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Abstract1

Although quantitative trait locus (QTL) associations have been identified for many molecular2

traits such as gene expression, it remains challenging to distinguish the causal nucleotide from3

nearby variants. In addition to traditional QTLs by association, allele-specific (AS) QTLs are4

a powerful measure of cis-regulation that are largely concordant with traditional QTLs, and5

can be less susceptible to technical/environmental noise. However, existing asQTL analysis6

methods do not produce probabilities of causality for each marker, and do not take into account7

correlations among markers at a locus in linkage disequilibrium (LD). We introduce PLASMA8

(PopuLation Allele-Specific MApping), a novel, LD-aware method that integrates QTL and9

asQTL information to fine-map causal regulatory variants while drawing power from both the10

number of individuals and the number of allelic reads per individual. We demonstrate through11

simulations that PLASMA successfully detects causal variants over a wide range of genetic12

architectures. We apply PLASMA to RNA-Seq data from 524 kidney tumor samples and show13

that over 13 percent of loci can be fine-mapped to within 5 causal variants, compared less than 214

percent of loci using existing QTL-based fine-mapping. PLASMA furthermore achieves a greater15

power at 50 samples than conventional QTL fine-mapping does at over 500 samples. Overall,16

PLASMA achieves a 6.4-fold reduction in median 95% credible set size compared to existing17

QTL-based fine-mapping. We additionally apply PLASMA to H3K27AC ChIP-Seq from 2818

prostate tumor/normal samples and demonstrate that PLASMA is able to prioritize markers19

even at small samples, with PLASMA achieving a 1.4-fold reduction in median 95% credible set20

sizes over existing QTL-based fine-mapping. Variants in the PLASMA credible sets for RNA-21

Seq and ChIP-Seq were enriched for open chromatin and chromatin looping (respectively) at a22

comparable or greater degree than credible variants from existing methods, while containing far23

fewer markers. Our results demonstrate how integrating AS activity can substantially improve24

the detection of causal variants from existing molecular data and at low sample size.25

1 Introduction26

A major open problem in genetics is understanding the biological mechanisms underlying complex27

traits, which are largely driven by non-coding variants. A widely adopted approach for elucidating28

these regulatory patterns is the identification of disease variants that also modify individual-level29

molecular activity (such as gene expression) in the population [1–4]. These quantitative trait loci30
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(QTLs) are typically single nucleotide polymorphisms (SNPs) that exhibit a statistical association31

with overall gene expression abundance [5–8]. Although QTL association analysis is now mature,32

it remains challenging to identify the precise variants that causally influence the molecular trait33

(as opposed to variants in linkage disequilibrium (LD) with causal variants), a task known as fine-34

mapping [9]. As only a small subset of QTL-associated markers are estimated to be causal [10,11],35

direct experimental validation is prohibitive and has motivated statistical fine-mapping solutions36

[12]. The aim of statistical fine-mapping is to quantify the probability of each marker being causal,37

allowing one to prioritize the most likely causal markers, and thus formally quantify the effort needed38

for experimental validation. Recent statistical fine-mapping methods operate on summary QTL39

statistics and can handle multiple causal variants by modeling the local LD structure [13–16]. These40

models have two outputs to help guide the prioritization of putative causal SNPs. First, for each41

marker, a Posterior Inclusion Probability (PIP) is calculated, which are corresponds to the marginal42

probability of causality for the given marker. Second, a n%-confidence credible set is created: a43

set of markers with an n% probability of containing all the causal markers. Although QTL studies44

have sufficient power to identify thousands of associations, they are typically insufficient for fine-45

mapping below dozens of credible variants, even for very large studies [5, 17]. The need for large46

studies is severely limits QTL analyses of expensive assays such as ChIP or single-cell RNA-seq, or47

of difficult to collect tissues.48

Here, we sought to improve molecular fine-mapping by leveraging intra-individual allele-specific49

(AS) signal, which is a measure of cis-regulatory activity that is independent of total, inter-50

individual variation. For heterozygous variants residing in expressed exons, it is often possible51

to map expressed reads to each allele and quantify the extent that molecular activity is allele-52

specific [6, 18–21]. AS analysis allows for a precise comparison of the effects on molecular activ-53

ity that are specific to each allele (cis-effects), while controlling for effects affecting both alleles54

(trans-effects). Thus, AS data is inherently less noisy than regular QTL data, which captures55

total expression regardless of source. The AS effect-size has also been shown to be highly corre-56

lated to conventional QTL effect-sizes, implying that both features typically the same underlying57

cis-regulatory patterns [22]. Several methods have recently been developed to robustly identify58

asQTLs [19, 20, 23], but the calculated association statistics follow a different distribution than59

QTL summary statistics and cannot be directly integrated into existing fine-mapping software to60

produce valid posterior measures and credible sets.61

To combine the scalability of QTL analysis with the power of AS analysis, we introduce62

PLASMA (PopuLation Allele-Specific Mapping), a novel fine-mapping method that gains power63

from both the number of individuals and the number of allelic reads per individual. By model-64

ing each locus across individuals in an allele-specific and LD-aware manner, PLASMA achieves a65

substantial improvement over existing fine-mapping methods with the same data. We demonstrate66

through simulations that PLASMA successfully detects causal variants over a wide range of ge-67

netic architectures. We apply PLASMA to diverse RNA-Seq data and ChIP-seq data and show a68

significant improvement in power over conventional QTL-based fine-mapping.69

2 Results70

2.1 Overview of PLASMA71

PLASMA’s inputs are determined from a given individual-level sequencing-based molecular pheno-72

type (gene or peak) and the corresponding local genotype SNP data (Figure 1a). For each sample,73

we assume the variant data is phased into haplotypes and expression reads have been mapped to74

each variant. Reads intersecting heterozygous markers (signified as fSNPs, or feature SNPs, indi-75
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cated with green or purple on the figure) are then assigned to a particular haplotype, indicated as76

blue or red on the figure. These reads are then aggregated in an haplotype-specific manner to pro-77

duce a total expression phenotype and an allelic imbalance phenotype. This aggregation of reads78

is analogous to the way existing methods such as RASQUAL and WASP calculate allelic fractions79

and total fragment counts [19, 20]. The total expression phenotype (y) is simply the total number80

of mapped reads. The allelic imbalance phenotype (w) is defined as the log read ratio between the81

haplotypes. This log-odds-like phenotype has previously been used to analyze asQTL effect sizes,82

showing consistency with conventional QTL analysis [22]. In practice, we also mitigate the effect83

of mapping bias by running state of the art mapping bias and QC pipelines on all RNA-Seq and84

ChIP-Seq data prior to analysis [19].85

PLASMA integrates two statistics computed for each marker to perform fine-mapping: a QTL86

association statistic (zβ) based on the total phenotype and an AS association statistic (zφ) based on87

the allelic imbalance phenotype. Figure 1b shows how a causal marker influences total expression88

and allelic imbalance, and how this effect influences the statistics for the marker (see Methods89

for quantitative explanations of the statistics). Here, the causal marker’s alternative allele causes90

higher expression compared to the wild-type allele. We see that increasing the dosage (x) of the91

alternative allele increases the total expression (y) at the locus. The effect size (β), consistent with92

a typical QTL analysis, quantifies the association between a marker’s allelic dosage and the total93

expression at the locus with a linear relationship:94

y = xiβi + εi (1)

From this effect size, PLASMA calculates zβ, the QTL association statistic (See Methods for the95

precise relationship with β). Note that this statistic is not dependent on haplotype-specific data.96

On the other hand, looking at the heterozygotes, we see that the haplotype possessing the97

alternative allele has a higher expression than the haplotype possessing the wild-type allele. In98

other words, the direction of imbalance of expression (w) is the same as the direction of the phase99

(v) of the allele. The φ effect size quantifies the association between a marker’s phasing with the100

imbalance of expression. An important departure from existing methods is that PLASMA models a101

linear relationship between the phase of a causal marker and the log read ratio, rather than directly102

relating the genotype to the allelic fraction in a non-linear manner:103

w = viφi + ζi (2)

To calculate the AS association statistic zφ, PLASMA models the quality of each sample, taking104

into account each sample’s read coverage and read overdispersion (Figure 1c, see Methods for the105

precise weighing scheme).106

These QTL and AS association statistics, together with the local LD matrix, are then jointly107

used to fine-map the locus (Figure 1c, see Methods for the fine-mapping model). Since PLASMA108

models both zβ and zφ as a linear combination of genotypes, zβ and zφ have identical LD (see109

Supplemental Methods for proof). PLASMA assumes that the QTL and AS statistics measure the110

same underlying cis-regulatory signal and are thus expected to have the same direction and same111

causal variants (but see Discussion for possible model violations). Although they measure the same112

underlying effect, the two statistics have independent noise because the intra-heterozygous variance113

is considered only in AS analysis, allowing them to be used jointly in fine-mapping. Furthermore,114

PLASMA accepts, as a hyperparameter, a correlation between QTL and AS effects, allowing the115

two sets of statistics to utilize a joint probability distribution (though we find that setting this116

hyperparameter to zero yields the most power). The distribution is used to assign a probability117

to a given causal configuration, a binary vector signifying the causal status of each marker in118
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the locus. Although the correlation between QTL and AS causal effects can vary based on the119

hyperparameter specification, PLASMA assumes that the AS and QTL phenotypes have the same120

causal variants. PLASMA searches through the space of possible causal configurations, within121

a constraint on the number of causal variants. This procedure is related to that in CAVIAR,122

CAVIARBF, and FINEMAP [13–15], but generalized to the two correlated expression phenotypes.123

From these scored configurations PLASMA computes a posterior inclusion probability (PIP) for124

each marker, indicating the marginal probability that a marker is causal, and a ρ-level credible set125

containing the causal variant with ρ probability.126

2.2 Simulation framework127

We evaluate PLASMA with a framework that simulates the expression of whole loci in an allele-128

specific manner. This simulation framework jointly simulates total reads and allele-specific read129

counts, under given values of the number of causal variants, the QTL heritability, the AS heritability,130

the variance of the AS phenotype across samples, and the expected read coverage (see Methods).131

The variance and heritability of the AS phenotype are handled by two separate parameters, where132

the former describes the total spread of allelic imbalance, and the latter specifies the fraction of the133

variance that is due to genetic effects. This allows us to investigate cases where a significant amount134

of observed imbalance is caused by non-genetic variance in the allelic expression. To quantify the135

total variance of the AS phenotype in the population, we define the “standard allelic deviation”136

as the standard deviation of the AS phenotype w, quantified on the allelic fraction scale (between137

0.5 and 1). Importantly, this metric is independent of the genetic effect, which is controlled by138

the heritability parameter. Simulations were performed using real phased haplotype data from the139

1000 Genomes Project European samples.140

As the performance of standard QTL association models is well established, we first focused on141

performance of our proposed AS statistic. Figure S1a shows how the mean zφ varies as a function of142

standard allelic deviation and mean read coverage at a fixed AS heritability of 0.5. Second, Figure143

S1b shows how the mean zφ varies as a function of standard allelic deviation and heritability with144

mean coverage fixed at 100. The statistic is the greatest at high read coverage and high heritability,145

consistent with the degree of experimental and intrinsic signal available to the model. These results146

hold even at low AS variance (standard allelic deviation of 0.6) and show that PLASMA does not147

conflate high AS variance (standard allelic deviation) with high signal (coverage or heritability).148

This robustness to variance in the AS phenotype makes the model resistant to false-positives driven149

by non-genetic sources of allelic variance. At very high variance (standard allelic deviation greater150

than 0.8), zφ shows a sharp decrease. This decrease in signal is due to an increase in the sampling151

error of the AS phenotype (w) at high overall variance, as shown in Equation 46 (See Supplemental152

Methods for a mathematical relationship between total variance and sampling error.)153

2.3 Comparison with existing methods in simulation154

Next, we compare PLASMA’s fine-mapping performance with existing fine-mapping methods. We155

test two different “flavors” of PLASMA, “PLASMA-JI” and “PLASMA-AS.” The PLASMA-JI156

(Joint-Independent) flavor looks at both AS and QTL statistics, assuming a shared set of AS and157

QTL causal variants, and also that the AS and QTL causal effects are uncorrelated. The “PLASMA-158

