it is not expected that our model will 

exactly recapitulate the patterning of any individual retina.  

We next calculated the probability distributions of S- and M-opsin expression along the 

D-V axis for our simulation data (Fig. S9). The mean intensity of M-opsin in CEC cones 

gradually decreases as D-V position increases. The S-opsin distribution shows high expression 

in the ventral-most region, but has two separate populations in the dorsal region: the highly 

expressing S-only cells and the lowly expressing CEC cells. The CEC cones converge to zero 

S-opsin expression in the dorsal region while the S-only cones maintain high expression as they 

decrease in abundance. Because our simulated distributions are constructed from 100 

independent simulations, the probability density of the S-only cones is much smoother than in 

the experimental data (compare Fig. S6 and S9). The simulated expression features are in 

agreement with the experimental expression profile (Fig. 5, S6).  

We next related the joint probability distributions for the experimental (Fig. 8A-E) and 

simulated (Fig. 8F-J) data along the D-V axis. The simulated and experimental data show two 

distinct populations: 1) S-only cones with high S-opsin expression and no M-opsin expression 

whose expression levels are independent of D-V position, and 2) CEC cones that gradually 
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change from high M-opsin and low S-opsin expression to moderate M-opsin and high S-opsin 

expression along the D-V axis. Fig. S10 shows the joint probability distribution between S- and 

M-opsin expression within 250 µm D-V bins for all 100 simulations. In the high resolution 

simulated data, it is evident that the position of the CEC cell cluster gradually changes with D-V 

position. Our model closely simulates the experimental data, and supports the hypothesis that 

cells respond differentially to the same morphogen gradient, producing both binary and graded 

cell fates. 

 

Correlation between S-opsin and CEC fate decisions 

Our quantitative simulations give us the capacity to test various hypotheses about retinal 

patterning. We wanted to know whether the gradual decrease in the CEC cone population and 

the sharp increase in S-opsin expression in these CEC cells were driven by a shared upstream 

signaling input. If these two processes respond to the same upstream input, we would expect 

that they should be coupled and be linked by D-V position. If, however, they do not respond to 

the same input we would expect that their transitions should be independent. In our model, they 

are coupled through the T3 gradient and we wanted to test if the experimental retinas displayed 

more or less variability than expected. Because stochasticity in both the experimental data and 

our model introduces retina-to-retina variability, we checked for overlap of the corresponding 

probability distributions. 

We calculated the probability of having a given CEC population fraction at the S-opsin 

transition point from both our simulations and experimental retinas (Fig. 9A). We also calculated 

the rate at which the CEC population decreases at the transition point (Fig. 9B). As can be seen 

from both plots, the two probability distributions are in good agreement. In particular, the widths 

of the experimental probability distributions are similar to the widths from the stochastic 

simulations. With the small number of experimental data points, we do not assign a level of 

statistical significance to the overlaps, but they provide qualitative evidence that the two 
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transitions are in fact coupled through a shared upstream input. 

 

Comparison of Thrβ2 mutant retinas to wild-type retinas 

Finally, to elucidate the effect of the T3 gradient on cone cell patterning in the mouse 

retina, we dissected and imaged Thrβ2 knockout mutant retinas (ΔThrβ2). In the absence of 

functional Thrβ2, no M-opsin is expressed (Applebury et al., 2000; Ng et al., 2001; Roberts et 

al., 2006). Consistent with previous work, we observed no M-opsin expression in these mutant 

retinas. Fluorescence from anti-M-opsin antibodies was nonspecific and stained cell and 

background with equal intensity (Fig. S11). 

The expression of S-opsin in cones was also markedly different between ΔThrβ2 and 

WT retinas. Both the density of S-opsin-expressing cones and the expression distribution are 

flat with respect to the D-V axis (Fig. 10B, S12). Also, the relative intensity of the S-opsin signal 

across the retina was much lower in ΔThrβ2 retinas than the maximum value seen in WT retinas 

(e.g., from cones in the ventral region). We found that the relative intensity of opsin staining in 

cones was most similar to the middle region of WT retinas. This effect is consistent with our 

model in which S-opsin expression is controlled through a combination of negative regulation by 

active Thrβ2* and positive regulation by inactive Thrβ2 (Fig. 6B4).  

 

Discussion  

In these studies, we describe the distribution of cone photoreceptors in the mouse retina, 

and develop a quantitative model for the specification of binary and graded cell fates in 

response to D-V regulatory inputs. We have defined two different cone types in the retina, S-

only cones and CEC cones. These two populations are distinct based on opsin expression 

profiles. Though the CEC cells have a wide distribution in S- vs. M-opsin expression levels, the 

cells respond similarly to light stimulus, and are distinct from the S-opsin only expressing cones 

(Baden et al., 2013).  
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Interestingly, the population of S-only cones in the dorsal region have higher S-opsin 

expression than most S-only cones in the ventral region (Fig. 5J). These highly expressing S-

only cones are found at a steady density across the D-V axis of the retina. It is possible that this 

subset of evenly distributed, high S-opsin expressing cells could comprise the “genuine S-

cones,” (Haverkamp et al., 2005). These cells have also been described as having different 

downstream connectivity partners; a specific type of S-cone only bipolar cell, which are also 

evenly distributed across the retina (Haverkamp et al., 2005). We were not able to 

mathematically distinguish genuine S-cones from the total population of S-only cones. 

