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Abstract	
Glioblastomas	 are	 aggressive	 primary	 brain	 tumors	 known	 for	 their	 inter-	 and	
intratumor	 heterogeneity.	 This	 disease	 is	 uniformly	 fatal,	 with	 intratumor	
heterogeneity	 the	major	 reason	 for	 treatment	 failure	and	 recurrence.	 Just	 like	 the	
nature	vs	nurture	debate,	heterogeneity	can	arise	from	heritable	or	environmental	
influences.	Whilst	 it	 is	 impossible	 to	 clinically	separate	observed	behavior	of	 cells	
from	their	environmental	context,	using	a	mathematical	framework	combined	with	
multiscale	data	gives	us	insight	into	the	relative	roles	of	variation	from	inherited	and	
environmental	sources.		

To	 better	 understand	 the	 implications	 of	 intratumor	 heterogeneity	 on	
therapeutic	 outcomes,	 we	 created	 a	 hybrid	 agent-based	mathematical	model	 that	
captures	 both	 the	 overall	 tumor	 kinetics	 and	 the	 individual	 cellular	 behavior.	We	
track	single	cells	as	agents,	cell	density	on	a	coarser	scale,	and	growth	factor	diffusion	
and	dynamics	on	a	finer	scale	over	time	and	space.	Our	model	parameters	were	fit	
utilizing	serial	MRI	imaging	and	cell	tracking	data	from	ex	vivo	tissue	slices	acquired	
from	a	growth-factor	driven	glioblastoma	murine	model.		

When	fitting	our	model	to	serial	imaging	only,	there	was	a	spectrum	of	equally-
good	parameter	 fits	 corresponding	 to	 a	wide	 range	 of	 phenotypic	 behaviors.	 This	
wide	 spectrum	 of	 in	 silico	 tumors	 also	 had	 a	 wide	 variety	 of	 responses	 to	 an	
application	of	an	antiproliferative	treatment.	Recurrent	tumors	were	generally	less	
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proliferative	than	pre-treatment	tumors	as	measured	via	the	model	simulations	and	
validated	from	human	GBM	patient	histology.	When	fitting	our	model	using	imaging	
and	cell	scale	data,	we	determined	that	heritable	heterogeneity	is	required	to	capture	
the	observed	migration	behavior.	Further,	we	found	that	all	tumors	increased	in	size	
after	an	anti-migratory	treatment,	and	some	tumors	were	larger	after	a	combination	
treatment	 than	 with	 an	 anti-proliferative	 treatment	 alone.	 Together	 our	 results	
emphasize	 the	 need	 to	 understand	 the	 underlying	 phenotypes	 and	 tumor	
heterogeneity	in	designing	therapeutic	regimens.	
	
I.	Introduction	
Glioblastoma	 (GBM)	 is	 the	most	 common	 and	 deadly	 form	of	 brain	 cancer	with	 a	
median	survival	rate	of	12-15	months	(1,2).	The	extensive	infiltration	of	single	cells	
in	 and	 around	 important	 anatomical	 structures	makes	 curative	 surgical	 resection	
practically	impossible,	and	resistance	to	radiation	and	chemotherapeutic	strategies	
often	causes	recurrence	 following	an	 initial	response.	Magnetic	resonance	 imaging	
(MRI)	serves	as	the	primary	diagnostic	viewpoint	into	the	disease	state	and	guides	
the	 subsequent	 treatment	 strategies	 that	 follow.	However,	 it	 is	often	 the	 case	 that	
patients	with	similar	growth	patterns	determined	with	MRI	will	have	different	post-
treatment	 kinetics.	 While	 patient	 data	 at	 smaller	 scales,	 such	 as	 histological	 and	
genetic	 profiling,	 is	 known	 to	 be	 generally	 prognostic,	 its	 connection	 to	 optimal	
therapeutics	and	clinical	 imaging	remains	an	active	area	of	 research	 (3–8).	 In	 this	
work,	we	 investigate	how	phenotypic	heterogeneity	at	 the	 cell	 scale	effects	 tumor	
growth	 and	 treatment	 response	 at	 the	 imaging	 scale	 by	 quantitatively	 matching	
multiscale	 data	 from	 an	 experimental	 rat	 model	 of	 GBM	 to	 a	 mechanistic	
computational	model.		