AS” flavor is restricted to only AS data. As a baseline, we also compared PLASMA to a QTL-159

Only version of PLASMA and to the CAVIAR method (expected to be equivalent to PLASMA160

QTL-Only) [13]. The behavior and performance of CAVIAR is representative of similar QTL-161

based methods such as CAVIARBF, FINEMAP, and PAINTOR without functional annotation162
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(c)

Figure 1: Overview of the PLASMA method. (a) Pre-processing of sequence-based data. First,
reads are mapped to the sample’s genotype. Reads intersecting markers are colored. Then, the
sample’s genotype is phased. Reads intersecting heterozygous markers can then be mapped to a
particular haplotype. Lastly, reads across the locus are aggregated in an allele-specific manner. We
visualize this data by a schematic, where the expression is represented by a ring chart, and the
genotypes by pedigree symbols. In the ring chart, the diameter signifies the total read count, and
the colors signify the proportion of reads coming from each haplotype. For the pedigree symbols, a
white circle signifies a wild-type homozygote, a shaded circle signifies a alternative homozygote, and
a half-shaded circle signifies a heterozygote. In heterozygotes, the direction of shading corresponds
to the direction of heterozygosity (phasing). (b) Visual representation of QTL and AS statistics
under a single causal variant,where the alternative allele increases expression. The total expression
(y) is determined by the allelic dosage (x), whereas the allelic imbalance (w) is determined by the
phasing (v). These two sets of data are used to calculate QTL and AS association statistics (zβ and
zφ). (c) Diagram of PLASMA’s fine-mapping process. First, QTL and AS statistics are calculated
from read data. Then, these statistics, along with an LD matrix, are used to generate probabilities
for causal configurations. By searching through the space of these causal configurations, the model
produces credible sets and posterior probabilities for each marker.
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data [14–16]. We furthermore compare the flavors of PLASMA against the only other publicly-163

released fine-mapping method (to our knowledge) that integrates AS data described in the pre-164

print of Zou et al., 2018 [24]. This unnamed method, which we denote as “CAVIAR-ASE, ”165

utilizes the association between SNP heterozygosity and a binary indicator of allelic imbalance. By166

binarizing allelic imbalance, CAVIAR-ASE is expected to lose power relative to treating imbalance167

as a quantitative phenotype but may be more robust to spurious AS signal. Furthermore, CAVIAR-168

ASE utilizes only indicators of heterozygosity, rather than marker phasing. CAVIAR-ASE can169

therefore be used with unphased genotypes, but at the expense of being unable to leverage the170

direction of the allelic effect.171

First, we evaluate how well each model prioritizes candidate causal markers using simulated172

loci with one causal variant. We define the “inclusion curve” for each model, where markers are173

ranked by posterior probability and added one by one to a cumulative set (note that this set is174

not dependent on the definition of a credible set). The x axis represents the cumulative number of175

markers chosen, and the y axis represents the “inclusion rate,” the proportion of true causal markers176

among the chosen markers. Figures 2a and c show inclusion plots at low and high AS variance,177

respectively. As expected, the QTL-Only flavor and the CAVIAR methods are indistinguishable and178

do not vary with AS variance (thus, we do not include CAVIAR in further results). Furthermore,179

we see that PLASMA-JI and PLASMA-AS perform similarly at both levels of AS variance. Lastly,180

we see a dependency of CAVIAR-ASE’s performance on the degree on AS variance.181

Second, we evaluate the ability of each model to rule out likely non-causal markers in simulated182

loci with one causal variant. To do so, we directly compare the distributions of the 95% confidence183

credible sets, with smaller sets indicating higher specificity. Figures 2b and d show distribution184

plots at low and high AS variance, respectively. At low variance, PLASMA-JI offers the smallest185

mean credible set size (10.4), followed by PLASMA-AS (10.6), then CAVIAR-ASE (44.6), and lastly186

CAVIAR (78.2) and QTL-Only (77.0). The AS-based flavors of PLASMA are resistant to changes187

in AS variance, with mean credible set sizes at high AS variance of 9.6 for PLASMA-JI and 10.4 for188

PLASMA-AS. In contrast, the performance of CAVIAR-ASE varies significantly with the degree of189

AS variance, even when the underlying signal (coverage and heritability) is constant, with a mean190

set size of 67.4 at high variance. This sensitivity may be due to the fact that CAVIAR-ASE does191

not incorporate marker phasing, and thus must rely solely on the intensity of imbalance, rather192

than the direction of imbalance.193

Third, we run the AS-based methods across a wide range of coverage and heritability conditions,194

recording the mean 95% confidence credible sets, shown in Figure 3. Figures 3a-d show mean195

credible set sizes as a function of AS variance and coverage, and Figures 3e-h show mean credible196

set sizes as a function of AS variance and AS heritability. In terms of the range of set sizes, the197

PLASMA-JI flavor performs the best (7.4 variants on average at best conditions), followed by the198

PLASMA-AS flavor (7.4 at best conditions), and lastly the CAVIAR-ASE method (18.0 at best199

conditions). Generally speaking, all methods show results consistent with the behavior of zφ in200

Figure S1. Although increasing either coverage or heritability results in smaller set sizes, increasing201

coverage beyond 100 gives diminishing returns as the observed expression levels approach the true202

expression levels. As expected, CAVIAR-ASE tends to struggle at low AS variance, especially203

apparent at a standard allelic deviation of 0.55, with a mean set size of 52.3 at best. This may204

be due to the large majority of samples falling under the threshold for allelic imbalance at 0.65.205

To verify that PLASMA is calibrated across the full range of conditions, Figure S2 shows that the206

95% credible set sizes have at least a 95% chance of including the causal variant.207
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(a) (b)

(c) (d)

Figure 2: Comparison of fine-mapping methods on two sets of simulated loci of 90 markers and 100
samples each. These two sets differ in the variance of the AS phenotype, but with a fixed mean
coverage and AS heritability. (a) Inclusion curve at AS variance (0.6 standard allelic deviation).
The y-axis shows the expected proportion of markers included in the credible set, and the x-axis
shows the number of selected markers by posterior probability. (b) Distribution of 95% confidence
credible set sizes at low AS variance (0.6 standard allelic deviation) (c) Inclusion curve at high AS
variance (0.8 standard allelic deviation) (d) 95% confidence credible set size distribution at high
AS variance (0.8 standard allelic deviation)
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(a) (b)

(c) (d)

(e) (f)

Figure 3: Comparison of the mean 95% confidence credible set sizes across different AS fine-mapping
methods. Each square is the mean set size calculated over 500 simulated loci of 100 markers and
100 samples each, with one causal variant. (a, c, e) Mean credible set sizes as a function of standard
allelic deviation and mean read coverage, with AS heritability set to 0.5. (b, d, f) Mean credible
set sizes as a function of standard allelic deviation and AS heritability, with mean read coverage
set to 100 reads.
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(a) (b)

Figure 4: Comparison of fine-mapping methods on sets of simulated loci with varying numbers of
causal variants. Each locus is of 100 markers and 95 samples each, with AS heritability set to 0.4,
QTL heritability set to 0.05, and mean read coverage set to 100 reads. (a) Inclusion curve for 2
causal variants. (b) Distribution of 95% confidence credible set sizes for 2 causal variants.

2.4 Inference of multiple causal variants208

To demonstrate PLASMA beyond a one-causal-variant assumption, we fine-mapped sets of simu-209

lated loci with 2 causal variants with each flavor of PLASMA. Figure 4 shows the inclusion curve210

and the distribution of 95% confidence credible set sizes for each flavor. For both curves, a suc-211

cess is defined as the inclusion of both causal variants. For PLASMA-JI, the median credible set212

size increases from a mean of 9.5 for one causal variant to 87.0 for two causal variants. This ap-213

parent decrease in power is consistent with results in earlier QTL fine-mapping analysis [13, 14],214

where capturing all causal variants becomes increasingly difficult as the number of causal variants215

increase. Nevertheless, PLASMA-JI and PLASMA-AS deliver an improvement over QTL-Only216

fine-mapping, with mean credible set sizes of 87.0, 93.0, 95.1, for PLASMA-JI, PLASMA-AS, and217

QTL-Only (respectively). Due to the difficulty of fine-mapping multiple causal variants [10], along218

with the estimate that over 75% of loci do not display allelic heterogeneity, further analyses on219

experimental data were performed under the one-causal-variant assumption.220

Unlike the single causal variant case, where all model hyperparameters were inferred from sim-221

ulation parameters, the causal variance hyperparameters in this case were manually calibrated. We222

believe that this need for calibration is due to linkage disequilibrium obfuscating the relationship223

between causal effect sizes and total heritability at a locus. (See Supplemental Methods for in-224

formation about hyperparameter estimation.) The results shown in this section is calibrated such225

that the recall rates for 95% confidence credible sets are 0.95, 0.95, and 0.978 for the PLASMA-JI,226

QTL-Only, and PLASMA-AS flavors, respectively.227

2.5 Fine-mapping of TCGA kidney RNA-Seq data228

To evaluate our method on real data, we fine-mapped gene expression data from 524 human kidney229

tumor samples and 70 matched normal samples collected by TCGA [25]. The data was processed230

through a rigorous QC pipeline to account for mapping biases based on established best practices231

[19, 22]. Figure 5 shows credible set size distribution plots for tumor and normal data under a232
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1 causal variant assumption. Among the tumor samples (N=524), 22.4% of loci are fine-mapped233

within 10 variants with PLASMA-JI, while 3.1% of loci are fine-mapped within 10 variants with234

QTL-Only fine-mapping (Table S1a). Furthermore, PLASMA-JI achieves a median credible set235

size for 45 variants, whereas QTL-Only achieves a median credible set size of 289 variants (Table236

S2a). We also see a significant improvement over CAVIAR-ASE, which has 4.7% of loci fine-mapped237

within 10 causal variants, and a median credible set size of 292. Results for normal samples (N=70)238

have a similar trend, with 7.0%, 0.2%, and 0.5% of loci fine-mapped within 10 causal variants, for239

PLASMA, QTL-Only, and CAVIAR-ASE respectively (Table S1b). Median credible set sizes of240

67, 374, and 348 variants, for PLASMA, QTL-Only, and CAVIAR-ASE respectively (Table S2b).241

The lower power for all models is due to having fewer normal samples than tumor samples. To242

show that these credible set sizes are robust our choice of heritability hyperparameters, we also ran243

the full set of tumor genes with the AS heritability hyperparameter set to 0.05 instead of 0.5. A244

comparison of the credible set sizes with those from the original parameters are shown in Figure245

S3 and Table S3.246

To investigate how the methods perform at lower sample sizes, we randomly subsample indi-247

viduals prior to fine-mapping. Figure 6 plots the credible set size distributions for PLASMA-JI,248

QTL-Only, and CAVIAR-ASE at various sample sizes. In terms of loci fine-mapped to credible set249

sizes within 10 variants in tumor (Table S4a), PLASMA with 50 samples has approximately the250

same power as QTL-Only fine-mapping with 500 samples. In terms of median credible set size,251

PLASMA with 10 samples has about the same power as QTL-Only fine-mapping with 500 samples252

(Table S4c). All methods increase in credible set size as the sample size is restricted but the relative253

gain of PLASMA over the other methods decreases across sample sizes. PLASMA yields a 6.4-fold254

decrease in median credible set size over QTL-Only fine-mapping at 524 samples, but a 1.3-fold255

decrease at 10 samples (Table S4c). This implies that PLASMA scales more effectively with sample256

size than conventional QTL fine-mapping. Nevertheless, PLASMA yields a substantial reduction257

of credible set sizes even with sample sizes as low as 10, with a median credible set size of 287 in258

tumor, compared to a median set size of 381 with QTL-Only fine-mapping. We furthermore see259

in Figure 6b that at a given sample size, PLASMA has higher power for normal samples than for260

tumor samples, which we believe is due to the lower variance in the normal data.261