These methods advance our understanding of how signaling inputs regulate complex 

cellular decisions to specify binary and graded cell fates within the same cell type in the same 

tissue. The next step will be to integrate more signaling inputs into our model for retinal 

development. Numerous signaling molecules are expressed in D-V gradients and are involved 

in retinal and cone cell development. Specifically, retinoic acid (RA) is an important morphogen 

that is expressed at high levels ventrally during development, and then at moderate levels in the 

dorsal region in the adult mouse (McCaffery et al., 1992; McCaffrery et al., 1993). Moreover, 

next steps include integrating transcription factor binding partners of Thrβ2 into the model, as 

Thrβ2 acts as a homodimer and as a heterodimer with RXRγ (Roberts et al., 2006). This work 

represents an important first step towards modeling the complex network of interactions that 

guide binary and graded cell fate specification.  

The retina provides an excellent paradigm to study how signaling inputs generate 

patterns in two dimensions. The next challenge will be developing models for patterning in more 

complex 3-dimensional neural tissue found in brain structures. Quantitative modeling has 

enormous potential to integrate multiple signals across a tissue and build networks to better 

understand and predict the outcomes of development when variables are changed, for instance 

in disease states. 
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Materials and Methods: 

Animals 

Mice were housed under a 12 h light:12 h dark (T24) cycle at a temperature of 22°C with food 

and water ad libitum. Male and female mice at 2–8 months of age were housed in plastic 

translucent cages with steel-lined lids in an open room. Ambient room temperature and humidity 

were monitored daily and tightly controlled. Wild-type mice (C57BL/6; Jackson Laboratory), and 

Thrbtm2Df mutant mice (gift from the Forrest Lab) were used in this study. Thrbtm2Df mutant mice 

specifically knock out expression of Thrβ2, and leave Thrβ1 intact as previously described (Ng 

et al., 2001). All animals were handled in accordance with guidelines of the Animal Care and 

Use Committees of Johns Hopkins University. All efforts were made to minimize the pain and 

the number of animals used. 

  

Immunohistochemistry 

Retinas were dissected in PBS, then fixed in fresh 4% formaldehyde and 5% sucrose in PBS for 

1 hour. The dorsal portion of the retina was marked with a cut. Tissue was rinsed 3X for 15 min 

in PBS. Retinas were incubated for 2 hours in blocking solution (0.2-0.3% Trition X-100, 2-4% 

donkey serum in PBS). Retinas were incubated with primary antibodies in blocking solution 

overnight at 4°C. Retinas were washed 3X for 30 min in PBS, and then incubated with 

secondary antibodies in blocking solution for 2 hours at room temperature. At the end of 

staining, retinas were cut to lay flat on a slide, and were mounted for imaging in slow fade 

(S36940, Thermo Fisher Scientific).  

  

Antibodies 

Primary antibodies were used at the following dilutions: goat anti-SW-opsin (1:200) (Santa Cruz 

Biotechnology), rabbit anti-LW/MW-opsins (1:200) (Millipore). All secondary antibodies were 
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Alexa Fluor-conjugated (1:400) and made in donkey (Molecular Probes). 

  

Microscopy and image processing 

Fluorescent images were acquired with a Zeiss LSM780 or LSM800 laser scanning confocal 

microscope. Confocal microscopy was performed with similar settings for laser power, 

photomultiplier gain and offset, and pinhole diameter. Whole retinas were imaged with a 10X 

objective, and maximum intensity projections of z-stacks (5–80 optical sections, 4.9 μm step 

size) were rendered to display all cones imaged in a single retina.  Retinal strips were imaged 

with a 20X objective, and maximum intensity projections of z-stacks (5–80 optical sections, 1.10 

μm step size) were rendered to display all cones imaged in a single retina. 

 

Segmentation of cone cells from microscopy images 

Microscopy images were analyzed using a custom parallel image processing pipeline in 

Biospark (Klein et al., 2017). Briefly, each fluorescence channel was first normalized and filtered 

to remove small bright features. Then, each remaining peak in fluorescence intensity was 

identified and an independent active contour segmentation (Marquez-Neila et al., 2014) was 

performed starting from the peak. If the resulting contour passed validation checks it was 

included in the list of segmented cone cells for the channel. Finally, cell boundaries were 

reconciled across both channels to obtain a complete list of identified cone cells. Full details are 

given in the SI Methods. 

  

Modeling cone cells fate decisions and opsin expression 

Multiscale modeling of the retina strip was performed using a hybrid deterministic-stochastic 

method. Diffusion of T3 in the microenvironment of the retinal strip was modeled using the 

diffusion partial differential equation (PDE). The PDE was solved using an explicit finite 

difference method. The cone cells were modeled using the chemical master equation (CME) to 
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describe the stochastic reaction scheme implementing the cell fate decision-making. The CME 

for each of the 23,760 cone cells was independently sampled using Gillespie’s stochastic 

simulation algorithm (Gillespie, 1977). Reconciliation between the CME trajectories and the 

PDE microenvironment was done using a time-stepping approach. Complete mathematical 

details of the model and simulation methods are available in the SI Methods. All simulations 

were performed using a custom solver added to the LMES software (Roberts et al., 2013), 

which is available on our website: https://www.robertslabjhu.info/home/software/lmes/.  