It	 is	 broadly	 acknowledged	 that	 GBMs	 exhibit	 genetic	 and	 phenotypic	
heterogeneity	both	 spatially	and	 temporally	 (9–13).	However,	GBM	progression	 is	
not	just	driven	by	cell	autonomous	genetic	and	epigenetic	alterations	but	also	from	
larger	scale	non	cell	autonomous	interactions	between	cells	and	their	environment	
(14–16).	Data	 is	 routinely	 collected	 in	 the	 clinic,	but	different	 scales	are	generally	
separated.	 Imaging	 gives	 us	 larger	 tissue	 scale	 information	 like	 size	 to	 quantify	
burden	 or	 density	 variations	 that	 can	 be	 used	 to	 define	 different	 environmental	
habitats	(17–19).	Histology,	single	cell	data,	and	genetic	profiling	can	be	used	to	view	
heterogeneity	 at	 the	 tissue	 and	 individual	 cell	 level,	 however,	 the	 measured	
heterogeneity	at	the	cell	scale	does	not	directly	lead	to	predictions	in	tumor	growth	
and	treatment	response.		

Here	 we	 examine	 feedback	 between	 tumor	 and	 microenvironmental		
heterogeneity	using	a	model	that	considers	amplification	of	platelet-derived	growth	
factor	(PDGF).	PDGF	is	a	potent	mitogen	that	appears	to	be	important	for	invasion	
and	 expansion	 of	 proneural	 GBM	 (14,20–27).	 PDGF	 can	 stimulate	 proliferation,	
migration,	and	differentiation	of	normal	progenitor	cells	(28,29)	and	tumor	cells	(30).	
Cells	may	encounter	different	 local	external	PDGF	signals	and	also	have	a	variable	
response	 to	PDGF.	While	a	 transient	PDGF	signal	 is	part	of	 a	normal	 injury	 repair	
response	mechanism	(28,29),	glioblastoma	tumor	cells	can	also	overexpress	PDGF	to	
drive	 tumor	 growth.	Whilst	 it	 is	 impossible	 to	 separate	 observed	 cell	 phenotypes	
from	 their	 environmental	 context	 in	 vivo,	we	 can	 investigate	 this	 complex	 system	
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using	a	mathematical	framework	coupled	to	multiscale	data	to	get	a	more	complete	
picture	of	the	disease	(Fig.	1).	In	this	work,	we	use	MRI	imaging	data	and	ex	vivo	time	
lapse	 imaging	 of	 fluorescently	 tagged	 cells	 in	 tissue	 slices	 (Fig.	 1	 upper)	 to	
parameterize	a	mechanistic	hybrid	agent-based	model	(Fig.	1	lower).		

Mathematical	 models	 have	 been	 developed	 to	 study	 many	 facets	 of	 GBM	
growth	 and	 response	 to	 treatment	 (5,30–42).	 There	 have	 been	 numerous	 papers	
published	 by	 Swanson	 et	 al	 demonstrating	 the	 clinical	 use	 of	 a	 relatively	 simple	
partial	differential	equation	model	based	on	net	rates	of	proliferation	and	invasion.	
To	date	they	have	used	their	models	to	predict	therapeutic	benefits	from	surgery	and	
radiation	 (43–46),	 IDH1	mutation	 status	 (47),	and	 implications	of	 growth	kinetics	
during	PDGF-driven	tumor	progression	(33,34).	However,	the	continuum	nature	of	
this	model	means	 it	 cannot	 capture	 intercellular	 heterogeneity	which	may	 impact	
long-term	post	 treatment	behavior.	Here,	we	consider	 intratumor	heterogeneity	 in	
proliferation	and	migration	rates	from	inheritable	phenotypes	at	the	cell	scale	and	
from	the	microenvironment.	The	multiscale	nature	of	our	hybrid	model	enables	us	to	
tune	our	parameters	with	both	 imaging	and	cell-tracking	data,	 thus	allowing	us	to	
predict	 a	 host	 of	 tumor	 behaviors	 from	 size	 to	 composition	 to	 individual	 cell	
responses	 to	 therapy.	 This	 could	 be	 key	 to	 understanding	 treatment	 response	 as	
single	cells	can	cause	relapse	or	treatment	failure.	 	