Next, we look at how causal variant prioritization is impacted by sample size in the down-262

sampled analysis. Because we do not know the true causal variants in each locus, as a proxy we use263

markers with a posterior probability of at least 0.1 when fine-mapped with the QTL-Only method264

on all samples. We note that this will strongly bias the credible set in favor of the QTL model265

and thus do not compare to the QTL-Only model. In Figure S4, we again see that PLASMA is266

more effective than CAVIAR-ASE at each sample size. In terms of loci fine-mapped to within 10267

variants in tumor (Table S4a), PLASMA with 100 samples has greater power than CAVIAR-ASE268

fine-mapping with 500 samples. At a given sample size, PLASMA is thus better able to prioritize269

variants that will be ranked highly in larger studies.270

Lastly, we look at how PLASMA prioritizes experimentally-verified causal variants at GWAS271

risk loci. Figure 7 shows the strength AS and QTL associations for DPF3 and SCARB1, genes in272

two kidney GWAS loci that have verified causal variants [23,26]. At each sample size threshold, the273

AS statistic more confidently identifies the true causal variant than the QTL statistic. In the case274

of DPF3, the AS statistic is able to prioritize the true causal variant at a substantially lower sample275

size than the QTL statistic. Moreover, we see that the 95% credible sets from the PLASMA-AS276

model are smaller than those from the QTL-Only model at a given sample size. By producing a277

more accurate and confident prioritization of causal variants, PLASMA can substantially reduce278

the difficulty of experimentally validating causal variants.279
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(a) (b)

(c) (d)

Figure 5: Comparison of the distribution of 95% confidence credible set sizes across loci in kidney
tumor and normal samples, with an allelic imbalance false discovery rate of 0.05. Expression was
measured as RNA-Seq read counts mapped to phased genotypes. Fine-mapping was conducted with
500 tumor samples and 90 normal samples. Every SNP within 100 kb of each locus was included
in the fine-mapping input. (a, c) Distribution of credible set sizes for tumor and normal samples,
respectively, under a 1-causal-variant assumption. (b, d) Cumulative distribution of credible set
sizes for tumor and samples, respectively.
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(a)

(b)

Figure 6: Performance of PLASMA as a function of sample size. (a) Credible set size distributions
with varying down-sampled sample sizes, in tumor samples. During down-sampling, sample subsets
were constructed by selecting randomly from total samples. (b) Credible set size distributions with
varying down-sampled sample sizes, in normal samples.

13

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 25, 2019. ; https://doi.org/10.1101/650242doi: bioRxiv preprint 

https://doi.org/10.1101/650242
http://creativecommons.org/licenses/by/4.0/


(a)

(b)

Figure 7: Comparison of AS and QTL associations in the experimentally-verified loci, as a function
of sample size. Regions of 70 kb are shown around the causal marker. AS and QTL p-Values were
calculated using from zφ and zβ, respectively. Fine-mapping was conducted with the PLASMA-AS
and QTL-Only models, respectively. 95% credible set sizes for the whole locus are displayed in the
top right of each subplot. Markers in the 95% credible set are shown in dark gray, while markers
not in the sets are shown in light gray. The experimentally verified causal marker is shown in red.
Regions of open chromatin (DNAse-Seq peaks) are shaded in gray. (a) Associations in the DPF3
locus (b) Associations in the SCARB1 locus.
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2.6 Fine-mapping of prostate H3k27ac ChIP-Seq data280

To evaluate PLASMA with a different molecular phenotype, we fine-mapped H3k27ac activity281

measured by ChIP-seq from 24 human prostate tumor samples and 24 matched normals. Although282

this study measures chromatin activity rather than expression, the nature of the data is nearly283

identical to that of RNA-Seq and is processed analogously by our QC pipeline and by PLASMA.284

Instead of fine-mapping eQTLs around gene loci, we fine-mapped chromatin QTLs (cQTLs) around285

chromatin peaks. Figures 8 shows distribution plots for tumor and normal data under a 1 causal286

variant assumption. Among the tumor loci, 15.2% of loci are fine-mapped within 50 variants with287

PLASMA-JI, while 1.9% of loci are fine-mapped within 50 variants with QTL-Only (Table S5a).288

Furthermore, PLASMA achieves a median credible set size of 226, compared to QTL-Only fine-289

mapping achieving a size of 322 (Table S6a). PLASMA also outperforms CAVIAR-ASE, with 1.9%290

of loci fine-mapped within 50 causal variants (no gain over QTL-Only), and a median credible set291

size of 310. Results from normal samples are similar, with 10.2%, 2.4%, and 2.6% of loci fine-mapped292

within 50 causal variants, for PLASMA, QTL-Only, and CAVIAR-ASE respectively (Table S5b).293

These methods achieve a median credible size of 232, 321, and 313 variants, respectively (Table294

S6b). Overall, these ChIP fine-mapping results are roughly in line with those from RNA-Seq295

fine-mapping.296

2.7 PLASMA increases functional enrichment of credible set markers297

To evaluate PLASMA’s ability to select markers in functional regions using kidney RNA-Seq data,298

we look for enrichment of prioritized variants at open chromatin regions measured with DNAse-Seq299

in a kidney cell-line [27]. Since chromatin accessibility is an indicator of transcription factor binding300

and regulation [28], an enrichment of credible set markers for open chromatin would indicate that301

the fine-mapping procedure is prioritizing markers in functionally relevant regions. For instance,302

the causal variant in the DPF3 locus lies within a DNAse-Seq peak (Figure 7a). We note that303

quantifying overlapping with an independent functional feature such as open chromatin imposes304

no assumptions on the ground truth, in contrast to comparing to external QTL/GWAS data which305

may be biased towards QTL-Only analysis. We define the null distribution as the credible set306

markers being located independently of open chromatin and use Fisher’s exact test to calculate307

enrichment as a function of minimum causal variant probability. Figures 9a and b, and Tables308

S7 and S8 show the p-values and odds ratios, respectively, (computed by Fishers exact test) as309

a function of posterior probability threshold from each fine-mapping method. In terms of both310

p-values and odds ratios, we see that the credible set markers produced by PLASMA, for the311

most part, display a significantly stronger enrichment with open chromatin compared to existing312

methods in terms of both p-values and odds ratios. For instance, at the p = 0.1 threshold for tumor313

samples, PLASMA’s credible set markers achieve a p-value of 5.61×10−57 and an odds ratio of 2.30,314

respectively. In comparison, credible sets from QTL-Only fine-mapping at that threshold achieve a315

p-value of 1.50× 10−5 and odds ratio of 1.58, respectively. This enrichment shows that even with316

far smaller credible sets, PLASMA is able prioritize markers that fall in regions of likely functional317

significance. The difference between PLASMA and existing methods is greatest at higher posterior318

probability thresholds. We believe that this is due to PLASMA assigning a more meaningful number319

of markers with such high posterior probabilities, compared to existing methods that are rarely so320

confident about a marker’s causal status.321

Similarly, to validate the credible sets computed from prostate ChIP-Seq data, we look for322

enrichment of credible set markers at chromatin looping anchors measured by Hi-ChIP in a prostate323

cell-line. Regulatory elements overlapping loops are more likely to be involved in cis-regulation and324
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(a) (b)

(c) (d)

Figure 8: Comparison of 95% confidence credible set sizes for peaks in prostate tumor and normal
cells, with an allelic imbalance false discovery rate of 0.05. Presence of H3k27ac histone marks
was quantified as ChIP-Seq read counts mapped to phased genotypes. (a) Distribution of credible
set sizes for tumor samples, under a 1-causal-variant assumption. (b) Cumulative distribution of
credible set sizes for tumor samples, under a 1-causal-variant assumption. (c) Distribution for
normal samples, under a 1-causal-variant assumption. (d) Cumulative distribution for normal
samples, under a 1-causal-variant assumption.
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we reasoned that they should therefore be enriched for true causal cQTLs [29, 30]. Again we note325

that this functional feature is independent of the QTL signal or locus LD and is not biased towards326

a QTL or AS model. Figure 9c and Table S9 show the p-values and odds ratios, respectively,327

across models as a function of posterior probability threshold (computed by Fishers exact test).328

Comparing the methods, we see that the credible set markers produced by PLASMA display a329

significantly stronger enrichment with looping anchors compared to the other methods in terms of330

both p-values and odds ratios. For instance, at the p = 0.1 threshold, PLASMA’s credible sets331

achieve a p-value of 9.13 × 10−7 and an odds ratio of 1.76, respectively. In contrast, credible set332

markers from QTL-Only fine-mapping at that threshold achieve a p-value of 0.37 and odds ratio333

of 0.34, respectively.334

3 Discussion335

We present PLASMA, a statistical fine-mapping method that utilizes allele-specific expression and336

phased genotypes to select candidate causal variants. By modeling gene expression at a locus337

in an allele-specific manner, PLASMA scales in power both across individuals and across read338

counts. Through read-count-level simulations of loci, we show that PLASMA performs robustly339

across a wide range of realistic conditions and consistently outperforms existing statistical fine-340

mapping methods, including cases where a significant amount of observed imbalance is caused341

by non-genetic factors. We further demonstrate this increased power on experimental data by342

applying PLASMA to a large RNA-Seq study, as well as a smaller ChIP-Seq study. In both343

cases, PLASMA achieves substantially smaller credible set sizes compared to existing fine-mapping344

methods, greatly increasing the number of loci amenable to experimental causal variant validation.345

Lastly, we show that even with these greatly reduced (more specific) credible set sizes, PLASMA346

achieves an equivalent or superior degree functional enrichment as existing methods. These results347

not only present PLASMA as a powerful tool for prioritizing causal variants, but also demonstrate348

how AS analysis can be directly integrated into statistical fine-mapping. A key benefit of PLASMA349

is its ability to utilize existing, conventional sequencing-based QTL data, such as RNA-Seq, CHiP-350

Seq, and ATAC-Seq at low sample size. This allows researchers to gain significant insight simply351

by revisiting past QTL studies, especially those with sample sizes too low for conventional QTL352

fine-mapping.353

Although it is evident that an AS analysis with PLASMA confers more signal than an equivalently-354

sized QTL analysis, AS analysis presents additional obstacles and potential confounders. First, un-355

like conventional QTL fine-mapping methods that rely only on allelic dosage, PLASMA additionally356

utilizes genotype phasing, making phasing accuracy a potential concern. However, since PLASMA357

focuses on cis-regulation, the genotypes observed span no more than several hundred kilobases per358

locus, well within the high accuracy range of modern phasing algorithms [31]. Second, PLASMA359

depends on having heterozygous individuals in the tested feature and SNP in order to leverage AS360

signal. In our analyses we focused on features that were testable by AS (10946 of 19645 total genes,361

113459 of 525629 total peaks). However, even in the complete absence of heterozygotes, PLASMA362

can still conduct conventional fine-mapping based on dosage and total expression. Recent technolo-363

gies that could potentially offer greater signal include RNA-seq with unspliced transcripts [32], and364

direct allele-specific measurement of expression using single-cell RNA-Seq [33]. Third, PLASMA365

assumes the same causal configuration underlying both the AS and QTL effects (and is thus able366

to combine the signals) but the causal effects may differ due to real biological confounding. For367

example, cis effects on gene A followed by (local) trans effects of gene A on gene B would be identi-368

fied as a QTL association, but would not exhibit AS association. This would be a model violation369
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(a) (b)

(c)