 

 

Figure Legends: 

Figure 1. Analysis of opsin expression intensity across the mouse retina. 

A, E, I) Whole mounted C57BL/6 mouse retina stained for M-opsin (green) and S-opsin (blue). 

B, F, J) Heatmap displaying the log relative density of pixels that have opsin signal identified in 

a 25 mm2 region.  

A) M-opsin signal. 

B) Heatmap of total M-opsin density bins. 

C) Graph of the relative density of pixels that are expressing M-opsin summed horizontally (D - 

V). 

D) Graph of the relative density of pixels that are expressing M-opsin summed vertically (T - N). 

E) S-opsin signal. 

F) Heatmap of total S-opsin density bins. 

G) Graph of the relative density of pixels that are expressing S-opsin summed horizontally (D - 

V). 

H) Graph of the relative density of pixels that are expressing S-opsin summed vertically (T - N). 

I) M-opsin and S-opsin (co-expression) signal. 

J) Heatmap of co-expressing opsin density bins. 
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K) Graph of the relative density of pixels that are co-expressing S- and M-opsin summed 

horizontally (D - V). 

L) Graph of the relative density of pixels that are co-expressing S- and M-opsin summed 

vertically (T - N). 

T = Temporal, N = Nasal, D = Dorsal, V = Ventral. 

  

Figure 2. Identification of cone subtypes. 

A-S) Retina stained with antibodies against M-opsin (green) and S-opsin (blue) 

A) High-resolution region spanning the dorsal to ventral retina. 

B-G) A region of the dorsal retina. 

F-M) A region of the central retina. 

N-S) A region of the ventral retina. 

B, H, N) Blue and green channels. 

C, I, O) Green channel only. 

D, J, P) Blue channel only. 

E, K, Q) White outline indicates identified M-opsin expressing cells. 

F, L, R) White outline indicates identified S-opsin expressing cells. 

G, M, S) White outline indicates identified co-expressing cells. 

 

Figure 3. Spatial distribution of M- and S-opsins in cone cells. 

Relative density of a cone population summed horizontally across the image and displayed in 

the dorsal to ventral position. Dotted line represents midpoint of transition zone. 

A) All M-opsin expressing cells. 

B) All S-opsin expressing cells. 

C) M-opsin only expressing cells. 

D) S-opsin only expressing cells. 
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E) Co-expressing cells. 

 

Figure 4. S- and M-opsin intensities in cones. 

Cones are ranked according to the intensity of S- and M-opsin expression levels. Intensity 

values are represented in arbitrary units. Each point is colored according to the log10[Probability] 

of expression levels. A line is drawn on the graph to show the separation between the two 

discrete populations of S-opsin only and CEC cone populations. 

A) All cones in the regions imaged. 

B) Cones in the dorsal 500-750 mm. 

C) Cones in the dorsal 1500-1750 mm. 

D) Cones in the central 2500-2750 mm. 

E) Cones in the ventral 3500-3750 mm. 

F) Cones in the ventral 4500-4750 mm. 

 

Figure 5. Intensity of M- and S-opsins in cones. 

Relative intensity of M- or S-opsin in a cone population (X-axis) is displayed as a function of 

dorsal to ventral position. Each point is colored according to the log10[Probability] of expression 

levels.  

A-E) Relative intensity of M-opsin expression 

F-J) Relative intensity of S-opsin expression 

A, F) All M-opsin expressing cells. 

B, G) All S-opsin expressing cells. For B), arrow heads mark two distinct groups of cells in the 

dorsal region. 

C, H) CEC cones co-expressing both S- and M-opsins. 

D, I) M-opsin only expressing CEC cones. 

E, J) S-opsin only expressing CEC cones. 
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Figure 6. Model for cone cell fate specification  

A) A naïve cell (grey) makes a binary decision between S-opsin only (blue) or co-expressing 

competent (CEC) cone fate (green, cyan or blue). The CEC cone expresses graded levels of M- 

and S-opsin dependendent on the D-V concentration of thyroid hormone.  

B1-4) T3 (Thyroid hormone), Thrβ2* (active Thrβ2 binding T3), FD (fate determinate function), 

U (undifferentiated cell), P (primordial S cone), C (Co-expressing cone), H (Hill function), M (M-

opsin protein), S (S-opsin protein), f (degradation constant of opsin protein). 

B1) Binding of T3 to Thrβ2 activates Thrβ2 (Thrβ2*) 

B2) Thrβ2 controls the binary decision between S-opsin only/FD(S) or CEC/F(C) cone fate 

B3) Thrβ2* promotes M-opsin expression 

B4) Thrβ2* inhibits S-opsin expression, whereas inactive Thrβ2 promotes S-opsin expression 

 

Figure 7. Simulated cone mosaic produced by the quantitative model. 