In	the	following	sections,	we	introduce	the	experimental	model	by	Assanah	et	
al	of	PDGF-driven	GBM	in	which	single	cells	were	tracked.	We	then	present	a	hybrid	
agent-based	mathematical	model	which	is	able	to	capture	the	spatial	and	temporal	

	
Figure	 1.	 Coupling	multiscale	 data	 to	 a	multiscale	mathematical	model.	 Upper:	 data	 from	 rat	 experiments	
including	imaging	at	5,	10,	and	17	days	post	injection,	circumscribed	and	quantified	from	serial	MRI	images,	
tissue	slice	image,	spatial	distribution	of	infected	(green)	and	recruited	(red)	cells,	and	individual	cell	tracks.	
Lower:	 the	multiscale	model	represents	the	 imaging	as	a	spatial	density	map,	considers	the	gray	and	white	
matter	 distribution	 in	 the	 rat	 brain	 tissue,	 and	 tracks	 cell	 types	 (infected	 and	 recruited),	 measured	 cell	
phenotypes	 (actual	 proliferation	 and	 migration),	 potential	 cell	 phenotypes	 (maximal	 proliferation	 and	
migration),	and	the	PDGF	concentration	field.	
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heterogeneity	of	single	cells.	Using	this	model,	we	first	identify	the	sets	of	parameters	
with	which	our	model	is	able	to	recapitulate	the	observed	tumor	size	dynamics	from	
the	data.	We	then	identify	the	sets	of	parameters	that	fit	smaller	scale	metrics	from	
the	data,	such	as	the	observed	distribution	of	individual	cell	velocities.	We	investigate	
how	 the	 fully	 parametrized	 model	 with	 both	 environmental	 and	 heritable	
heterogeneity	compares	to	a	case	with	only	environmental	heterogeneity,	and	finally,	
we	 show	 how	 anti-proliferative	 and	 anti-migratory	 drugs	 affect	 outcomes	 and	
modulate	heterogeneity	within	the	tumor	cell	population.		
	
II.	Methods	
	
Rat	model	and	ex	vivo	multiscale	data	analysis	
The	experimental	rat	model	enabled	the	tracking	of	both	cells	that	were	infected	with	
the	PDGF-over-expressing	retrovirus,	tagged	with	green	fluorescence	protein	(GFP),	
and	 normal	 progenitor	 cells,	 tagged	with	 dsRed.	 At	 2	 and	 10	 days	 post	 infection,	
brains	were	excised	and	cut	into	300μm	thick	slices,	and	positions	of	labeled	cells	and	
their	progeny	were	tracked	by	hand	every	3	minutes	from	time-lapse	tracking.	For	
more	details	on	the	experimental	model,	see	(14).	A	total	of	611	cells	were	tracked	
(134	infected	and	137	recruited	at	2d	and	137	infected	and	203	recruited	at	10d)	in	
the	 tissue	 slices	 (2	 slices	 at	 2d	 and	 4	 at	 10d)	 over	 time.	 Proliferation	 rate	 was	
calculated	by	dividing	the	number	of	proliferation	events	over	the	time	period	by	the	
total	 number	 of	 cells	 at	 the	 beginning	 of	 the	 observation	 period	 and	 the	 total	
observation	 time	 in	 hours.	 For	 each	 cell	 we	 calculated	 a	 cell	 speed	 by	 the	 total	
distance	traveled	over	the	total	time	spent	moving.	The	persistence	times	for	moving	
and	stopping,	and	the	turning	angles	were	also	calculated	(see	Section	S1).		
	
Hybrid	off-lattice	agent-based	mathematical	model	
Our	 hybrid	model	 consists	 of	 tumor	 cells,	 represented	 as	 off-lattice	 agents,	 and	 a	
PDGF	distribution,	represented	as	a	continuous	 field.	We	used	off-lattice	agents	 to	
allow	single	cells	to	migrate	without	the	confines	of	a	grid	structure,	but	used	a	larger	
scale	square	lattice	to	track	the	cell	density	matrix,	which	we	used	to	check	if	the	local	
carrying	capacity	was	reached.	A	smaller	hexagonal	lattice	was	used	to	track	PDGF	
dynamics	and	define	the	brain	tissue	in	terms	of	white	and	gray	matter.		
	
