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Abstract 

When a randomized experimental study is not possible, Mendelian randomization studies use 

genetic variants or polygenic scores as instrumental variables to control for gene-environment 

correlation while estimating the association between an exposure and outcome. Polygenic scores 

have become increasingly potent predictors of their respective phenotypes, satisfying the 

relevance criteria of an instrumental variable. Evidence for pervasive pleiotropy, however, casts 

doubt on whether the exclusion criteria of an instrumental variable is likely to hold for polygenic 

scores of complex phenotypes, and a number of methods have been developed to adjust for 

pleiotropy in Mendelian randomization studies. Using multiple polygenic scores and path 

analysis we implement an extension of genetic instrumental variable regression, genetic path 

analysis, and use it to test whether educational attainment is associated with two health-related 

outcomes in adulthood, body mass index (BMI) and smoking initiation, estimating both gene-

environment correlation and pleiotropy. Results provide compelling evidence for a complex set 

of gene-environment transactions that undergird the relation between educational attainment and 

health-related outcomes in adulthood. 

Keywords: education; cognitive ability; polygenic risk; Mendelian randomization; pleiotropy 
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GENETIC PATH ANALYSIS 3 

Educational attainment, body mass index, and smoking initiation:  

Using genetic path analysis to control for pleiotropy in a Mendelian randomization study 

Mendelian randomization refers to the random assortment of genes that are given to 

children by their parents at the time of conception (Smith & Ebrahim, 2003). This results in 

distributions of genes that are independent of many factors that often confound associations 

documented in observational studies (Lawlor et al., 2008; Smith & Ebrahim, 2003; Smith & 

Ebrahim, 2004). Mendelian randomization studies use genetic variants or genetic propensity 

scores, also called polygenic risk scores, as instrumental variables to control for gene-

environment correlation when testing a putatively casual relation between an exposure and 

outcome. The present study focuses on the use of polygenic scores to conduct Mendelian 

randomization studies, with emphasis placed on reviewing whether polygenic scores meet the 

criteria for a sound instrumental variable. We then present an extension of genetic instrumental 

variable regression (DiPrete, Burik, & Koellinger, 2018), genetic path analysis, to help overcome 

a limitation inherent to Mendelian randomization studies of complex phenotypes, specifically the 

high potential for pleiotropic effects on the exposure and outcome of interest. Using genetic path 

analysis, we then test whether educational attainment is associated with body mass index (BMI) 

and smoking initiation in a large sample of adults while estimating both gene-environment 

correlation and pleiotropy. 

Gene-environment correlation refers to the non-random assortment of individuals into 

environments based on their genotype and is behaviorally manifest by individuals actively 

shaping and responding to their environments based, at least partly, on their heritable 

characteristics (Briley, Livengood, & Derringer, 2018; Jaffee & Price, 2007). This process 

results in heritable variation in measures of the environment (Kendler & Baker, 2007), which, in 
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turn, are thought to further reinforce the expression of relevant phenotypes. Importantly, without 

accounting for heritable variation in environmental exposures, one cannot know whether an 

association between an exposure and outcome reflects a true causal relation or, on the other 

hand, a niche-picking process (Scarr & McCartney, 1983). Auspiciously, as summary data from 

genome-wide association studies (GWASs) becomes readily available, it has become 

increasingly popular to use polygenic scores as instrumental variables for inferring causation in 

non-experimental studies (a.k.a. Mendelian randomization studies).  

A polygenic score may be defined “as a single value estimate of an individual’s 

propensity to a phenotype” (p. 1, Choi, Mak, & O’Reily, 2018) calculated by computing the sum 

of risk alleles corresponding to a phenotype in each individual, weighted by their effect size 

estimate from the most powerful GWAS on the phenotype.  A polygenic score is typically 

calculated as PGS𝑘 =  ∑ 𝛽𝑖𝑖 SNP𝑖𝑘, where PGS for individual k in the target sample is calculated 

by the summation of each SNP (measured for both the person k and passing a set association 

threshold in the discovery GWAS) multiplied by the effect size, β, of that SNP in the discovery 

GWAS. Thus, polygenic scores provide an index of an individual’s genetic propensity for a 

given phenotype, or “an individual-level genome-wide genetic proxy” (p. 2, Choi, Mak, & 

O’Reily, 2018). Although polygenic scores may be used for a variety of purposes, a lot of 

emphasis has been placed on using polygenic scores as instrumental variables. However, as 

noted and addressed by others (Bowden et al. 2015; DiPrete, Burik, & Koellinger, 2018; van 

Kippersluis & Rietveld, 2017), it is not clear that polygenic scores meet the necessary criteria for 

a sound instrumental variable.  