Simulated cone photoreceptor mosaic generated by the quantitative model displaying 

expression of S-opsin (blue), and M-opsin (green). A dorsal to ventral region is shown. 

A1, B1, C1, D1) Complete simulated D-V strip. 

A2, B2, C2, D2) Zoom in the dorsal region. 

A3, B3, C3, D3) Zoom in the central region. 

A3, B3, C3, D3) Zoom in the ventral region. 

A1-4) S-opsin only cones. 

B1-4) S-opsin expression in CEC cones. 

C1-4) M-opsin expression in CEC cones. 

D1-4) S- and M-opsin expression in CEC cones 

E1-4) All cones including S-opsin only and CEC cones. 
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Figure 8. D-V cone pattering in simulated and experimental data. 

Cones are ranked according to the intensity of S- and M-opsin expression levels. Intensity 

values are represented in arbitrary units. Each point is colored according to the log10[Probability] 

of expression levels. 

A-E) Experimental data, as seen in Fig. 4B-F. 

F-J) Simulated data. 

A, F) Cones in the dorsal 500-750 mm. 

B, G) Cones in the dorsal 1500-1750 mm. 

C, H) Cones in the central 2500-2750 mm. 

D, I) Cones in the ventral 3500-3750 mm. 

E, J) Cones in the ventral 4500-4750 mm. 

  

Figure 9. Correlation between CEC fate and S-opsin transitions. 

A) The fraction of CEC cells at the point where the S-opsin transition is at its midpoint. Data are 

shown for both experimental (red) and modeled (cyan) retinas. 

B) The slope of the CEC transition at the S-opsin midpoint, for both experimental (red) and 

modeled (cyan) retinas. Note: the distributions of only 5 of the 6 retinas are included here, as 

one of the images had major disruptions at the transition zone due to disecting and mounting. 

 

Figure 10. ThrB2Δ mouse Intensity Plots 

Relative intensity of S-opsin cone cells (X-axis) displayed as a function of dorsal to ventral 

position. Each point is colored according to the log10[Probability] of expression levels.  

A) Control Retina, as seen in Fig. 5F. 

B) ThrB2Δ retina. 
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Figure 2: Individual cell expression analysis 
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Supplementary Text

1 Methods

1.1 Analysis of retina microscopy images

1.1.1 Segmentation of individual photoreceptor cells in 200X images

To identify and segment individual cone cells in the immunostained fluorescence images, we de-

veloped an image processing pipeline similar to that used previously [1]. The analysis begins

finding potential cone cells by looking for connected regions in our 200X fluorescence images.

Because some cells are present in only the blue (S-opsin) or green (M-opsin) channels and some

cells are present in both, we combine all potential cells into a joint list for additional analysis. Al-

gorithm 1 outlines this first step of our processing pipeline.

Algorithm 1: Extract the subimage surrounding each potential cone cell.

1 Ig,Ib = load green and blue fluorescence channels;

2 Ng,Nb = subtract background and normalize (Ig,Ib);

3 Mg,Mb = threshold images (Ng,Nb);

4 Og,Ob = find connected regions (Mg,Mb);

5 Lg,Lb = remove small regions (Og,Ob);

6 Fg,Fb = apply Gaussian smoothing (Lg,Lb);

7 Cg,Cb = find connected regions (Fg,Fb);

8 subimages = [];

9 for C in {Cg,Cb} do

10 I = extract local subimage (C);

11 append to subimages (I);

12 end

13 return subimages;

Next, we find the outline of each potential cell using an active contouring method known as

2
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morphological snakes [2]. Because we are segmenting tens-of-thousands of individual potential

cells from each image, we perform this step of the pipeline in parallel using the Biospark frame-

work [3], which is a data intensive parallel analysis package for Python. We perform validation of

the segmented boundaries before classifying the object as a cone cell.

Algorithm 2: Identify and segment any cone cells in each subimage.

1 cells = [];

2 parallel for I in subimages do

3 P = find peak (I);

4 C = active contour (I,P);

5 if validate (C) then

6 append to cells (C);

7 end

8 end

Finally, we perform a reconciliation step in which overlapping cells are merged and/or split to

obtain an estimated final segmentation for the image. The pixel indices associated with each cell

are stored so that the properties of each cone cell can be later calculated. All of the scripts and

Jupyter notebooks implementing our analysis pipeline are available for download from our website:

https://www.robertslabjhu.info/home/software/mouse_eye.

1.1.2 Validation of segmentation results

We validated that our segmentation algorithm produced results similar to human annotators by

comparing manually and automatically generated statistics from representative samples of our

data set. We picked seven different regions and manually counted the number of S-opsin only, M-

opsin only, and coexpressing cells. We then analyzed the same regions using our segmentation

algorithm and obtained the automatically generated classifications.

Table S2 shows the counts of cell types from these regions from both human and computer

annotations. Overall, there is excellent agreement in the relative abundance of the different cell

3
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types. The absolute counts have some systematic difference, with the automatic segmentation

typically identifying more cells than human annotators. This is mostly due to what appear to be

single long cells that are split into multiple bright pieces separated by low fluorescence breaks.