Model	initialization	and	flow.	
We	define	the	white	and	gray	matter	using	a	section	from	an	80	day	old	male	Sprague	
Dawley	rat	(48–50)	using	the	Scalable	Brain	Atlas	(51).	We	selected	a	coronal	slice	
near	the	bregma	to	get	a	representative	2D	brain	field	involving	the	corpus	callosum	
(Fig.	 1	 bottom).	 For	 simplicity,	 any	 anatomical	 tissue	 feature	 that	 was	 not	 white	
matter	was	rendered	as	gray	matter.	The	final	array	defines	an	833x573	pixel	domain	
corresponding	 to	 a	 scaled	 brain	 size	 of	 roughly	 14.5x10.0	mm.	 There	 is	 an	 initial	
injection	of	100	infected	cells,	which	are	labeled	green	and	produce	PDGF,	and	100	
progenitor	cells,	which	are	labeled	red	and	do	not	produce	PDGF.	 In	addition,	glial	
progenitors	are	randomly	initialized	throughout	the	brain	matter	at	variable	density	
around	 2%	 (52,53),	 and	 there	 is	 an	 initial	 bolus	 of	 PDGF,	 representing	 an	 injury	
response	 caused	 by	 the	 injection	 (14).	 The	 flowchart	 in	 Fig.	 2A	 details	 the	major	
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decisions	 at	 each	 time	 point	 about	 division	 (orange),	 migration	 (teal),	 and	 PDGF	
(purple).	All	cells	are	assumed	to	be	25	µm	in	diameter.	
	
Calculate	cell	density	matrix.		
We	define	a	coarse	square	mesh	(100μm	x	100μm)	to	check	the	local	cell	density.	Each	
cell	 is	 assigned	a	 closest	neighborhood,	which	has	a	 carrying	 capacity	of	κ	 in	gray	
matter	and	2κ/3	in	white	matter.	We	also	check	progenitor	cell	activation	at	this	step,	
as	only	activated	cells	go	through	the	cell	loop.	The	field	of	progenitor	cells	remain	
inactive	unless	the	local	PDGF	is	greater	than	5x10-4ng/mL.	
	
Cell	loop.	
A.	Proliferation	and	quiescence:	A	cell’s	intermitotic	time	acts	as	a	timer	for	division,	
counting	down	at	each	time	step	until	the	end	of	the	cycle.	At	that	point,	a	new	cell	is	
created	 at	 a	 random	 angle	 one	 radius	 away	 from	 the	 parent	 cell.	 However,	 if	 the	
number	of	cells	in	the	neighborhood	mesh	point	exceed	the	carrying	capacity,	then	it	
is	deemed	quiescent,	and	it	does	not	move	forward	in	its	cell	cycle	and	does	not	divide.	
If	subsequently	there	is	enough	room	to	divide,	the	cell	reenters	the	cell	cycle	where	
it	left	off.	The	newly	divided	cell	inherits	the	same	proliferation	rate	and	migration	
speed	as	its	parental	cell.		
	
B.	Migration:	Glioma	cells	migrate	in	a	stop	and	go	fashion	(54).	We	randomly	choose	
a	migration	status	(stop	or	go),	and	sample	from	the	distribution	of	persistence	times.	