Figure 9: (a, b) Enrichment of fine-mapped credible sets with open chromatin for kidney tumor
RNA-seq data in terms of negative-log p-values for tumor and normal samples, respectively. We
took the 95% credible sets across loci, and looked at open chromatin regions that these markers
intersect. We repeat this process on subsets of markers in the credible sets, thresholded by posterior
probability. p-Values were calculated with Fisher’s exact test. (c) Enrichment of fine-mapped
credible sets with chromatin looping for prostate H3K27ac ChIP-Seq data.
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for PLASMA and produce larger credible set sizes. Although PLASMA can consider correlations370

between causal AS and QTL affect sizes, this parameter is hard to estimate, and we find in real371

data that the model with correlation set to zero (PLASMA-JI) exhibited greater power than a non-372

zero constant. Future work is required to fully elucidate the relationship between allele-specific373

and total effects, which likely differs across genes. Fourth, genomic imprinting (where either the374

maternal or paternal copy of the gene is silenced) or random monoallelic expression would produce375

the appearance of allelic imbalance within affected individuals in the absence of true cis-regulatory376

signal [20]. Although PLASMA does not explicitly model such biases, a bias that is independent377

of genotype will only cause a reduction in power and not produce false-positives. A potential378

extension would be to model such violations or discrepancies between the QTL and AS models379

directly, following the lines of methods such as RASQUAL [20]. Fifth, PLASMA currently does380

not incorporate covariate analysis in the allele-specific model (though the intra-individual nature381

of the test controls for false positives), which could additionally be used to model environmental382

confounders and increase power [34]. AS covariate analysis could potentially be achieved through383

a multivariate likelihood ratio test as in WASP [19].384

PLASMA’s approach in combining QTL and AS signals opens up possible future work in two385

distinct directions. The first direction would be to build upon the generative fine-mapping model to386

incorporate additional sources of signal. For example, one can incorporate epigenomic annotation387

data by setting the priors for causality for each marker. Approaches used in existing QTL-based388

methods such as PAINTOR and RiVIERA-MT [16, 35] could be transferred to PLASMA with389

relatively little difficulty. Another possibility would be to conduct N -phenotype colocalization by390

utilizing additional phenotypes in addition to the AS and QTL phenotypes. Generalizing from two391

to multiple phenotypes would be straightforward, and could utilize the colocalization algorithm392

first introduced in eCAVIAR [2]. A second, more general direction would be to adapt QTL-based393

population genetics methods to utilize AS summary statistics. Since both QTL and AS statistics can394

be characterized as linear combinations of haplotype-level genotypes, they share many distributional395

properties, including LD, allowing them to be easily interchangeable in many circumstances. One396

such application would be gene expression prediction for transcriptome-wide association studies397

(TWAS) [36], where the increased signal of AS statistics could increase power to identify gene-398

phenotype relationships. Broadly speaking, the allele-specific model and association statistics that399

PLASMA introduces will be relevant to any analysis of small sample size or limited tissue.400

4 Methods401

4.1 Modeling QTL and AS summary statistics402

Marginal QTL effect sizes for a given locus are calculated under the conventional linear model403

of total gene expression, with the allelic dosage (x) as the independent variable, and the total404

expression (y) as the independent variable. Let us consider a QTL study of a given locus with n405

individuals and m markers. Let y be an (n × 1) vector of total expression across the individuals,406

recentered at zero. Given a marker i, let xi be a zero-recentered vector of dosage genotypes. We407

define βi, the genetic effect of marker i on total gene expression as follows:408

y = xiβi + εi (3)

We use the maximum likelihood estimator of βi, equivalent to the ordinary-least-squares linear409

regression estimator:410

β̂i =
(
x>i xi

)−1
x>i y (4)
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We define our QTL summary statistic (Wald statistic) for marker i as:411

ẑβ,i =
β̂i√(

x>i xi
)−1

σ̂2
y,i

(5)

where σ̂2
y,i is calculated from the residuals.412

AS effect sizes are calculated under a weighted linear model, with the phasing (v) as the413

independent variable, and the allelic imbalance (w) as the dependent variable. We model allele-414

specific expression under the observation that a cis-regulatory variant often has a greater influence415

on the gene allele of the same haplotype. We define a marker’s phase v as 1 if haplotype A contains416

the alternative marker allele, −1 if haplotype B contains the alternative marker allele, and 0 if the417

individual is homozygous for the marker. Let w be the log expression ratio between haplotypes A418

and B, φi be the AS effect size of variant i, and ζi be the residual, interpreted as the log baseline419

expression ratio between haplotypes A and B. We additionally define a sampling error τj = ŵj−wj420

for each individual, quantifying the quality of data from the sample. The genetic effect of marker421

i on allele-specific expression is as follows:422

ŵ = viφi + ζi + τ (6)

Experimentally-derived AS data, such as RNA-Seq data, yield reads that are mapped to a423

particular haplotype. For a given individual j, we define cA,j as the allele-specific read count from424

haplotype A. We model the allele-specific read count as drawn a beta-binomial distribution, given425

the total mapped read count cj :426

cA,j ∼ BB(αj , βj , cj) (7)

We use this beta binomial model to estimate the variance of the sampling error τj :427

σ̂2
c,j =

2

cj
(1 + cosh(ŵ∗j ))(1 + ρe,j(cj − 1)) (8)

where ρe,j is the overdispersion and w∗j is an adjusted estimator of wj to reduce the bias of σ̂2
c,j .428

(Full derivation in Supplementary Methods).429

Due to heteroscedasticity among individuals, we estimate the AS effect size φi in a weighted430

manner, giving larger weights to individuals with lower estimated sampling error. Given individual431

j, we define the weight for j as the inverse of the estimated sampling error variance:432

ωj =
1

σ̂2
c,j

(9)

We define our weight matrix Ω as a diagonal matrix with Ωj,j = ωj . We use the weighted-least-433

squares estimator for φi:434

φ̂i =
(
v>i Ωvi

)−1
v>i Ωŵ (10)

With this estimator, we define the AS association statistic for marker i as the AS effect size435

divided by the estimated variance of the effect size (full derivation in Supplemental Methods):436

ẑφ,i =
φ̂i√(

v>i Ωvi
)−2

((
v>i Ω2vi

)
σ̂2
w,i + v>i Ωvi

) (11)

20

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 25, 2019. ; https://doi.org/10.1101/650242doi: bioRxiv preprint 

https://doi.org/10.1101/650242
http://creativecommons.org/licenses/by/4.0/


4.2 Inference of credible sets and posterior probabilities437

PLASMA defines a joint generative model for total (QTL) and haplotype-specific (AS) effects on438

expression. We define ẑ as the combined vector of AS association statistics and QTL association439

statistics:440

ẑ =

[
ẑφ
ẑβ

]
(12)

Let Rz be the genotype LD matrix, and rβφ be a hyperparameter describing the overall correlation441

between the QTL and AS summary statistics calculated across all loci. We define the combined442

correlation matrix R as:443

R =

[
Rz rβφRz

rβφRz Rz

]
(13)

We model the joint distribution as multivariate normal, with covariance R:444

ẑ ∼ N2m(z,R) (14)

We introduce a likelihood function that gives the probability of statistics ẑ, given a causal445

configuration. We define a causal configuration c as a vector of causal statuses corresponding to446

each marker, with 1 being causal and 0 being non-causal. We assume that the causal configuration447

is the same for the QTL and AS signals.448

We define hyperparameters σ2
c,φ and σ2

c,β as the variance of AS and QTL causal effect sizes,449

respectively rc,βφ as the underlying correlation of the causal QTL and AS effect sizes. (This is450

not to be confused with rβφ, which concerns the correlation between the association statistics. See451

Supplementary methods for a mathematical relationship between these two hyperparameters.) We452

show that these three hyperparameters are closely related to the heritability of gene expression453

(Supplemental Methods). We define Σc, the covariance matrix of causal effect sizes, given a causal454

configuration:455

Σc =

[
diag(c)σ2

c,φ diag(c)rc,βφσc,φσc,β
diag(c)rc,βφσc,φσc,β diag(c)σ2

c,β

]
(15)

We define our likelihood for a causal configuration as:456

L(c; ẑ) = N2m(0,R + RΣcR) (16)

Let γ be the prior probability that a single variant is causal and 1 − γ as the probability that a457

variant is not causal. We define the prior probability of a configuration consisting of m variants as:458

P (c) =

m∏
i=1

γci(1− γ)1−ci (17)

With the prior and likelihood, we define the posterior probability of a causal configuration, nor-459

malized across the set of all possible configurations C:460

P (c|ẑ) =
P (ẑ|c)P (c)∑

c∗∈C P (ẑ|c∗)P (c∗)
(18)

We define the ρ-level credible set K as the smallest set of markers with a ρc probability of461

including all causal markers. We define CK as the set of all causal configurations whose causal462

markers is a subset of K, excluding the null set. We calculate ρc as the sum of the probabilities of463

the configurations in CK:464

ρc =
∑
c∈CK

Pr(c|ẑ) (19)
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Additionally, we define a marker’s posterior inclusion probability (PIP) as the probability that a465

single given marker is causal, marginalized over all other markers. We calculate this probability by466

summing over all configurations containing the marker.467

To reduce the number of configurations to evaluate in the case of multiple causal variants,468

we use the heuristic that configurations with significant probabilities tend to be similar to each469

other. We use a shotgun stochastic search procedure to find all configurations with a significant470

probability. For each iteration of the algorithm, the next configuration is drawn randomly from471

the neighborhood of similar configurations, weighted by the posterior probability of each candidate.472

Upon termination, we assume that all configurations with nonzero probability have been uncovered.473

Given the large number of configurations evaluated, it is impractical to calculate the best474

possible credible set satisfying ρc. Instead, we use a greedy approximation algorithm. At each step,475

before ρc is reached, the algorithm adds the marker that increases the confidence the most.476

4.3 Generation of simulated loci477

Genotype data was sampled from phased SNP data using the CEU population in the 1000 Genomes478

Project. First, a contiguous section of markers in Chromosome 22 is randomly chosen from the479

genotypes. Next, a random selection of samples are randomly selected from the section. The480

genotypes corresponding to the chosen samples yield two haplotype matrices, which we denote Ha481

and Hb.482

Among the markers, the desired number of causal markers is randomly selected. In the case483

of multiple causal variants, each causal marker is assigned a relative effect size, sampled from a484

normal distribution with zero mean and unit variance. For each individual, we calculate qa and485

qb, the ideal un-scaled gene expression for each haplotype, by multiplying the relative effect sizes486

with each haplotype matrix.487

With this haplotype-specific expression, we simulate read count data. In real data, only a frac-488

tion of the reads can be mapped to a specific haplotype. Due to this difference between total reads489

and mapped reads, we calculate the allelic imbalance and the total read count (QTL) separately.490

To calculate total read count data, we model total ideal un-scaled expression qt as qa + qb, the491

sum of the haplotype-specific un-scaled gene expression. We then add Gaussian-distributed noise492

so that the variance of qt is consistent with the total variance across samples as specified by the493

QTL heritability. Finally, we scale this final expression so that the total expression across samples494

is of unit variance. We do not explicitly generate total read counts, since a multiplicative factor495

across samples does not influence the QTL association statistics calculated by the model. This is496

reflective of typical QTL study protocols which aggressively rank/quantile normalize the data to497

fit a normal distribution.498

To calculate allele-specific read counts, we take into account heritability, mean read coverage,499

and the total variance of the AS phenotype. We model the ideal allelic imbalance phenotype as500

logit
(
qa
qb

)
(calculated element-wise). We then add Gaussian-distributed noise so that the signal-501

to-noise ratio of the phenotype’s variance is consistent with the specified AS heritability. This502

noisy phenotype is then scaled to the specified total variance. The read coverage for each sample is503

then drawn from a Poisson distribution, given the mean read coverage. Lastly, allele-specific read504

counts are generated from these phenotypes, with the counts for each sample being drawn from a505

beta-binomial distribution.506
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4.4 Quality control of genotype data507

For TCGA data, germline genotype calls were downloaded from the Genomic Data Commons. For508

PrCa ChIP samples, germline genotypes were called from blood as described in Ref. [37]. Genotypes509

were imputed to the Haplotype Reference Consortium [38] using the Michigan Imputation Server510

[39] and restricted to variants with INFO greater than 0.9 and MAF greater than 0.01. Variants511

were further restricted to QC-passing SNPs from Ref. [38] which represent common, well-mapped512

variants from the 1000 Genomes project.513

4.5 Quality control of RNA-seq data514

Raw RNA-seq BAM files were downloaded from the Genomic Data Commons. Initial RNA-seq515

mapping and alignment was performed following TCGA parameters for the STAR aligner [40].516

Mapping bias was accounted for by re-mapping using the WASP pipeline [19] and the STAR517

aligner with the same parameters. Reads were randomly de-duplicated as recommended by the518

WASP pipeline.519

Somatic copy number calls were downloaded from FireBrowse and local beta-binomial overdis-520

persion parameters were estimated for each contiguous region of copy number change.521

4.6 Quality control of ChIP-seq data522

ChIP-seq experiments were performed as described in Ref. [37]. Reads were aligned using bwa523

and default parameters [41], and peaks were called using MACS2 and default parameters (with524

DNA-seq input provided as control) [42]. Peaks were then unified across all samples. Mapping525

bias was accounted for by re-mapping using the WASP pipeline and the bwa aligner with the526

same parameters. Reads were randomly de-duplicated as recommended by the WASP pipeline.527