Human annotators tend to regard the trace as a single long cell, while the automatic segmenta-

tion tends to identify multiple smaller cells. Importantly, we do not know the true underlying cell

morphology, so we cannot generally say whether the human or automatic annotators are more ac-

curate. In any case, since the cell parts are identified correctly and the segmentation is consistent

across retinas, we expect these minor difference to have no impact on our results.

1.2 Modeling of photoreceptor cells

1.2.1 Modeling cone cell fate determination and opsin expression in a retinal strip

To model the cone fate decisions in a large retinal strip we use a combination of stochastic and

deterministic modeling. We start with a three-dimensional volume 5 mm long in the X dimension,

1 mm wide in the Y dimension, and 5µm in the Z dimension representing the microenvironment

of the dorsal-ventral (DV) strip. The small z dimension make this an effectively two-dimensional

system and we include z below only for completeness. Within this volume we model diffusion of

thyroid hormone (T3) using the deterministic diffusion equation:

∂C(r, t)

∂t
= D∇2C(r, t), (S1)

where C(r, t) is the concentration of T3 at position r and time t, D is the diffusion coefficient used

for T3, and ∇2 is the Laplace operator (∂
2C
∂x2

+ ∂2C
∂y2

+ ∂2C
∂z2

). See Table S3 for all parameter values

used.

We numerically solve the diffusion partial differential equation (PDE) using a explicit finite dif-

ference method with grid spacing dx and a time step dt = (dx2)/(2 · 6D), where the extra factor of

2 in the denominator ensures numerical stability. We fix the concentration at the X = 0 boundary

to Chi and at the opposite boundary to Clo to establish a stationary concentration gradient in the

X dimension. The Y and Z boundaries are taken to be reflective. We initialize the concentrations

C(r, 0) according to a linear decrease in r to follow to the boundary conditions.

4
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Within the microenvironment, we place 23,760 individual photoreceptor cells spaced on a

hexagonal grid spanning the X-Y plane, with center-to-center distance dcell−cell and with a radius

rcell. Each cell is modeled independently using the chemical master equation (CME) describing

the probability to have a particular count of each species:

dPt(x)

dt
= APt(x), (S2)

where Pt(x) is the probability for a cell to have a particular state vector x giving the count for each

chemical species and A is a transition matrix describing all of the reactions between the chemical

species.

Within each photoreceptor cell a series of reactions describing the fate of the cell and also

opsin expression take place. First, cells contain thyroid hormone receptors THRβ2. T3 can bind

reversibly to THRβ2 to switch it to an activated state THRβ2∗:

T3 + THRβ2
kthrbf−−−⇀↽−−−
kthrbr

THRβ2∗. (S3)

Note that T3 also diffusing across the PDE microenvironment and the value of T3 is synchronized

between the PDE and CME models. The synchronization procedure is discussed below.

Next, the cells switch between three cell fates. FD(U) cells are undifferentiated and do not

express opsins, FD(S) cells occupy an S-only cone cell fate with high expression of only S-opsin,

and FD(C) cells are typical cone cells that express some combination of S- and M-opsin depending

on various factors. The transition between cone cell fates in real cells depends on a number of

unknown fate determining steps. Little is known about these steps, but the fate decisions appear

to be stable. Therefore, we model photoreceptor fate decision-making as barrier crossing process

with a variable number of cooperative steps n.

5
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The FD(U)↔ FD(S) transition is described by

FD(U)
H′(THRβ2∗)·kfdsf−−−−−−−−−−−⇀↽−−−−−−−−−−−

0.5i·kfdsr

FD(U→i+1S) for i = 0, (S4)

FD(U→iS)
2i·kfdsf−−−−−⇀↽−−−−−
0.5i·kfdsr

FD(U→i+1S) for i > 0 and i < n− 1, (S5)

FD(U→iS)
2i·kfdsf−−−−−⇀↽−−−−−
0.5i·kfdsr

FD(S) for i = n− 1. (S6)

Here, the syntax FD(U→iS) denotes a cell that has progressed i steps along the path from the

FD(U) to FD(S) fate. Also, H ′ is an inhibiting Hill-like kinetic function defined by

H ′(X) = klo +
(khi − klo)khm
khm + xh

, (S7)

with klo and khi the lower and upper limits of the kinetic process, respectively, km the midpoint of

the transition, and h the Hill exponent giving the cooperativity of the transition. Likewise, the FD(U)

↔ FD(C) transition is described by

FD(U)
2i·kfdcf−−−−−⇀↽−−−−−
0.5i·kfdcr

FD(U→i+1C) for i = 0, (S8)

FD(U→iC)
2i·kfdcf−−−−−⇀↽−−−−−
0.5i·kfdcr

FD(U→i+1C) for i > 0 and i < n− 1, (S9)

FD(U→iC)
2i·kfdcf−−−−−⇀↽−−−−−
0.5i·kfdcr

FD(C) for i = n− 1. (S10)