	
Figure	2.	Model	overview.	A)	Flow	chart	shows	key	decision	points	in	the	model.	Tissue	processes	are	connected	
with	thick	black	lines,	while	the	cell	loop	for	single	cell	processes	are	contained	within	the	gray	box	and	connected	
with	thin	black	lines.	At	the	start	of	each	time	step	(green	arrow),	we	calculate	the	density	and	find	the	activated	
and	inactivated	 subsets	of	 cells.	All	 activated	 cells	 are	 checked	 for	quiescence,	division,	migration,	and	PDGF	
interactions	as	shown.	Then	PDGF	decay	and	diffusion	occurs	before	moving	onto	the	next	time	step.	The	infected	
and	recruited	cells	respond	differently	to	PDGF	due	to	B)	an	autocrine	stimulation	for	infected	cells	(CPA	in	Eq.	2)	
and	C)	a	decreased	activation	barrier	for	recruited	cells	(β	in	Eq.	2).	Increasing	CPA	shifts	the	response	upward	at	
low	CPP.	Decreasing	β	increases	the	slope	to	achieve	high	response	at	lower	CPP,	while	still	inactive	at	CPP=0.	
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For	a	given	persistence	τ,	a	stopped	cell	will	remain	stopped	and	a	moving	cell	will	
continue	to	move	at	 the	current	angle	and	velocity.	After	τ	 time,	 the	 cell	resets	 its	
migration	status	(stop	or	move),	resamples	τ	from	the	data,	and	finds	a	new	moving	
angle.	 In	 gray	 matter,	 cells	 do	 a	 random	 walk	 for	 τ	 sampling	 from	 a	 uniform	
distribution	of	turning	angles,	and	in	white	matter,	cells	do	a	persistent	random	walk	
for	 1.5τ	 sampling	 from	 a	 normal	 distribution	 centered	 around	 0	with	 a	 standard	
deviation	θ.	A	cell	is	not	allowed	to	move	into	empty	space,	such	as	past	the	edges	of	
the	brain	or	within	the	ventricles.	If	a	cell	lands	in	this	space,	it	has	10	attempts	to	find	
a	 suitable	 spot	 at	 other	 random	 angles.	 If	 unsuccessful,	 the	 distance	 moved	 is	
increased	by	a	cell	diameter,	and	the	angle	search	is	repeated	for	distances	of	up	to	3	
diameters	away	from	the	original	 location.	 If	an	empty	space	 is	not	 found,	 the	cell	
remains	in	the	original	location	(however,	in	our	testing,	a	new	location	was	always	
found	before	this	constraint	was	satisfied).	If	the	cell	is	set	to	move	into	a	space	that	
is	already	at	carrying	capacity,	then	it	can	move	there	only	if	it	is	less	dense	than	the	
original	 space.	 Otherwise,	 it	 remains	 in	 place.	 This	 allows	 the	 density	 of	 cells	 to	
slightly	surpass	the	carrying	capacity	but	prevents	much	movement	when	above	or	
near	the	carrying	capacity.	
	
C.	 Response	 to	 PDGF:	 PDGF	 can	 stimulate	 glial	 cells	 to	 proliferate	 and	migrate	 by	
autocrine	 and	 paracrine	 signals	 (28,55).	 Since	 we	 are	 interested	 in	 phenotypic	
heterogeneity	in	the	tumor	with	regards	to	proliferation	and	migration,	we	need	to	
separate	the	influence	of	the	environmental	PDGF,	which	can	change	depending	on	
location,	from	the	potential	phenotype,	which	is	inherited.	To	achieve	this,	we	model	
the	cells	such	that	their	observed	phenotype	for	proliferation	rate	p	and	migration	
speed	m	is	a	product	of	the	response	to	PDGF	in	the	environment	and	some	internal,	
inheritable	upper	limit:	

!
𝑝
𝑚$ = &

𝑝pot𝛾(𝐶P)
𝑚pot𝛾(𝐶P)

/	,																																																			(1)	

where	 ppot	 is	 the	 maximal	 potential	 proliferation	 rate,	 and	 mpot	 is	 the	 maximal	
potential	 migration	 rate.	 The	 function	 γ(CP)	 represents	 how	 the	 concentration	 of	
PDGF	CP	modulates	the	proliferation	and	migration,	which	ultimately	takes	a	value	
from	0-1,	 so	 that	 as	 CP	becomes	 saturated	 proliferation	 and	migration	 reach	 their	
maximum	 potential	 values	 (i.e.	 γ(CP)→1,	 so	 that	 p→ppot	 and	m→mpot).	 The	 exact	
functional	relationship	of	CP	on	p	and	m	 is	not	well	established,	but	a	Hill	 function	
response	in	compatible	with	the	data	(30,56):	