Beta binomial overdispersion parameters were estimated globally for each sample as somatic copy528

number was expected to be minimal.529

4.7 Allele-specific quantification530

The StratAS algorithm was used to quantify allele-specific signal and identify initially significant531

features for fine-mapping [23]. For each peak/gene (the feature) and individual all reads at het-532

erozygous SNPs in the feature were aggregated to compute the haplotype-specific read counts, and533

summed across the two haplotypes of each individual to compute the QTL read counts. Each QC534

passing variant within 100kb of the feature was then tested for an allele-specific association with535

the feature and features that were significant at a genome-wide false discovery rate (FDR) of 5%536

were retained for fine-mapping.537

4.8 Functional enrichment analysis538

For QTLs fine-mapped from RNA-seq we selected regions of accessible chromatin in the most539

relevant tissue as reference the functional feature, reasoning that high-confidence causal variants540

should be more abundant in accessible regions. For QTLs fine-mapped from ChIP-seq we selected541

chromosome looping anchors from Hi-ChIP in the relevant tissue as the reference functional feature,542

reasoning that high-confidence causal variants should be more abundant in regions that are in543

conformation with promoters.544

Enrichment was then estimated by computing the proportion of markers in credible sets that545

intersect with the functional feature. Controls were calculated as the intersection between all tested546
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markers and the functional feature. Odds ratios and p-values were computed with Fisher’s exact547

test.548
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54646

(a) (b)

Figure S1: Mean top AS association statistics (zφ) under various conditions of mean read coverage,
heritability, and standard allelic deviation (a metric of the variance of the AS phenotype). Standard
allelic deviation is defined as the allelic fraction f such that the range between 1−f and f captures
all loci with an AS phenotype within one standard deviation of the mean (balanced expression).
Each square is the mean statistic over 500 simulated loci of 100 markers, with one causal variant. (a)
Mean top zφ as a function of standard allelic deviation and mean read coverage, with AS heritability
set to 0.5. (b) Mean top zφ as a function of standard allelic deviation and AS heritability, with
mean read coverage set to 100 reads.
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(a) (b)

(c) (d)

(e) (f)

Figure S2: Recall rates for 95% credible sets under various conditions of mean read coverage,
heritability, and standard allelic deviation (intensity of AS variance). Recall rate is defined as
the expected proportion of causal markers included in the credible set. Each square is the mean
statistic over 500 simulated loci of 100 markers, with one causal variant. (a, c, e) Recall rates as a
function of standard allelic deviation and mean read coverage, with AS heritability set to 0.4. (d,
f, h) Recall rates as a function of standard allelic deviation and AS heritability, with mean read
coverage set to 100 reads. 28
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(a) (b)

(c) (d)

Figure S3: Effect of the AS heritability hyperparameter on 95% credible set sizes with tumor RNA-
Seq data. (a) Set size distribution with the heritability hyperparameter at 50% (b) Cumulative
set size distribution with the heritability hyperparameter at 50% (c) Set size distribution with
the heritability hyperparameter at 5% (d) Cumulative set size distribution with the heritability
hyperparameter at 5%
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Figure S4: Inclusion curve for fine-mapped kidney tumor RNA-Seq data for PLASMA and
CAVIAR-ASE across sample sizes. Inclusion was evaluated against a gold-standard set of markers,
defined as all markers with at least 0.1 posterior probability under QTL-Only fine-mapping with
all samples.
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Table S1: Proportions of kidney RNA-Seq loci fine-mapped within various credible set size thresh-
olds. (a) Threshold proportions for tumor samples (b) Threshold proportions for normal samples

(a) Tumor Samples

Threshold PLASMA-JI QTL-Only PLASMA-AS CAVIAR-ASE

5 0.1356 0.0185 0.1202 0.0284
10 0.2237 0.0314 0.1973 0.0473
20 0.3433 0.0499 0.3037 0.0740
50 0.5216 0.0914 0.4665 0.1312
100 0.6507 0.1481 0.5800 0.1785

(b) Normal Samples

Threshold PLASMA-JI QTL-Only PLASMA-AS CAVIAR-ASE

5 0.0277 0.0010 0.0272 0.0024
10 0.0704 0.0019 0.0709 0.0053
20 0.1661 0.0044 0.1598 0.0107
50 0.4031 0.0107 0.3929 0.0287
100 0.6333 0.0223 0.6207 0.0602

Table S2: Statistics for credible sets sizes of fine-mapped kidney RNA-Seq loci. (a) Statistics for
tumor samples (b) Statistics for normal samples

(a) Tumor Samples

PLASMA-JI QTL-Only PLASMA-AS CAVIAR-ASE

Mean 110.0 288.6 144.4 285.2
Variance 18155. 29337. 27310. 33197.
25th Percentile 12.0 176.0 15.0 163.0
Median 45.0 289.0 62.0 292.0
75th Percentile 176.0 392.0 260.0 394.0

(b) Normal Samples

PLASMA-JI QTL-Only PLASMA-AS CAVIAR-ASE

Mean 119.1 384.5 126.9 285.2
Variance 16454. 29666. 19223. 352.7
25th Percentile 30.0 284.0 31.0 30546.
Median 67.0 374.0 68.0 249.0
75th Percentile 166.5 468.0 176.0 348.0
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Table S3: Statistics for credible sets sizes of fine-mapped kidney RNA-Seq loci under different AS
heritability hyperparameters. Credible sets were generated with PLASMA-JI.

0.5 0.05

Mean 110.0 121.9
Variance 18155. 20064.
25th Percentile 12.0 14.0
Median 45.0 56.0
75th Percentile 176.0 199.0
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Table S4: Proportions of kidney RNA-Seq loci fine-mapped to a 95% credible set size of within
10 markers with varying sample sizes. (a) Proportions of tumor sample loci across sample sizes at
a credible set size threshold of 10 (b) Proportions of normal sample loci across sample sizes at a
credible set size threshold of 10 (C) Median credible set sizes for tumor sample loci across sample
sizes (b) Median credible set sizes for normal sample loci across sample sizes threshold

(a) Tumor Samples, Credible Set Size Threshold of 10

Samples PLASMA-JI QTL-Only PLASMA-AS CAVIAR-ASE

524 0.2237 0.0314 0.1973 0.0473
200 0.1081 0.0150 0.0950 0.0108
100 0.0589 0.0105 0.0501 0.0068
50 0.0335 0.0030 0.0300 0.0019
10 0.0016 0.0000 0.0014 0.0000

(b) Normal Samples, Credible Set Size Threshold of 10

Samples PLASMA-JI QTL-Only PLASMA-AS CAVIAR-ASE

70 0.0704 0.0019 0.0709 0.0053
50 0.0452 0.0024 0.0423 0.0034
10 0.0016 0.00052 0.0016 0.0005

(c) Tumor Samples, Median Credible Set Size

Samples PLASMA-JI QTL-Only PLASMA-AS CAVIAR-ASE

524 45.0 289.0 62.0 292.0
200 143.0 333.0 188.0 328.0
100 212.0 351.0 244.0 341.0
50 239.0 362.0 257.0 347.0
10 287.0 381.0 290.0 371.0

(d) Normal Samples, Median Credible Set Size

Samples PLASMA-JI QTL-Only PLASMA-AS CAVIAR-ASE

70 67.0 374.0 68.0 348.0
50 89.0 377.0 92.0 357.0
10 259.0 398.0 259.5 390.0
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Table S5: Proportions of prostate ChIP-Seq loci fine-mapped within various credible set size thresh-
olds. (a) Threshold proportions for tumor samples (b) Threshold proportions for normal samples

(a) Tumor Samples

Threshold PLASMA-JI QTL-Only PLASMA-AS CAVIAR-ASE

5 0.0036 0.0000 0.0015 0.0007
10 0.0138 0.0029 0.0138 0.0029
20 0.0386 0.0080 0.0378 0.0080
50 0.1521 0.0189 0.1507 0.0189
100 0.2766 0.0255 0.2751 0.0284

(b) Normal Samples

Threshold PLASMA-JI QTL-Only PLASMA-AS CAVIAR-ASE

5 0.0022 0.0022 0.0022 0.0022
10 0.0088 0.0055 0.0088 0.0055
20 0.0297 0.0143 0.0308 0.0143
50 0.1023 0.0242 0.1001 0.0264
100 0.2332 0.0330 0.2230 0.0341

Table S6: Statistics for credible sets sizes of fine-mapped prostate ChIP-Seq loci. (a) Statistics for
tumor samples (b) Statistics for normal samples

(a) Tumor Samples

PLASMA-JI QTL-Only PLASMA-AS CAVIAR-ASE

Mean 207.3 311.7 209.9 299.8
Variance 14982. 7393. 15448. 7337.
25th Percentile 85.25 267.0 86.0 256.0
Median 226.0 322.0 228.5 310.0
75th Percentile 307.75 366.0 312.0 355.0

(b) Normal Samples

PLASMA-JI QTL-Only PLASMA-AS CAVIAR-ASE

Mean 215.9 311.5 218.2 302.2
Variance 13809. 8266. 13977. 8125.
25th Percentile 108.0 265.0 109.0 257.0
Median 232.0 321.0 237.0 313.0
75th Percentile 312.0 369.0 314.0 358.0

34

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 25, 2019. ; https://doi.org/10.1101/650242doi: bioRxiv preprint 

https://doi.org/10.1101/650242
http://creativecommons.org/licenses/by/4.0/


Table S7: Enrichment of fine-mapped credible sets with chromatin looping for kidney RNA-Seq
tumor data. We took the 95% credible sets across peaks, and looked at regions of open chromatin
that these markers intersect. We repeat this process on subsets of markers in the credible sets,
thresholded by posterior probability. P-values, odds ratios and confidence intervals were calculated
with Fisher’s exact test. (a-d) Enrichment statistics with PLASMA-JI, QTL-Only, PLASMA-AS,
and CAVIAR-ASE fine-mapped credible sets, respectively.

(a) PLASMA-JI

Min Posterior Prob. Odds Ratio 95% C.I. Lower 95% C.I. Upper − log10 p-Value

0.0 1.174 1.152 1.197 58.24
0.001 1.256 1.231 1.282 101.6
0.01 1.545 1.492 1.599 118.6
0.05 1.998 1.871 2.132 80.61
0.1 2.300 2.094 2.521 56.25
0.15 2.492 2.217 2.793 43.23
0.2 2.694 2.350 3.077 36.92
0.25 2.754 2.347 3.215 28.70
0.3 2.906 2.437 3.443 26.29

(b) QTL-Only

Min Posterior Prob. Odds Ratio 95% C.I. Lower 95% C.I. Upper − log10 p-Value

0.0 1.119 1.093 1.146 20.61
0.001 1.198 1.174 1.222 70.22
0.01 1.473 1.417 1.532 76.56
0.05 1.603 1.429 1.794 13.88
0.1 1.582 1.289 1.924 4.822
0.15 1.707 1.294 2.214 3.768
0.2 1.724 1.215 2.380 2.700
0.25 1.604 1.028 2.396 1.540
0.3 1.792 1.096 2.780 1.759
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(c) PLASMA-AS

Min Posterior Prob. Odds Ratio 95% C.I. Lower 95% C.I. Upper − log10 p-Value

0.0 1.166 1.144 1.188 55.99
0.001 1.211 1.188 1.235 82.38
0.01 1.604 1.549 1.662 135.54
0.05 2.157 2.017 2.305 92.83
0.1 2.537 2.306 2.786 65.91
0.15 2.574 2.276 2.901 41.90
0.2 2.910 2.525 3.340 39.36
0.25 2.948 2.495 3.463 29.65
0.3 3.135 2.607 3.744 27.04

(d) CAVIAR-ASE

Min Posterior Prob. Odds Ratio 95% C.I. Lower 95% C.I. Upper − log10 p-Value

0.0 1.108 1.082 1.134 17.16
0.001 1.198 1.175 1.221 74.64
0.01 1.388 1.330 1.448 47.22
0.05 1.610 1.441 1.794 15.19
0.1 1.971 1.665 2.318 13.06
0.15 1.864 1.477 2.324 6.511
0.2 2.060 1.547 2.695 5.843
0.25 2.197 1.574 2.995 5.151
0.3 2.551 1.783 3.554 6.081

36

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 25, 2019. ; https://doi.org/10.1101/650242doi: bioRxiv preprint 

https://doi.org/10.1101/650242
http://creativecommons.org/licenses/by/4.0/


Table S8: Enrichment of fine-mapped credible sets with chromatin looping for kidney RNA-Seq
normal data. We took the 95% credible sets across peaks, and looked at regions of open chromatin
that these markers intersect. We repeat this process on subsets of markers in the credible sets,
thresholded by posterior probability. P-values, odds ratios and confidence intervals were calculated
with Fisher’s exact test. (a-d) Enrichment statistics with PLASMA-JI, QTL-Only, PLASMA-AS,
and CAVIAR-ASE fine-mapped credible sets, respectively.