Then, both S-opsin and M-opsin proteins can be expressed by photoreceptor cells, depending

on the cell type and the local concentration of T3. We model opsin expression using the following

kinetic equations

∅
kssf−−→ S if FD(P), (S11)

∅
[H′(THRβ2∗)+H(THRβ2)]·kcsf−−−−−−−−−−−−−−−−−−−→ S if FD(C), (S12)

∅
H(THRβ2∗)·kcmf−−−−−−−−−−→ M if FD(C), (S13)

6
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H is an activating Hill-like kinetic function

H(X) = klo +
(khi − klo)xh

xhm + xh
. (S14)

Finally, both opsins can be degraded according to

S
ksdeg−−→ ∅, (S15)

M
kmdeg−−→ ∅. (S16)

We initialize each cell at t = 0 to the FD(U) state with a copy number of THRβ2 proteins

independently sampled from a Gaussian distribution with a mean concentration of µthrb and a

variance of σ2thrb. The number of T3 molecules available to the cell is initialized according to the

T3 concentration at the cell’s D-V position. Likewise, the fraction of activated THRβ2 is initialized

to its equilibrium value according to the cell’s D-V position. All opsin counts are initialized to zero.

We then model the stochastic time evolution of each cell using the standard Gillespie stochastic

simulation algorithm (SSA) [4, 5].

1.2.2 Microenvironment modeling of combined PDE and CME dynamics

Since we are performing two parallel simulations, PDE and CME, we need to partition the molecules

between them. Each cell has a volume smaller than a PDE subvolume and each cell is assumed

to be completely contained within a single subvolume. We initialize the T3 molecule count in the

extracellular space of each cell to be the rounded number of molecules corresponding to the cell’s

extracellular volume multiplied by the PDE subvolume’s concentration. In this way T3 molecules

are represented in each simulation.

To integrate the PDE and CME dynamics, we implemented a parallel time-stepping approach.

We divide time into discrete synchronization intervals ∆t and evolve overall time according to

ti+1 = ti + ∆t. (S17)

During each ∆t we update the state of each cell using the SSA and the concentration of each

7
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PDE subvolume using a finite difference algorithm. The loss or gain in the number of extracellular

T3 molecules in the stochastic simulation during the time step is tracked. This gain or loss is

converted into a concentration flux and applied to the PDE subvolume during the next time step.

Simultaneously, the number of extracellular T3 molecules in the stochastic model is reset for the

next time step according to the new subvolume concentration. Our method conserves mass and

has good error characteristics as long as the T3 flux at each time step is of the order of a few

molecules. The method is implemented as the “microenvironment” solver in our LMES software

and is freely available on our website: https://www.robertslabjhu.info/home/software/lmes.

1.2.3 Parameterization of retinal strip microenvironment model

We parameterized our model by globally fitting the model parameters to five different dorsal-ventral

(D-V) data sets: (1) the fraction of all cells expressing M-opsin, (2) the fraction of all cells express-

ing S-opsin, (3) the fraction of FD(S) cells expressing only S-opsin, (4) the per cell M-opsin ex-

pression level, and (5) the per cell S-opsin expression level. Because our data were collected from

multiple retinas, we first fit the raw data to functions that we could use to describe a hypothetical

mean retina.

We describe the fraction of cells in the various subfates as (modified) Hill-like functions. The

fraction of cells expressing S-opsin as a function of D-V position x is described by:

FS(x) = m·x+ b+ [1− (m·x+ b)] · xh

xhmid + xh
, (S18)

wherem and b are the slope and x-intercept of a baseline fraction, respectively, xmid is the midpoint

of the transition, and h is the Hill coefficient. Likewise, the fraction of M-opsin expressing cells is

given by:

FM (x) =
xhmid

xhmid + xh
, (S19)

and the fraction of FD(S) cells is given by:

FFDS(x) = Fmin + (Fmax − Fmin) · xh

xhmid + xh
. (S20)
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Figures S1+S3 show the fits of these functions to the raw data for the various retinas. We then

took the mean of the various parameters to construct a hypothetical mean retina. Figure S13

shows the fraction of cells in these states as a function of D-V position in our mean retina.

We describe the mean per cell expression level of M- and S-opsin as piecewise linear functions

with a low and a high limit separated by a biphasic region with two different slopes:

I(x) = y0 if x < x0, (S21)

= y0 +m1 · (x− x0) if x0 < x < x1, (S22)

= y0 +m1 · (x1 − x0) +m2 · (x− x1) if x1 < x < x2, (S23)

= y0 +m1 · (x1 − x0) +m2 · (x2 − x1) + y1 if x > x2. (S24)

Here, y0 and y1 are the left and right baselines, x0, x1, and x2 are the D-V points where the slope

changes, and m1 and m2 are the two slopes. Figure S7 shows the fit to the M- and S-opsin

expression for the various experimental retinas. Figure S13 shows the values of these functions

for our hypothetical mean retina.

Once we had a hypothetical mean retina, we used it to parameterize our model. We derived ex-

pressions for the mean value of the various observables as a function of D-V position by solving the

deterministic system of ordinary differential equations described by Equations S3-S16. We then

used non-linear least squares with Nelder-Mead minimization to globally optimize the parameters

using all five data sets. Table S3 gives the best fits values for the free parameters and Figure S14

shows a comparison of the deterministic model calculated using the best-fit parameters against

our hypothetical mean retina.
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Supplementary Tables

Table S1: Retina image names and genotypes.