There are three criteria for a sound instrumental variable (Greenland, 2000). First, 

sometimes called the relevance criteria, the instrument must be related to the environmental 
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exposure. Second, according to the exclusion criteria, conditional on the relation between the 

exposure and outcome, there is no direct relation between the instrument and the outcome. Put 

differently, any relation between the instrument and outcome must be fully accounted for by its 

relation to the exposure. Third, the instrument should not be related to any unmeasured 

confounders. Note, however, that this third criteria, sometimes called the independence criteria, 

is not unique to using polygenic scores as instrumental variables, or instrumental variable 

analysis more generally, as this concern applies to all non-experimental studies for which an 

unmeasured confounder exists.  

Nevertheless, as the size of GWASs continue to grow, polygenic scores have become 

increasingly potent predictors of their respective phenotypes, satisfying the relevance criteria. On 

the other hand, genetic correlations across related and seemingly unrelated phenotypes provides 

evidence for pleiotropic effects. This suggests that polygenic scores likely violate the exclusion 

criteria, and, therefore, casts doubt on their use as instrumental variables. In response to this 

concern, a number of methods have been developed to help correct for the presence of 

pleiotropy. For example, statistical techniques have been developed that are more robust to 

pleiotropic effects violating the exclusion criteria, including Egger regression (Bowden et al., 

2015) and summary data-based multiple regression (Zhu et al., 2018), as well as pleiotropy-

robust Mendelian randomization (Van Kippersluis & Rietveld, 2017) and genetic instrumental 

variable regression (DiPrete, Burik, & Koellinger, 2018). The present study intends to contribute 

to this body of work by integrating two existing methods, genetic instrumental variable 

regression and path analysis, to estimate and help control for pleiotropy in a Mendelian 

randomization study using multiple polygenic scores. 
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In a traditional Mendelian randomization study, two regressions are estimated 

simultaneously: the environmental exposure is regressed on the genetic instrument, and the 

outcome of interest is regressed on the environmental exposure. Unfortunately, due to pleiotropic 

effects, the association between the genetic instrument and the outcome is not fully mediated by 

the association between the genetic instrument and the exposure. Put differently, conditional on 

the association between the exposure and outcome, the genetic instrument is often predictive of 

both the environmental exposure and outcome, violating the exclusion criteria of a sound 

instrumental variable. However, as summary statistics from GWASs become available for a 

number of social, relational, and environmental exposures, in addition to outcomes of clinical 

and epidemiological interest, a path analysis using polygenic scores for an exposure and outcome 

can provide an estimate and control for pleiotropy when conducting a Mendelian randomization 

study. 

An example of a path analysis using multiple polygenic scores is depicted in Figure 1. 

Similar to a traditional instrumental variable analysis, an environment or exposure (E) is 

regressed on a genetic instrument (PRSE), which estimates and controls for gene-environment 

correlation. An outcome (Y) is then regressed on the exposure (E) free of genetic confounds that 

result from active and evocative gene-environment correlation. To estimate and control for the 

potential pleiotropic effects of the genetic instrument, a second genetic instrument is introduced 

(PRSY), which provides an index of polygenic liability for the outcome (Y). The correlation 

between the genetic instrument for the exposure (PRSE) and the genic instrument for the 

outcome (PRSY) can be freely estimated, while simultaneously regressing the exposure (E) and 

outcome (Y) on the genetic instrument for the outcome (PRSY). These parameters provide a test 

and simultaneous control for pleiotropy, while also estimating and controlling for additional 
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gene-environment correlations that may not have been captured by the first genetic instrument. 