(a) PLASMA-JI

Min Posterior Prob. Odds Ratio 95% C.I. Lower 95% C.I. Upper − log10 p-Value

0.0 1.005 .9731 1.037 .1098
0.001 1.095 1.057 1.134 6.373
0.01 1.445 1.363 1.531 31.85
0.05 1.776 1.594 1.974 22.24
0.1 2.265 1.952 2.617 22.70
0.15 2.047 1.668 2.489 10.07
0.2 2.154 1.689 2.713 8.455
0.25 2.044 1.521 2.695 5.453
0.3 1.942 1.398 2.637 4.083

(b) QTL-Only

Min Posterior Prob. Odds Ratio 95% C.I. Lower 95% C.I. Upper − log10 p-Value

0.0 1.010 .9729 1.048 .2094
0.001 1.065 1.031 1.1013 3.819
0.01 1.450 1.318 1.592 12.85
0.05 1.955 1.362 2.729 3.532
0.1 2.363 1.266 4.071 2.231
0.15 1.573 0.499 3.801 .5835
0.2 2.158 0.568 5.840 .8992
0.25 2.665 0.524 8.476 .9411
0.3 2.158 0.249 8.557 .6024
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(c) PLASMA-AS

Min Posterior Prob. Odds Ratio 95% C.I. Lower 95% C.I. Upper − log10 p-Value

0.0 1.027 .9963 1.060 1.072
0.001 1.086 1.049 1.123 5.598
0.01 1.442 1.360 1.528 31.47
0.05 1.746 1.565 1.943 20.61
0.1 2.291 1.972 2.649 22.954
0.15 2.116 1.722 2.577 10.90
0.2 2.087 1.625 2.644 7.520
0.25 1.965 1.449 2.610 4.730
0.3 1.965 1.414 2.668 4.144

(d) CAVIAR-ASE

Min Posterior Prob. Odds Ratio 95% C.I. Lower 95% C.I. Upper − log10 p-Value

0.0 1.016 .9831 1.05 .4543
0.001 1.084 1.054 1.115 7.869
0.01 1.332 1.226 1.444 10.55
0.05 1.748 1.361 2.215 4.787
0.1 2.119 1.412 3.070 3.570
0.15 1.855 .9981 3.178 1.390
0.2 1.692 .6663 3.590 .6872
0.25 2.403 .9386 5.162 1.478
0.3 3.156 1.22 6.871 2.018
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Table S9: Enrichment of fine-mapped credible sets with chromatin looping for prostate H3K27ac
ChIP-Seq tumor data. We took the 95% credible sets across peaks, and looked at regions of
chromatin looping that these markers intersect. We repeat this process on subsets of markers in
the credible sets, thresholded by posterior probability. P-values, odds ratios and confidence intervals
were calculated with Fisher’s exact test. (a-d) Enrichment statistics with PLASMA-JI, QTL-Only,
PLASMA-AS, and CAVIAR-ASE fine-mapped credible sets, respectively

(a) PLASMA-JI

Min Posterior Prob. Odds Ratio 95% C.I. Lower 95% C.I. Upper − log10 p-Value

0.0 1.162 1.119 1.206 14.75
0.001 1.182 1.140 1.227 18.46
0.01 1.353 1.258 1.454 14.79
0.05 1.592 1.364 1.850 7.958
0.1 1.762 1.413 2.177 6.040
0.15 1.568 1.158 2.082 2.450
0.2 1.759 1.234 2.444 2.7616
0.25 1.666 1.081 2.471 1.790
0.3 1.834 1.177 2.745 2.164

(b) QTL-Only

Min Posterior Prob. Odds Ratio 95% C.I. Lower 95% C.I. Upper − log10 p-Value

0.0 1.020 0.975 1.067 .3985
0.001 1.022 0.978 1.070 .4764
0.01 1.392 1.226 1.575 6.291
0.05 .9287 .4183 1.800 .0000
0.1 .3370 .0084 1.951 .4306
0.15 .0000 .0000 5.245 .0000
0.2 .0000 .0000 14.03 .0000
0.25 .0000 .0000 14.03 .0000
0.3 .0000 .0000 30.64 .0000
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(c) PLASMA-AS

Min Posterior Prob. Odds Ratio 95% C.I. Lower 95% C.I. Upper − log10 p-Value

0.0 1.179 1.135 1.223 17.48
0.001 1.179 1.136 1.223 17.86
0.01 1.382 1.28 1.49 16.41
0.05 1.598 1.369 1.857 8.105
0.1 1.823 1.466 2.246 6.842
0.15 1.668 1.239 2.205 3.161
0.2 1.715 1.191 2.403 2.505
0.25 1.645 1.058 2.456 1.675
0.3 1.721 1.096 2.593 1.793

(d) CAVIAR-ASE

Min Posterior Prob. Odds Ratio 95% C.I. Lower 95% C.I. Upper − log10 p-Value

0.0 1.094 1.047 1.143 4.248
0.001 1.056 1.013 1.102 1.978
0.01 1.183 1.063 1.314 2.705
0.05 .7941 .4182 1.378 .2815
0.1 1.686 .7075 3.458 .7999
0.15 1.264 .1468 4.956 .1712
0.2 .9194 .0223 5.689 .0000
0.25 1.445 .0342 9.499 .2881
0.3 .0000 .0000 9.026 .0000
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5 Supplemental Methods647

5.1 Modeling total expression at a locus (QTL)648

5.1.1 Modeling genetic effects on total expression649

We calculate marginal effect sizes for a given locus under the conventional linear model of total650

gene expression. Let us consider a QTL study of a given locus with n individuals and m markers.651

Let y be an (n × 1) vector of total expression across the individuals, recentered at zero. Given a652

marker i, let xi be an (n× 1) zero-recentered vector of genotypes. We define βi, the genetic effect653

of marker i on total gene expression as follows:654

y = xiβi + εi (20)

We model the residuals εi as normally distributed with variance σ2
y,i.655

5.1.2 Calculation of QTL summary statistics656

We use the maximum likelihood estimator of βi, equivalent to the ordinary-least-squares linear657

regression estimator:658

β̂i =
(
x>i xi

)−1
x>i y (21)

Under the null model where i is not causal, i does not explain any amount of variation of the659

phenotype, and the variance of y is simply σ2
y,i. Thus, under the null:660

Var
(
β̂i

)
=
(
x>i xi

)−2
Var

(
x>i y

)
=
(
x>i xi

)−2 (
x>i xi

)
Var (y)

=
(
x>i xi

)−1
Var (y)

=
(
x>i xi

)−1
σ2
y,i

(22)

We estimate σ2
β,i from the residuals:661

σ̂2
β,i =

ε>i εi
n− 1

(23)

We thus define our QTL summary statistic (Wald statistic) for marker i as:662

ẑβ,i =
β̂i√(

x>i xi
)−1

σ̂2
y,i

(24)

We assume that the number of individuals is enough such that the observed statistic is normally663

distributed with unit variance:664

ẑβ,i ∼ N (zβ,i, 1) (25)

In the case where xi is of unit variance, the statistic simplifies to:665

ẑβ,i =
β̂i
√
n√

σ̂2
y,i

(26)
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5.2 Modeling allele-specific expression at a locus (AS)666

5.2.1 Modeling haplotype-specific effects on expression667

We model allele-specific expression under the observation that a cis-regulatory variant often has a668

greater influence on the gene allele of the same haplotype. Under this model, an individual who is669

heterozygous for one or more cis-regulatory markers will show an imbalance in expression between670

the alleles.671

From a quantitative perspective, let us consider a single locus in a single individual who is672

heterozygous for marker i. Let 0 and 1 represent the wild-type and alternative marker alleles,673

respectively. We define e0 as the expression of the gene allele on the same phase as marker allele674

0, and e1 as the expression of the gene allele on the same phase as marker allele 1. Let e′0 and e′1675

be baseline expressions without the effect of marker i. We define δi as the cis-regulatory strength676

of marker allele 1 over marker allele 0 such that:677

e1

e0
= δi

e′1
e′0

(27)

If we define i’s phase, vi, we can arbitrarily assign haplotypes A and B. The above equation then678

becomes:679

eA
eB

= (δi)
vi
e′A
e′B

(28)

The marker’s phase is 1 if haplotype A contains the alternative marker allele, −1 if haplotype B680

contains the alternative marker allele, and 0 if the individual is homozygous for the marker.681

We now re-write Equation 28 as a linear model. Let w be the log expression ratio between682

haplotypes A and B:683

w = log

(
eA
eB

)
(29)

Let φi be the log allelic fold change (logAFC) caused by variant i:684

φi = log(δi) (30)

Let ζi be the log baseline expression ratio between haplotypes A and B:685

ζi = log

(
e′A
e′B

)
(31)

With these parameters we rewrite Equation 28 as:686

w = viφi + ζi (32)

Given n individuals, this expression becomes:687

w = viφi + ζi (33)

We assume that ζi is drawn from a normal distribution with variance σ2
w,i. Note that under688

this model, φi can be interpreted as the effect size of marker i on allelic imbalance, with ζi as689

the residuals. Furthermore, assuming no haplotype bias, both w and vi are zero-centered in690

expectation.691
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Experimentally-derived AS data, such as RNA-Seq data, yield reads that are mapped to a692

particular haplotype. Given cA and cB, the read counts mapped to haplotypes A and B respectively,693

we define our estimator of w as:694

ŵ = log

(
cA
cB

)
(34)

For a given individual j, we define cA,j as the allele-specific read count from haplotype A. We695

model the allele-specific read count as drawn a beta-binomial distribution, given the total mapped696

read count cj :697

cA,j ∼ BB(αj , βj , cj) (35)

We define πj as the expected proportion of read counts (allelic fraction) from haplotype A:698

πj =
E [cA,j ]

cj
=

αj
αj + βj

(36)

αj and βj can be re-parameterized in terms of πj and the sampling overdispersion ρe.699

ρe =
1

αj + βj + 1
(37)

With this re-paramaterization, the mean and variance of cA,i is given as follow:700

E [cA,j ] = cjπj (38)

701

Var (cA,j) = cjπj(1− πj)(1 + ρe(cj − 1)) (39)

We use this beta binomial model to estimate the variance of ŵi. We scale the distribution by702

1
ci

to get the mean and variance for the read count proportion:703

E
[
cA,j
cj

]
= πj (40)

704

Var

(
cA,j
cj

)
=

1

cj
πj(1− πj)(1 + ρe(cj − 1)) (41)

We define w∗ as the logit-transformed allelic fraction:705

w∗j = logit (πj) = log
πj

1− πj
(42)

706

dw∗j
dπj

=
1

πj(1− πj)
(43)

707

d2w∗j
dπ2

j

=
2πj − 1

π2
j (1− πj)2

(44)
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We can thus find the approximate mean and variance of ŵj given w∗j using Taylor expansions:708

E [ŵj ] = E
[
logit

(
cA,j
cj

)]
≈ logit

(
E
[
cA,j
cj

])
+

1

2
Var

(
cA,j
cj

)
d2

dπ2
j

logit (πj)

≈ logit (πj) +
1

2

(
1

cj
πj(1− πj)(1 + ρe(cj − 1))

)(
2πj − 1

π2
j (1− πj)2

)
≈ logit (πj) +

2πj − 1

2cjπj(1− πj)
(1 + ρe(cj − 1))

≈ w∗j +
1

cj
sinh(w∗j )(1 + ρe(cj − 1))

(45)

709

Var (ŵj) = Var

(
logit

(
cA,j
cj

))
≈ Var

(
cA,j
cj

)(
d

dπj
logit (πj)

)2

≈
(

1

cj
πj(1− πj)(1 + ρe(cj − 1))

)(
1

πj(1− πj)