Retina Filename Genotype Num. Cells

R07 170505_2M_WT_F1_Left_20x_Stitch_MIP WT 65467
R08 170505_2M_WT_F1_Right_20x-Stitch-MIP WT 50437
R09 170505_2M_WT_F2_Left_20x-Stitch-MIP WT 34381
R22 170817_pregnantMALE_CONTROL_BL6_1_20x-Stitch-MIP_c1+2 WT 40660
R25 171026_WT_F1_Left_20x-Stitch-MIP WT 29831
R26 171026_WT_F1_Right_20x-Stitch-MIP WT 29962
R31 180123_ThrB2_KO_4M_DV_Right_slide1_20x_Stitch-MIP ∆THRβ2 10781
R32 180123_ThrB2_KO_4M_DV_Right_slide2_20x-Stitch-MIP ∆THRβ2 10508
R33 180123_ThrB2_KO_4M_whole_Right_slide1_20X-Stitch-MIP ∆THRβ2 15570
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Table S2: The number of cells identified per subtype by hand (H) and computer (C) annotation.

Retina Section Filename S- & M-opsin (H/C) S-only (H/C) M-only (H/C)

171026_WT_F1_Left_20x-Stitch-MIP-DORSAL 13/23 4/6 584/753
171026_WT_F2p_Left_780_20x-Stitch-MIP-VENTRAL 267/313 82/70 2/1
171026_WT_F2p_Left_780_20x-Stitch-MIP-CENTER 186/277 20/26 0/1
171026_WT_F2p_Left_780_20x-Stitch-MIP-DORSAL 4/5 10/13 427/377
171026_WT_F2p_Right_800_20x-Stitch-MIP-VENTRAL 380/783 198/303 0/0
171026_WT_F2p_Right_800_20x-Stitch-MIP-CENTER 515/1060 64/81 8/1
171026_WT_F2p_Right_800_20x-Stitch-MIP-DORSAL 17/29 3/4 259/264
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Table S3: Parameters used in the microenvironment model.

Name Value Fit Description

Simulation Setup

strip width 1000×10−6 m Retinal strip width
strip height 5000×10−6 m Retinal strip height
dx 5×10−6 m PDE lattice spacing
dt 8.33×10−2 s PDE time step
dcell−cell 15×10−6 m Center-to-center spacing between cells
rcell 5×10−6 m Cell radius
tsync 1.0×100 s Synchronization time between PDE and CME simulations

PDE Model

D 1×10−10 m2 s−1 T3 diffusion coefficient
Chi 1×10−7 M T3 dorsal concentration
Clo 1×10−9 M T3 ventral concentration

CME Model - THRβ2 activity

µthrb 1×10−8 M Mean of the cellular THRβ2 concentration
σ2
thrb 1.0 · µthrb M2 Variance of the cellular THRβ2 concentration
kthrbD 1.51×10−7 M Y THRβ2-T3 equilibrium dissociation constant
kthrbf 1×106 M−1s−1 THRβ2-T3 kinetic on rate
kthrbr kthrbD · kthrbf s−1 THRβ2-T3 kinetic off rate

CME Model - fate determination

kfdsf 10 s−1 Forward rate for FD(S) regulation
kfdslo 9.72×10−4 Y Lower limit for FD(S) regulation
kfdshi 2.41×10−1 Y Upper limit for FD(S) regulation
kfdsm 4.37×102 molecules Y Midpoint of THRβ2∗ for FD(S) regulation
hfds 3.61×100 Y Hill exponent for FD(S) regulation
kfdsr 100 s−1 Reverse rate for FD(S) regulation
kfdcf 10 s−1 Forward rate for FD(C) regulation
kfdcr 100 s−1 Reverse rate for FD(C) regulation