																										𝛾(𝐶P) =
𝐶P

𝐶P + 𝐾
=

⎩
⎨

⎧
𝐶PA + 𝐶PP

𝐶PA + 𝐶PP + 𝐾
		for	infected	cells

									
𝐶PP

𝐶PP + 𝛽𝐾
							for	recruited	cells			

		,																(2)	

where	CPA	 is	 the	 PDGF	 contributing	 to	 the	 autocrine	 stimulation,	CPP	 is	 the	 PDGF	
contributing	 to	 the	 paracrine	 stimulation,	 K	 is	 the	 concentration	 at	 which	 the	
response	is	half	maximum,	and	β	modifies	the	activation	barrier	of	recruited	cells	to	
PDGF	stimulation.	While	all	cells	can	respond	to	PDGF	produced	by	the	infected	cells	
that	 diffuses	 throughout	 the	 surrounding	 environment	CPP,	 only	 the	 infected	 cells	
have	 an	 autocrine	 effect,	 due	 to	 a	 portion	 of	 the	 PDGF	 CPA	 that	 stays	 within	 and	
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stimulates	the	infected	cells.	The	recruited	cells	are	also	assumed	to	have	a	lowered	
activation	 barrier	 to	 CPP.	 We	 incorporate	 this	 into	 the	 equation	 by	 lowering	 the	
concentration	at	which	the	response	is	half	maximum	(by	modifying	K	by	β∊(0.1,1)),	
which	 causes	 recruited	 cells	 to	gain	a	 larger	 response	 from	CPP	 than	 infected	 cells	
while	still	being	inactive	when	CPP=0.	The	effects	of	changing	these	values	are	shown	
in	 Figs.	 2C-D.	 Because	 there	 are	 a	 large	 number	 of	 inactive	 recruited	 cells	 in	 the	
environment,	we	cut	off	any	activity	from	these	cells	in	areas	with	CPP<5x10-4ng/mL,	
which	 corresponds	 to	 an	 upper	 bound	 of	 0.1%	 for	 the	 response	 function	
(γ(CP)<=0.001)	 with	 the	 given	 parameter	 ranges.	 This	 cutoff	 reduces	 the	
computational	expense	from	behavior	that	is	essentially	negligible.	
	
D.	PDGF	secretion	and	consumption:	Only	 infected	 cells	 secrete	PDGF	and	all	 cells	
consume	PDGF	 into	or	 from	 the	nearest	hexagonal	 grid	point.	 If	 there	 is	 less	 local	
PDGF	than	the	amount	to	be	consumed	for	a	cell	during	the	time	step,	all	PDGF	in	the	
grid	point	will	be	consumed.		
	
PDGF	dynamics.	
A	fine	hexagonal	mesh	with	the	same	radius	of	a	cell	(12.5	µm)	is	utilized	for	the	PDGF	
dynamics.	Following	the	cell	loop,	the	whole	PDGF	field	is	subject	to	decay	and	then	
diffusion	(further	details	in	Section	S2).	
	
III.	Results	
	
Cell	behavior	in	ex-vivo	assay	is	influenced	by	multifaceted	factors			
In	a	series	of	experiments	by	Assanah	et	al,	it	was	shown	that	infecting	resident	glial	
progenitor	cells	with	a	retrovirus	engineered	to	overexpress	PDGF	in	the	rat	brain	
can	 induce	 a	massive	 overgrowth	 of	 cells	with	 histologic	 features	 similar	 to	 GBM	
(14,22). The	 tumors	 grow	 rapidly	 and	 are	 composed	 of	 a	 mixture	 of	 retrovirus	
infected	 and	 uninfected/recruited	 progenitor	 cells	 (14).	 Specifically,	 the	 tumor	
diameters	at	5,	10,	and	17	days	post	infection	were	1.7,	2.4,	and	3.2	mm,	respectively,	
which	were	determined	previously	 from	MRI	 images	 in	Massey	et	al	 (33).	At	17d,	
progenitors	made	up	80%	of	 all	 labeled	 cells	 in	 the	 tissue	section	 (14).	 Single	 cell	
trajectories	from	the	infected	(green)	and	recruited	(red)	cells	at	2d	were	tracked	and	
are	displayed	in	the	spatial	plot	of	Fig.	3	along	with	births,	stops,	and	speeds	along	the	
tracks.	Cells	were	mainly	measured	near	the	edge	of	the	tumor	where	the	density	was	
lower,	so	they	could	be	distinguished	from	their	neighbors.	We	found	that	there	was	
a	high	degree	of	phenotypic	heterogeneity	amongst	cells,	some	of	which	may	be	due	
to	environmental	influences.	This	is	outlined	below.	
	