)2

≈ 1 + ρe(cj − 1)

cjπj(1− πj)

≈ 2

cj
(1 + cosh(w∗j ))(1 + ρe(cj − 1))

(46)

Note that w and w∗ are not equivalent because E [logit (cA/c)] 6= logit (E [cA/c]). Equation 45710

implies that ŵ is a biased estimator of w∗, especially at low read counts and/or high overdispersion.711

To get an estimator of w∗ with reduced bias, we take the approximation that sinh(w∗) ≈ w∗ around712

zero:713

ŵ∗j =
ŵj

1 + 1
cj

(1 + ρe(cj − 1))
(47)

We use ŵ∗ to find an estimator of σ2
c,j , the variance of ŵ:714

σ̂2
c,j =

2

cj
(1 + cosh(ŵ∗j ))(1 + ρe(cj − 1)) (48)

Given our estimator ŵj , we quantify the sampling error τj = ŵj − wj , with E [τj ] = 0 and715

Var (τj) = σ2
c,j . Thus, across individuals:716

ŵ = viφi + ζi + τ (49)

5.2.2 Calculation of AS summary statistics717

Due to heteroscedasticity among individuals, we estimate the AS effect size φi in a weighted manner,718

giving larger weights to individuals with lower expected sampling error. Given individual j, we719

define the weight for j as the inverse of the estimated read count variance:720

ωj =
1

σ̂2
c,j

(50)
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We define our weight matrix Ω as a diagonal matrix with Ωj,j = ωj .721

We use the weighted-least-squares estimator for φi:722

φ̂i =
(
v>i Ωvi

)−1
v>i Ωŵ (51)

Under the null model where i is not causal, the variance of wj is σ2
w,i, and the variance of ŵj is723

σ2
w,i + σ2

c,j . Thus, under the null:724

Var
(
φ̂i

)
=
(
v>i Ωvi

)−2
Var

(
v>i Ωŵ

)
=
(
v>i Ωvi

)−2 (
Var

(
v>i Ωw

)
+ Var

(
v>i Ωτ

))
=
(
v>i Ωvi

)−2 (
Var

(
v>i Ωw

)
+ Var

(
v>i Ω1/2

(
Ω1/2τ

)))
=
(
v>i Ωvi

)−2 ((
v>i Ω2vi

)
Var (w) + v>i Ωvi

)
=
(
v>i Ωvi

)−2 ((
v>i Ω2vi

)
σ2
w,i + v>i Ωvi

)
(52)

We now estimate σ2
w,i from the residuals. Note that we are estimating Var (ζi), but the residuals725

are ζi + τ, so we cannot directly use the variance of the residuals. We instead use the following726

estimator for σ2
w,i:727

σ̂2
w,i =

∑n
j=1

(
ωj (ζi,j + τj)

2 − 1
)

∑n
j=1 ωj

(53)

We show that this estimator is equal to σ2
φ,i in expectation:728

E
[
σ̂2
w,i

]
=

∑n
j=1

(
ωjE

[
(ζi,j + τj)

2
]
− 1
)

∑n
j=1 ωj

=

∑n
j=1 (ωjVar (ζi,j + τj)− 1)∑n

j=1 ωj

=

∑n
j=1 (ωjVar (ζi,j) + ωjVar (τj)− 1)∑n

j=1 ωj

=

∑n
j=1 ωjVar (ζi,j)∑n

j=1 ωj

= Var (ζi)

= σ2
w,i

(54)

With this estimator, we define the AS association statistic for marker i as follows:729

ẑφ,i =
φ̂i√(

v>i Ωvi
)−2

((
v>i Ω2vi

)
σ̂2
w,i + v>i Ωvi

) (55)

We assume that the observed statistic is normally distributed with unit variance:730

ẑφ,i ∼ N (zφ,i, 1) (56)
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To gain an intuitive understanding of the association statistic, let us examine it under simplifying731

conditions. We assume that vi is of unit variance, that read count overdispersion is negligible, and732

that allelic imbalance and read coverage are fixed across individuals. Under these conditions, let733

Ω = c
kI for coverage c and some constant k. Equation 55 simplifies to:734

ẑφ,i =
φ̂i
√
n√

σ̂2
w,i +

k

c

(57)

We can see that under high experimental noise (k/c), the denominator is dominated by the quality735

of data (read coverage). In contrast, when experimental noise is low, the denominator is dominated736

by σ̂2
w,i, determined by the inherent heritability of the locus’s AS phenotype.737

5.3 Inference of causal variants with QTL and AS statistics738

5.3.1 Modeling the correlation of summary statistics among markers739

Due to linkage disequilibrium, there exist significant correlations of genotypes among markers. This740

correlation is reflected in the correlations in the association statistics. Given a set of m markers, we741

model a set of association statistics ẑα for a locus as following a multivariate normal distribution742

with covariance Rz:743

ẑα ∼ Nm(zα,Rz) (58)

Note that because the statistics are all of unit variance, Rz is also the correlation matrix.744

We now show that the correlation matrices for QTL and AS association statistics are both745

equivalent to the correlation matrix of the marker genotypes. Let uj,h be the haploid 0/1 genotypes746

of markers on haplotype h of individual j. We assume that the genotypes are well-approximated747

by a multivariate normal distribution:748

uj,h ∼ Nm(µu,Σu) (59)

The uncentered diploid 0/1/2 genotypes x′j can thus be expressed as the sum of two independent749

haploid genotypes of haplotypes A and B:750

x′j = uj,A + uj,B ∼ Nm(2µu, 2Σu) (60)

Likewise, the -1/0/1 marker phases vj can be expressed as the difference of haploid genotypes:751

vj = uj,A − uj,B ∼ Nm(0, 2Σu) (61)

Note that x′j and vj refer to the (uncentered) genotypes and phases across markers for a particular752

individual j. This is in contrast to xi and vi used earlier, which refer to the (centered) genotypes753

and phases across individuals for a particular marker i.754

Examining Equations 21 and 24, we see that the QTL association statistic can be expressed as:755

ẑβ,i = f(xi)
(
x>i y

)
(62)

where f(xi) is a vector-to-scalar function that ensures unit variance. Let X be an n by m matrix756

of genotypes for all individuals and markers, and let F be an m by m diagonal matrix such that757

Fi,i = f(xi). Across markers, the expression becomes:758

ẑβ = FX>y (63)
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Given that each row of X is an independent realization of a multivariate-normally-distributed759

variable xj , the distribution of ẑβ can be expressed as an affine transformation of the distribution760

of xj = x′j − 2µu.761

ẑβ ∼ Nm
(
zβ, 2

(
y>y

)
FΣuF

)
∼ Nm

(
zβ,

(√
2 (y>y)F

)
Σu

(√
2 (y>y)F

)>) (64)

Since
√

2 (y>y)F is a diagonal matrix, the correlation matrix of ẑβ is the same as the correlation762

matrix calculated from Σu.763

We examine the AS association statistic in a similar manner. Looking at Equations 51 and 55,764

the AS association statistic can be expressed as:765

ẑφ,i = g(vi,Ω)
(
v>i Ωw

)
(65)

where g(vi,Ω) is a vector-to-scalar function that ensures unit variance. Let V be an n by m matrix766

of genotypes for all individuals and markers, and let G be an m by m diagonal matrix such that767

Gi,i = g(vi,Ω). Across markers, the expression becomes:768

ẑφ = GV>Ωw (66)

The distribution of ẑφ can thus be expressed as:769

ẑφ ∼ Nm
(
zφ, 2

(
(Ωw)> ((Ωw)

)
GΣuG

)
∼ Nm

zφ,

(√
2
(

((Ωw)> ((Ωw)
)
G

)
Σu

(√
2
(

((Ωw)> ((Ωw)
)
G

)> (67)

Since Σu is transformed by a diagonal matrix, the correlation matrix of ẑφ is the same as the770

correlation matrix calculated from Σu.771

Thus, both sets of summary statistics have the same correlation matrix Rz, which is also the772

genotype correlation matrix773

5.3.2 Jointly modeling total and haplotype-specific effects on expression774

We define ẑ as the combined vector of AS association statistics and QTL association statistics:775

ẑ =

[
ẑφ
ẑβ

]
(68)

Let rβφ be the overall correlation between the QTL and AS summary statistics calculated across776

all loci. We define the combined correlation matrix R as:777

R =

[
Rz rβφRz

rβφRz Rz

]
(69)

We model the joint distribution as multivariate normal, with covariance R:778

ẑ ∼ N2m(z,R) (70)
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5.3.3 Modeling summary statistics given a causal configuration779

The goal of this method is to infer the causal markers, given QTL and AS association statistics. To780

this end, we introduce a likelihood function that gives the probability of statistics ẑ, given a causal781

configuration. We define a causal configuration c as a vector of causal statuses corresponding to782

each marker, with 1 being causal and 0 being non-causal.783

Let zc,φ and zc,β be the underlying causal AS and QTL effects, respectively, across markers784

such that:785

zc =

[
zc,φ
zc,β

]
(71)

We define hyperparameters σ2
c,φ and σ2

c,β as the variance of AS and QTL causal effect sizes, respec-786

tively rc,βφ as the underlying correlation of the causal QTL and AS effect sizes. (This is not to be787

confused with rβφ, which concerns the correlation between the association statistics.) We define788

Σc, the covariance matrix of causal effect sizes, given a causal configuration:789

Σc =

[
diag(c)σ2

c,φ diag(c)rc,βφσc,φσc,β
diag(c)rc,βφσc,φσc,β diag(c)σ2

c,β

]
(72)

We model the causal effect sizes, given a causal configuration, as drawn from a multivariate normal790

distribution:791

zc|c ∼ N2m(0,Σc) (73)

Furthermore, we model the expected association statistic for a given marker as a linear combination792

of all effects correlated to the marker.793

z = Rzc (74)
794

z|c ∼ N2m(0,RΣcR) (75)

Combining Equations 70 and 75, we get a probability distribution for the observed association795

statistics given a causal configuration. This is our likelihood for a causal configuration.796

ẑ|c ∼ N2m(0,R + RΣcR)

P (ẑ|c) = N2m(0,R + RΣcR) = L(c; ẑ)
(76)

To get a prior distribution for the causal configuration c, we define the hyperparameter γ as797

the prior probability that a single variant is causal and 1 − γ as the probability that a variant is798

not causal. The probability of a configuration consisting of m variants thus becomes:799

P (c) =
m∏
i=1

γci(1− γ)1−ci (77)

We can view the prior as a regularization term by taking the negative log:800

− logP (c) =
m∑
i=1

(−cilogit (γ)− log (1− γ))

= −logit (γ) ‖c‖k −m log (1− γ)

(78)

Since c is a binary vector, ‖c‖k is the same for all positive k. Thus, the prior imposes Lk regular-801

ization with λ = −logit (γ). In practice, this regularization favors causal configurations with fewer802

causal variants.803
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With the prior and likelihood, we define the posterior probability of a causal configuration,804

normalized across the set of all possible configurations C:805

P (c|ẑ) =
P (ẑ|c)P (c)∑

c∗∈C P (ẑ|c∗)P (c∗)
(79)

This posterior probability can be alternatively expressed with Bayes Factors. We define the806

null model as the scenario where all markers are non-causal, so that c = 0. The Bayes Factor for807

a particular c would thus be:808

BF(c : 0) =
P (ẑ|c)

P (ẑ|0)
(80)

We rewrite Equation 79 with Bayes Factors:809

P (c|ẑ) =
BF(c : 0)P (c)∑

c∗∈C BF(c∗ : 0)P (c∗)
(81)

5.3.4 The ρ-level credible set810

In practice, due to the large number of possible configurations, the probability of any given config-811

uration will likely be small. For more meaningful probabilities, we calculate the total probability812

of the possible non-null configurations from a set of markers.813

We define K as a set of markers that putatively includes all causal markers. We define CK814

as the set of all causal configurations whose causal markers is a subset of K, excluding the null815

set. Thus, the probability that K includes all causal markers is the sum of the probabilities of the816

configurations in CK.817

P (K|ẑ) =
∑
c∈CK

Pr(c|ẑ) (82)