The correlation between the two genetic instruments sheds light on whether genetic liability for 

the exposure has pleiotropic effects on the outcome, and the regression of the outcome on its 

polygenic score provides a statistical control for pleiotropy. Finally, the regression of the 

exposure on the genetic instrument for the outcome tests for potential gene-environment 

correlations not fully accounted for by the genetic instrument for the exposure. Hereinafter, we 

provide a demonstration of this method focusing on the relationship between education and two 

important health-related outcomes: body mass index (BMI) and smoking initiation.   

Method 

Sample 

 The present study analyses data from the Study of Midlife Development in the United 

States (MIDUS; Brim, Ryff, & Kessler, 2004). Data was prepared for analyses with R version 

3.5.2. Data was imported into R using the ‘Hmisc’ package (Harrell & Harrell, 2019), 

preprocessed, and then exported from R using the 'MplusAutomation' package version 0.7.1 

(Hallquist & Wiley, 2018). Phenotype data and study materials are available on a permanent 

third-party archive, the 71 Inter-University Consortium for Political and Social Research 

(ICPSR). Requests to access data and study materials should be directed to the ICPSR1. For 

additional information regarding participant recruitment, compensation, and data collection, see 

Brim, Ryff, & Kessler (2004).  

Only data from participants who were genotyped and predominantly of European 

ancestry were included in the present study (N = 1296). The average age of participants was 

approximately 54 years (median = 54 years, SD = 12.46 years, min. = 25 years, max. = 84 years), 

                                                 
1 https://www.icpsr.umich.edu/icpsrweb   
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and approximately 51% of the sample was female (~ 49% male). There was considerable 

variation in highest level of education completed by participants (see Table 1).  

Measures 

 The present study includes six focal constructs. (1) Educational attainment was measured 

using self-reports of the highest level of education completed by participants, rated on an ordinal 

scale. (2) BMI was calculated based on participants height and weight (mean = 28.79, median = 

27.89, SD = 6.19, min. = 17.08, max. = 77.58)2 (3) Smoking initiation was measured by asking 

participants whether they were ever a smoker or currently a smoker of cigarettes (No = 59%, Yes 

= 41%). (4-6) Polygenic scores for educational attainment, BMI, and smoking initiation were 

calculated using summary statistics from recent GWASs for each variable (Lee et al., 2018; 

Linnér et al., 2019; Locke et al., 2015). 

Data Analytic Procedures 

The ancestry of participants was estimated using Admixture software (Alexander, 

Novembre, & Lange, 2009) with a 1000 Genomes data (Phase 3) reference3 using all 5 super-

populations as a basis for estimation. To calculate ancestry component scores, genotype principal 

components analysis (PCA) was performed on participant genotypes, combined with 1000 

Genome genotypes, after linkage disequilibrium (LD) pruning SNPs at a 0.2 R2 threshold. Five 

ancestry component scores were calculated: European (EUR), East Asian (EAS), Ad-mixed 

American (AMR), Southeast Asian (SAS), and African (AFR).  

To date, discovery GWASs have focused almost exclusively on participants of European 

ancestry. Consequently, the estimated effect sizes of individual SNPs are only known for 

                                                 
2 There was a single outlier on BMI that was more than 5 standard deviations above than the mean. Results remain 

unchanged after excluding this observation.  
3 The Genome Project Consortium. A global reference for human genetic variation. (2015) Nature, 526, 68-78. 
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individuals of European ancestry, and the calculation of polygenic scores are only valid for 

participants of predominantly European ancestry. Therefore, to exclude ancestrally 

heterogeneous samples from the data, we excluded samples with less than 90% estimated 

European ancestry. Total of 1309 samples were included in imputation and polygenic risk 

scoring.  

The Illumina OmniExpress arrays tag a sufficient number of variants on the X and Y 

chromosomes to determine biological sex (e.g. 17,707 SNPs on X chromosome and 1,367 on Y 

for array v. 1.1). Samples were excluded if self-reported sex did not match biological sex as 

determined by genotype (N = 13), as this may indicate either invalid self-reports, genotyping 

errors, or accidental I.D. swaps. After filtering out samples that did not pass ancestry- and sex-

checks, PRSs were available for a final sample of N = 1296 participants. After MIDUS genotype 

samples were filtered via inclusion criteria, genotypes were imputed using minimac3 (Das et la., 

2016) and Eagle (Loh et a., 2016) using the Haplotype Reference Consortium panel on the 

Michigan Imputation Server. SNPs with ambiguous strand orientation, >5% missing calls, or 

Hardy-Weinberg equilibrium p < 0.001 were excluded prior to imputation. After imputation, 

SNPs with minor allele frequency below 0.01 or an average call rate (AvgCall) below 0.9 were 

excluded. All genomic data were handled using Plink 1.9 (Purcell et al., 2007; Purcell & Chang, 

2017). 