CME Model - opsin expression

ksdeg 0.01 s−1 S-opsin degradation rate
kmdeg 0.01 s−1 M-opsin degradation rate
ksseq 2×10−10 M FD(S) S-opsin equilibrium concentration
kssf ksseq · ksdeg Ms−1 FD(S) S-opsin expression rate
kcseq 2×10−10 M FD(C) S-opsin equilibrium concentration
kcsf kcseq · ksdeg Ms−1 Forward rate for FD(C) S-opsin expression
kcslo1 3.05×10−4 Y Lower limit for FD(C) S-opsin expression
kcshi1 6.44×10−1 Y Upper limit for FD(C) S-opsin expression
kcsm1 6.87×102 molecules Y Midpoint of THRβ2∗ for S-opsin expression
hcs1 1.40×101 Y Hill exponent for FD(C) S-opsin expression
kcslo2 1.09×10−3 Y Lower limit for FD(C) S-opsin expression
kcshi2 7.45×10−1 Y Upper limit for FD(C) S-opsin expression
kcsm2 2.66×103 molecules Y Midpoint of THRβ2 for FD(C) S-opsin expression
hcs2 1.39×101 Y Hill exponent for FD(C) S-opsin expression
kcmeq 2×10−10 M FD(C) M-opsin equilibrium concentration
kcmf kcmeq · kmdeg Ms−1 Forward rate for FD(C) M-opsin expression
kcmlo 2.34×10−14 Y Lower limit for FD(C) M-opsin expression
kcmhi 1.26×100 Y Upper limit for FD(C) M-opsin expression
kcmm 6.17×102 molecules Y Midpoint of THRβ2∗ for FD(C) M-opsin expression
hcm 6.60×10−1 Y Hill exponent for FD(C) M-opsin expression
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Supplementary Figures
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Figure S1: Fitting of cell expression data. Fraction of cells expressing (left) M-opsin and (right) S-opsin
by position along the D-V axis. The data from the microscopy analysis (x) are overlaid with the best fit (line)
to a fitting function (see text). Rows show different retinas (RXX).
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Figure S2: Comparison of D-V profiles between retinas. Overlap of the fraction of cells expressing (left)
M-opsin and (right) S-opsin aligned to the transition midpoint as determined from the S-opsin expression
profile.
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Figure S3: S-only cell fraction. Fraction of cells expressing only S-opsin by position along the D-V axis.
The data from the microscopy analysis (x) are overlaid with the best fit (line) to a fitting function (see text).
Rows show different retinas (RXX).
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Figure S4: Correlation between S- and M-opsin in retinal cells. Joint probability distributions for the
abundance of S-opsin (blue intensity) and M-opsin (green intensity) in cells. Rows show different retinas
(RXX). Colors range from log10[P] = −2 (white/yellow) to log10[P] = −6 (red/black).
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Figure S5: Correlation between S- and M-opsin in retinal cells. Joint probability distributions for the
abundance of S-opsin (blue intensity) and M-opsin (green intensity) in cells. Columns show cells binned
from four different regions according to distance from the transition midpoint. Rows show different retinas
(RXX). Colors range from log10[P] = −2 (white/yellow) to log10[P] = −4 (red/black).
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Figure S6: Expression of S- and M-opsin in retinal cells. Probability distribution for the abundance of
(left) M-opsin and (right) S-opsin in cells by distance from the transition midpoint. Rows show different
retinas (RXX). Colors range from log10[P] = 0 (white/yellow) to log10[P] = −4 (red/black).
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Figure S7: Fitting of cell expression intensity data. Mean intensity in all cells of (left) M-opsin and (right)
S-opsin by position along the D-V axis. The data from the microscopy analysis (x) are overlaid with the best
fit (line) to a fitting function (see text). Rows show different retinas (RXX).
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Figure S8: Expression in modeled cell populations. Mean fraction of cells in various cell populations
along the D-V axis from numerical simulations of the model. Plots show the mean value computed from
100 independent simulations.
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Figure S9: Opsin concentrations in modeled cells. Probability distribution of the abundance of S-opsin
(blue intensity) and M-opsin (green intensity) in cells along the D-V axis from numerical simulations of the
model. Distributions were computed from 100 independent simulations.
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Figure S10: Correlation between S- and M-opsin in modeled cells. Joint probability distributions for the
abundance of S-opsin (blue intensity) and M-opsin (green intensity) in cells located in ∼250µm wide bins
along the D-V axis. Colors range from log10[P] = −2 (white/yellow) to log10[P] = −5 (red/black). Distribu-
tions were computed from 100 independent simulations. The low density tails leading to 0,0 are from cells
that were sampled during the process of switching phenotypes.
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Figure S11: Analysis of pixel intensities in images of ∆THRβ2 cells. (left) Joint probability distribution of
the blue and green intensity of pixels located either inside of cell boundaries (RXX CELL) or the background
outside of cells (RXX BG) as indicated. Colors range from log10[P] = 0 (white/yellow) to log10[P] = −8
(red/black). (center) Probability for a pixel of the indicated type to have a particular blue intensity (solid line)
compared with the distribution for all pixels (dashed line). (right) The same for green intensity. ∆THRβ2
cells do not exhibit green expression above background.
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Figure S12: Expression of S-opsin in ∆THRβ2 retinal cells. Probability distribution for the abundance of
S-opsin in cells by distance along the D-V axis. Rows show different ∆THRβ2 retinas (RXX). Colors range
from log10[P] = 0 (white/yellow) to log10[P] = −4 (red/black).
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Figure S13: Mean retina description. Comparison of the fits for individual retinas (dashed lines) with our
hypothetical mean retina used for model parameterization (solid line) along the D-V axis. The top row shows
a comparison of the fraction of cells expressing M- and S- opsin, respectively. The middle row shows the
fraction of FD(S) cells. The bottom row shows the mean M- and S-opsin expression intensity, respectively.
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Figure S14: Best fit parameterization. Comparison of the best fit model parameterization (blue) with the
hypothetical mean retina (black). The top row shows a comparison of the fraction of cells expressing M-
and S- opsin, respectively. The middle row shows the fraction of FD(S) cells. The bottom row shows the
mean M- and S-opsin concentration per cell, respectively.
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