We set this probability as ρc, the confidence level of K. Given a value for ρc, commonly 0.95, we818

seek to find K that minimizes the number of causal variants.819

5.3.5 The posterior inclusion probability820

An alternative way of summarizing the configurations is to calculate a marker’s posterior inclusion821

probability (PIP), also known as the posterior probability of association. We define the PIP as the822

probability that a single given marker is causal, marginalized over all other markers. We calculate823

this probability by summing over all configurations containing the marker.824

5.4 Computational optimization and implementation825

5.4.1 Shotgun stochastic search across configurations826

The computation of the probability of a given configuration requires knowledge of the Bayes Factor827

for every possible configuration. As there are 2m possible configurations, traversing this whole828

space is intractable. To reduce the number of configurations to evaluate, we use the heuristic that829

configurations with significant probabilities tend to be similar to each other.830

We use a shotgun stochastic search procedure to find all configurations with a signifcant prob-831

ability. Given a selected configuration c, we define Gc, the neighborhood of c, as follows:832

• All configurations resulting from setting a causal marker in c to non-causal833

• All configurations resulting from setting a non-causal marker in c to causal834
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• All configurations resulting from swapping the casual statuses of two markers in c835

For each iteration of the algorithm, the next configuration is drawn randomly from Gc, weighted by836

the posterior probability of each candidate. Upon termination, we assume that all configurations837

with nonzero probability have been uncovered.838

5.4.2 Calculation of the ρ-level credible set839

Given the large number of configurations evaluated, it is impractical to calculate the best possible840

credible set satisfying ρc. Instead, we use a greedy approximation algorithm. At each step, before841

ρc is reached, the algorithm adds the marker that increases the confidence the most.842

5.4.3 Bayes factor evaluation with matrix reduction843

Direct calculation of the Bayes Factor for a configuration requires the manipulation of m × m844

matrices, resulting in an O(m3) runtime per configuration. We now show that it is sufficient to845

evaluate the Bayes Factor using only the elements corresponding to causal SNPs. This reduces846

complexity from O(m3) to O(k3), where k is the number of causal variants.847

We expand the MVN probability density functions in equation 80 and use the binomial inverse848

theorem:849

BF(c : 0) =

|R + RΣcR|−(1/2) exp

(
−1

2
ẑ> (R + RΣcR)−1 ẑ

)
|R|−(1/2) exp

(
−1

2
ẑ> (R)−1 ẑ

)

=

|I + ΣcR|−(1/2) exp

(
−1

2
ẑ> (R + RΣcR)−1 ẑ

)
exp

(
−1

2
ẑ> (R)−1 ẑ

)

=

|I + ΣcR|−(1/2) exp

(
−1

2
ẑ>
(
R−1 − (I + ΣcR)−1 Σc

)
ẑ

)
exp

(
−1

2
ẑ> (R)−1 ẑ

)
= |I + ΣcR|−(1/2) exp

(
1

2
ẑ> (I + ΣcR)−1 Σcẑ

)

(83)

We permute s to separate causal and non-causal SNPs:850

ẑ =

[
ẑC
ẑN

]
(84)

We likewise permute the rows and columns of R and Σc such that:851

R =

[
RCC RCN

RNC RNN

]
(85)

852

Σc =

[
Σc,CC Σc,CN

Σc,NC Σc,NN

]
=

[
Σc,CC 0k×(m−k)

0(m−k)×k 0(m−k)×(m−k)

]
(86)
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Note that Σc can be nonzero only among causal markers since c is 0 for non-causal markers.853

Furthermore:854

ΣcR =

[
Σc,CC 0k×(m−k)

0(m−k)×k 0(m−k)×(m−k)

] [
RCC RCN

RNC RNN

]
=

[
Σc,CCRCC Σc,CCRCN

0(m−k)×k 0(m−k)×(m−k)

]
I + ΣcR =

[
Ik×k + Σc,CCRCC Σc,CCRCN

0(m−k)×k I(m−k)×(m−k)

] (87)

Blockwise inversion yields:855

(I + ΣcR)−1 =

[
(Ik×k + Σc,CCRCC)−1 − (Ik×k + Σc,CCRCC)−1 Σc,CCRCN

0(m−k)×k I(m−k)×(m−k)

]
(I + ΣcR)−1 Σc =

[
(Ik×k + Σc,CCRCC)−1 − (Ik×k + Σc,CCRCC)−1 Σc,CCRCN

0(m−k)×k I(m−k)×(m−k)

] [
Σc,CC 0k×(m−k)

0(m−k)×k 0(m−k)×(m−k)

]
=

[
(Ik×k + Σc,CCRCC)−1 Σc,CC 0k×(m−k)

0(m−k)×k 0(m−k)×(m−k)

]
(88)

We can simplify this equation since Σc,CC is of full rank and is thus invertible:856

(I + ΣcR)−1 Σc =

[(
Σ−1

c,CC (Ik×k + Σc,CCRCC)
)−1

0k×(m−k)

0(m−k)×k 0(m−k)×(m−k)

]

=

[(
Σ−1

c,CC + RCC

)−1
0k×(m−k)

0(m−k)×k 0(m−k)×(m−k)

]

ẑ> (I + ΣcR)−1 Σcẑ =
[
ẑ>C s>N

] [(Σ−1
c,CC + RCC

)−1
0k×(m−k)

0(m−k)×k 0(m−k)×(m−k)

] [
ẑC
ẑN

]
= ẑ>C

(
Σ−1

c,CC + RCC

)−1
ẑC

(89)

We can also simplify the determinant in Equation 83:857

|I + ΣcR| =
∣∣∣∣Ik×k + Σc,CCRCC Σc,CCRCN

0(m−k)×k I(m−k)×(m−k)

∣∣∣∣
= |Ik×k + Σc,CCRCC|

∣∣I(m−k)×(m−k)

∣∣
= |Ik×k + Σc,CCRCC|

(90)

We have thus shown that evaluating the Bayes Factor with only putative causal markers is858

mathematically equivalent to evaluating with all markers. Thus:859

BF(c : 0) = |Ik×k + Σc,CCRCC|−(1/2) exp

(
1

2
ẑ>C

(
Σ−1

c,CC + RCC

)−1
ẑC

)
(91)

5.5 The hyperparameters in terms of heritability860

The model takes a number or hyperparameters specifying the variances and covariances of the861

association statistics. We reparameterize the hyperparameters in terms of the QTL heritablity of862

the locus h2
β and the AS heritability of the locus h2

φ.863
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First, we look at σ2
c,β and σ2

c,φ, given k expected causal variants. Let σ2
y be the overall variance864

of the QTL phenotype across the individuals. Since the heritability hβ is the proportion of the865

variance attributed to the causal variance, the average variance of a causal marker’s QTL effect866

size is given by:867

σ2
c,β =

h2
β

lk
σ2
y (92)

where l is the average LD score between the given marker and the other causal markers. Similarly,868

the variance of the AS effect size is given by:869

σ2
c,φ =

h2
φ

lk
σ2
w (93)

However, in the case of the AS phenotype, where the quality of data varies considerably among870

individuals, we must take into account the variance introduced by sampling. As we recall, the871

variance of the observed phenotype for a given individual j under a beta-binomial model is:872

Var (ŵj) ≈
2

cj
(1 + cosh(w∗j ))(1 + ρe(cj − 1))

ŵ∗j ≈
ŵj

1 + 1
cj

(1 + ρe(cj − 1))

(94)

We now derive an estimator σ̂2
w = E [Var (ŵj)] for the total expected variance of the observed873

phenotype, across individuals. As an approximation, we substitute the individual read coverage for874

the expected read coverage c̄, assumng that E [Var (ŵj |cj)] ≈ E [Var (ŵj |E [c])]. Thus:875

σ̂2
w =

2

c̄
(1 + E

[
cosh(w∗j )

]
)(1 + ρe(c̄− 1)) (95)

Since we model ŵj as normally distributed, ŵ∗j is approximately normally distributed. We now find876

E
[
cosh(w∗j )

]
. Given a normally distributed zero-mean variable A ∼ N (0, σ2), the even-numbered877

moments are given by:878

E
[
A2p
]

= σ2p(2p− 1)!! (96)

Taking the Taylor expansion of cosh and using linearity of expectation:879

E [cosh(A)] =

∞∑
p=0

E
[
A2p
]

2p!

=

∞∑
p=0

σ2p(2p− 1)!!

2p!

=
∞∑
p=0

σ2p

2pp!

=
∞∑
p=0

(
σ2

2

)p
1

p!

= exp

(
σ2

2

)

(97)
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Substituting this result back into the formula for σ̂2
w:880

σ̂2
w =

2

c̄

(
1 + exp

(
σ2
w

2
(
1 + 1

c̄ (1 + ρe(c̄− 1))
)2
))

(1 + ρe(c̄− 1)) (98)

Thus, the variance of the calculated AS effect size is given by:881

σ2
c,φ̂

=

(
h2
φ

lk

)
2

c̄

(
1 + exp

(
σ2
w

2
(
1 + 1

c̄ (1 + ρe(c̄− 1))
)2
))

(1 + ρe(c̄− 1)) (99)

We also define the observed AS heritability h2
φ̂

such that882

h2
φ̂

= h2
φ

σ2
w

σ̂2
w

(100)

We now derive an expression for rβφ, the overall correlation between the QTL and AS statistics883

for a casual variant. We first find an expression, given causal variant i for the variance of ẑβ,i. Since884

i is causal, the variance of β̂i is a combination of the variance of a causal variant and the average885

phenotypic variation across individuals:886

Var
(
β̂i

)
= σ2

c,β +
σ2
y − σ2

c,β

n

Var (ẑβ,i) =
Var

(
β̂i

)
(
σ2
y − σ2

c,β

)
/n

= n
σ2
c,β

σ2
y − σ2

c,β

+ 1

= n
h2
β/(lk)

1− h2
β/(lk)

+ 1

(101)

We model the QTL statistic of a causal variant as a zero-mean normal distribution:887

ẑβ,i ∼ N

(
0, n

h2
β/(lk)

1− h2
β/(lk)

+ 1

)
(102)

We model the AS statistic in a similar manner:888

ẑφ,i ∼ N

(
0, n

h2
φ̂
/(lk)

1− h2
φ̂
/(lk)

+ 1

)
(103)

We model the noise as independently distributed between the two statistics, but the causal variance889

as correlated with coefficient rc,βφ. Thus:890

ẑβ,i + ẑφ,i ∼ N

0, n
h2
β/(lk)

1− h2
β/(lk)

+ n
h2
φ̂
/(lk)

1− h2
φ̂
/(lk)

+ 2 + 2rc,βφ

√√√√(n h2
β/(lk)

1− h2
β/(lk)

)(
n

h2
φ̂
/(lk)

1− h2
φ̂
/(lk)

)
ẑβ,i − ẑφ,i ∼ N

0, n
h2
β/(lk)

1− h2
β/(lk)

+ n
h2
φ̂
/(lk)

1− h2
φ̂
/(lk)

+ 2− 2rc,βφ

√√√√(n h2
β/(lk)

1− h2
β/(lk)

)(
n

h2
φ̂
/(lk)

1− h2
φ̂
/(lk)

)
(104)
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We now find the covariance between ẑβ and ẑφ. Since the distributions are zero-mean, the891

covariance is just E [ẑβ ẑφ]. Expanding out this product:892

E [ẑβ ẑφ] =
1

4

(
E
[
(ẑβ + ẑφ)2

]
− E

[
(ẑβ − ẑφ)2

])
=

1

4
(Var (ẑβ + ẑφ)−Var (ẑβ − ẑφ))

= rc,βφ

√√√√(n h2
β/(lk)

1− h2
β/(lk)

)(
n

h2
φ̂
/(lk)

1− h2
φ̂
/(lk)

) (105)

The correlation is thus:893

rβφ =
E [ẑβ ẑφ]√

Var (ẑβ) Var (ẑφ)

=

rc,βφ

√√√√(n h2
β/(lk)

1− h2
β/(lk)

)(
n

h2
φ̂
/(lk)

1− h2
φ̂
/(lk)

)
√√√√(n h2

β/(lk)

1− h2
β/(lk)

+ 1

)(
n

h2
φ̂
/(lk)

1− h2
φ̂
/(lk)

+ 1

)

= rc,βφ

√√√√√ n2h2
βh

2
φ̂(

lk + h2
β(n− 1)

)(
lk + h2

φ̂
(n− 1)

)

(106)
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