Path analysis was conducted in Mplus version 8.1 (Muthén & Muthén, 2019), and 

missing data were handled using full-information maximum likelihood (Schafer & Graham, 

2002). Because a subset of sibling- and twin-pairs are included in the current sample (Npairs = 

96), a family identification number was specified as a cluster variable (Muthén & Muthén, 2019) 

in path models to implement a Huber-White sandwich estimator, which adjusts the standard 
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errors of path coefficients for the non-independence of observations that results from a subset of 

participants being nested within the same family.  

Age (centered at 54 years) and biological sex (coded female = 0, male = 1) were included 

as exogenous covariates of all focal study variables, in addition to the first five genomic principal 

component scores. Thus, we report results from fully-saturated models (i.e. df = 0). As the 

variance of certain PC scores approached zero, all PC scores were increased by a factor of 100 to 

avoid a singular observed covariance matrix of independent variables. The effects of age and 

biological sex on BMI and smoking initiation are included in Figures 2 and 3, but pathways from 

PC covariates were omitted from diagrams to ease visualization. As BMI and smoking initiation 

are continuous and binary outcomes, the estimated pathways to BMI and smoking initiation can 

be interpreted as linear and logistic4 regression coefficients, with linear coefficients standardized 

and logistic coefficients exponentiated (i.e. reported as odds ratios). 99% confidence intervals are 

reported below their respective point estimates. Polygenic scores, self-reports of educational 

attainment, and BMI were standardized prior to fitting path models (M = 0, SD = 1).  

Results 

Results for educational attainment and BMI are reported in Figure 2. Results for 

educational attainment and smoking are reported in Figure 3. In both models, polygenic 

propensity for educational attainment was associated with educational attainment ( = .27, SE = 

.03, p < .001), providing evidence for gene-environment correlation. Providing evidence for 

pleiotropic effects, polygenic propensity for educational attainment was negatively correlated 

with polygenic risk for high BMI (r = -.17, SE = .03, p < .001) and polygenic risk for smoking 

initiation (r = -.16, SE = .03, p < .001). Providing a partial control for pleiotropic effects, 

                                                 
4 All substantive results remain unchanged if smoking initiation is treated as a count variable with pathways 

estimated as Poisson regressions. 
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polygenic risk for high BMI was associated with BMI ( =  SE = .03, p < .001), and 

polygenic risk for smoking initiation was associated with smoking initiation (OR = 1.30, SE = 

.08, p < .001). After accounting for these direct associations, the pathway from polygenic 

propensity for educational attainment to BMI approached zero ( = -.01, SE = .03, p = .691), as 

did the pathway from polygenic propensity for educational attainment to smoking initiation (OR 

= 0.94, SE = .06, p = .362. These estimates suggest that the regression of BMI and smoking 

initiation on their respective polygenic scores provided an adequate statistical control for the 

pleiotropic effects of polygenic risk for educational attainment.  

Notably, after regressing educational attainment on polygenic propensity for educational 

attainment, the direct association between polygenic propensity for BMI and education 

attainment was not strong or significantly different from zero ( = -.03, SE = .03, p = .240). 

However, even after regressing educational attainment on polygenic propensity for educational 

attainment, polygenic propensity for smoking initiation was directly and negatively associated 

with educational attainment ( = − SE =  p = )  This direct association between 

polygenic propensity for smoking initiation and educational attainment shows that the genetic 

instrument for educational attainment, by itself, only provided a partial control for gene-

environment correlation. The regression of the exposure on polygenic risk for the exposure and 

outcome, however, provides an additional test and control for gene-environment correlation that 

has not traditionally been implemented in Mendelian randomization studies. Nevertheless, even 

after estimating pleiotropy and polygenic propensity for the exposure and outcome, there was 

still a protective association of educational attainment on BMI ( = -.11, SE = .03, p < .001) and 

smoking initiation (OR = 0.71, SE = .05, p < .001). Moreover, the association between polygenic 

propensity for educational attainment and BMI was statistically accounted for by educational 
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attainment (indirect effect = -.03, 99% bias-corrected bootstrapped C.I. = -.05, -.01, p = .001), as 

was the association between polygenic propensity for educational attainment and smoking 

initiation (indirect effect = -.09, 99% bias-corrected bootstrapped C.I. = -.15, -.04, p < .001).   

Discussion 

 The present study proposed the integration of two existing methods, genetic instrumental 

variable regression and path analysis, to account for pleiotropy in Mendelian randomization 

studies using multiple polygenic scores. The method was then evaluated using a putatively 

important environmental exposure (educational attainment) and two outcomes that are of interest 

to clinicians and epidemiologists alike (BMI and smoking initiation). Importantly, the present 

study demonstrates that education has a protective association with BMI and smoking initiation, 

even when controlling for potential genetic confounds via Mendelian randomization and 

pleiotropic effects using multiple polygenic scores.  Moreover, for the two phenotypes examined, 

controls for pleiotropy were effective, such that the direct pathways from polygenic propensity 

for education to BMI and smoking initiation approached zero, indicating that the proposed 

method is capable of addressing the exclusion criteria for a sound instrumental variable. In 

addition, polygenic risk for smoking initiation (but not BMI) was directly associated with 

educational attainment, even after accounting for polygenic propensity for educational 

attainment. This demonstrates that, at least for some phenotypes, traditional Mendelian 

randomization studies provide only a partial genomic control for the environmental exposure.  

The method proposed and implemented in the current study, however, provides an additional test 

and statistical control for potential gene-environment correlations, beyond what is typically 

accomplished in a Mendelian randomization study. 
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 Of course, genetic path analysis is not without limitations. For one, it can only be applied 

to a Mendelian randomization study for which GWAS summary statistics are available for both 

the exposure and outcome. In addition, although polygenic scores have become potent predictors 

of their respective phenotypes, especially in comparison to single genetic variants, the arrays 

typically included in GWASs only tag point mutations (i.e. single nucleotide polymorphisms) 

and do not include insertion, deletions, and copy number variants. Further, the beta weights 

obtained from discovery GWASs are estimated with imprecision, and, consequently, polygenic 

scores provide only an imperfect proxy of genetic liability. Therefore, the strength of the 

proposed method depends on the size and overall quality of the discovery GWASs for the 

exposure and outcome of interest, though the quality of the GWASs for the phenotypes 

examined in the present study were reasonable by contemporary standards.   

 In many ways, the methodological integration that was proposed and implemented in the 

present study is an extension or specific instantiation of genomic structural equation modeling 

(Grotzinger et al., 2018). There are, however, important differences between genomic structural 

equation modeling and genetic path analysis as outlined in the present study. For example, 

genomic structural equation modeling is a technique that can be used to address a number of 

questions about the genetic architecture of complex phenotypes, including the search for SNPs 

not previously identified in a univariate GWAS. Alternatively, genetic path analysis using 

multiple polygenic scores was developed to address a limitation specific to Mendelian 

randomization studies and relies on the existence of discovery GWASs for the exposure and 

phenotype of interest.  In addition, genomic structural equation modeling is based on genetic 

correlations estimated using a variant of LD-Score regression (Bulik-Sullivan et la., 2015), and 

genetic path analysis relies on multiple polygenic scores to estimate genetic correlations. 
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Genomic structural equation modeling also includes the estimation of latent variables that are not 

directly observed but, instead, are inferred indirectly from the data. Genetic path analysis, on the 

other hand, analyses associations between observed variables.  

A remaining limitation to Mendelian randomization studies not addressed in the present 

study centers on the fact that, despite receiving a random assortment of genes from their parents, 

children’s genotypes depend on their parents’ genotype. Consequently, passive gene-

environment correlations remain a possibility. Implementing genetic path analysis in a sample of 

siblings or twins would provide an additional control for this potential confound.  Unfortunately, 

the sample analyzed in the present study did not include enough sibling-pairs to be adequately 

powered to fit the proposed path models to sibling-difference scores. Nevertheless, future studies 

may benefit from implementing genetic path analysis in larger samples of genotyped siblings 

with relevant exposures and outcomes measured. Finally, the present study did not address 

potential threats to the independence criteria for a sound instrument that is posed by any 

unmeasured confounder present in a non-experimental study. Despite these limitations, the 

present study provides compelling evidence for a complex set of gene-environment transactions 

that contribute to health-related outcomes in adulthood. 
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Table 1. Highest Level of Education Completed by Participants 
  

Number of Observations  

 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) NA 

Frequency 1 6 26 10 199 195 59 110 325 54 232 70 6 

Percent < 1% < 1% ~2% < 1% ~15% ~15% ~5% ~9% ~25% ~4% ~18% ~5% < 1% 

Notes. (1) = No school/some grade school (grades 1-6). (2) = Eighth grade/junior high school (grades 7-8). 

(3) = Some high school (grades 9-12, No Diploma or GED). (4) = GED (general education diploma). (5) = 

Graduated from high school. (6) = One to two years of college, no degree yet. (7) = Three or four years of 

college, no degree yet. (8) = Graduated from two years of college, vocational school, or obtained assoc. 

degree. (9) = Graduated from a four- or five-year college or obtained a bachelor’s degree. (10) = Attended 

some graduate school, no graduate degree yet. (11) = Master’s degree. (12) = PH.D., ED.D., MD, DDS, LLB, 

LLD, JD, etc. NA = missing values.  
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Figure 1. Path Diagram of a Genetic Path Analysis Using Multiple Polygenic Scores 

 
Notes. PRSE = polygenic score for exposure. PRSY = polygenic score for outcome. E = exposure. Y = 

outcome. (A) association of polygenic risk for the exposure and the exposure- i.e. test of gene-environment 

correlation. (B) genetic correlation between risk for the exposure and risk for the outcome- i.e. test of 

pleiotropy. (C) association of polygenic risk for the outcome and the outcome- i.e. control for pleiotropic 

effects. (D) association of polygenic risk for the outcome and the exposure- i.e.  additional test and control 

for gene-environment correlation. (E) association of polygenic risk for the exposure on the outcome, after 

accounting for the exposure and polygenic risk for the outcome- i.e. a test of the control for pleiotropy. (F) 

association of exposure and outcome, controlling for gene-environment correlations and pleiotropy. U = 

Unmeasured confounding variables.    
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Figure 2. Results of a Genetic Path Analysis of Educational Attainment and Body Mass 

Index Using Multiple Polygenic Scores.  

 
Notes. The double-headed arrow represents a correlation. Single-headed arrows represent regressions. 

Unstandardized estimates are reported. All variables are standardized (M = 0, SD = 1), excluding 

biological sex (coded 0 = Female, 1 = Male) and age (years). Therefore, coefficents are intrepetted as the 

predicted standard deviation increase in BMI given a one unit increase in the predictor (e.g. a one 

standard deviation increase in polygenic risk or education, a one year increase in age, or being male 

instead of female). 99% confidence intervals are reported below parameter estimates. p = probability of 

the observed data if the null hypothesis is true. All focal variables were regressed on age, sex, and PC 

scores, but these pathways were omitted to ease visualization.   
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Figure 3. Results of a Genetic Path Analysis of Educational Attainment and Smoking 

Initiation Using Multiple Polygenic Scores. 

 
Notes. The double-headed arrow represents a correlation. Single-headed arrows represent regressions. 

Unstandardized estimates are reported. All variables are standardized (M = 0, SD = 1), excluding 

smoking initiation (coded 0 = No, 1 = Yes), biological sex (coded 0 = Female, 1 = Male) and age (years). 

To help ease interpretation of results, estimates for pathways to smoking initiation are reported as odds 

ratios, intrepetted as the increased odds of having initiated smoking given a one unit increase in the 

predictor (i.e. a one standard deviation increase in polygenic risk or education, a one year increase in age, 

or being male instead of female). 99% confidence intervals for odds ratios and betas are reported in 

parentheses and brackets, respectively. p = probability of the observed data if the null hypothesis is true. 

All focal variables were regressed on age, sex, and PC scores, but these pathways were omitted to ease 

visualization.  
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