Phenotypic	heterogeneity.	From	 these	 tracks,	we	were	 able	 to	observe	where	 cells	
moved,	divided,	turned,	and	stopped	for	long	periods	of	time.	They	generally	moved	
in	the	same	direction,	but	occasionally	made	large	turns	and	took	long	stops.	There	
was	large	variation	in	the	speeds	of	the	cells.	The	average	speed	was	slightly	higher	
for	recruited	cells,	but	didn’t	differ	much	between	the	different	time	points.	The	long	
stops	 and	 the	 cell	 divisions	 were	 scattered	 throughout	 the	 tissue	 and	 didn’t	
significantly	correlate	to	the	local	density	or	each	other.	About	half	of	the	cells	divided	
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over	the	25h	track	recording	at	10d,	and	no	cell	during	this	time	period	divided	twice.	
Proliferation	rate	was	quantified	as	 the	percentage	of	cells	 that	divided	over	time,	
which	 increased	 from	 2d	 to	 10d	 and	 was	 slightly	 higher	 for	 recruited	 cells	 (in	
agreement	with	 the	 analysis	 in	 (14)).	 Plots	 of	 the	migration	 behavior	 and	 a	 table	
quantifying	the	migration	and	proliferation	metrics	for	this	data	from	2d	and	10d	are	
shown	in	Section	S3.	
	
Possible	 environmental	 influences.	 Cells	 appeared	 to	 move	 generally	 along	 the	
diagonal	of	the	top-left	to	the	bottom-right	of	the	region,	which	corresponds	roughly	
to	 the	white	matter	region	highlighted	 in	pink	 in	the	 insert	of	Fig.	3.	There	 is	also	
faster	and	more	directional	movement	along	the	white	matter	tract	while	the	denser	
areas	of	the	tumor	core	and	the	outer	gray	matter	areas	generally	had	shorter,	less	
directional	paths.		
	
	
	

	
Figure	3.	Single	cell	trajectories	from	the	rat	experiment	at	2	days	post	infection	overlaid	on	the	cell	density	
map.	The	insert	shows	the	region	of	interest	within	the	rat	brain	where	the	pink	highlights	the	white	matter.	
An	asterisk	marks	where	a	cell	division	occurred.	Each	track	contains	an	arrow	for	the	first	and	last	half	of	the	
track	showing	the	average	direction	and	speed	over	that	time	period.	The	arrows	for	the	infected	cells	are	
green	for	lower	speeds	and	blue	for	higher	speeds.	The	arrows	for	recruited	cells	are	red	for	lower	speeds	and	
yellow	 for	 higher	 speeds.	 Gray	 dots	 mark	 where	 a	 cell	 has	 stopped	 longer	 than	 1	 hour	 with	 the	 size	
proportional	to	the	stop	time.		
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In	 silico	 tumors	 with	 similar	 growth	 dynamics	 may	 have	 widely	 different	
compositions		
	
Using	the	multiscale	data	from	the	experimental	model:	tumor	size	over	time,	a	count	
of	 cell	 types,	 and	 proliferation	 events	 and	migration	 behavior	 tracked	 from	single	
cells	(Table	S1),	we	calculate	similar	metrics	in	the	in	silico	tumors	(see	Section	S4A-
B).	We	focused	on	a	set	of	16	uncertain	parameter	values	with	reasonably-defined	
search	 ranges	 (Table	 1)	 and	 used	 a	 hybrid	 genetic	 algorithm-random	 sampling	
technique	(57)	to	find	parameter	sets	that	fit	the	model	to	the	time	course	of	tumor	
sizes	from	the	data	at	5d,	10d,	and	17d	to	within	10%	error	(Fig.	S4).		

The	resulting	tumors	that	fit	the	size	dynamics	encompass	a	broad	range	of	
distributions,	shapes,	and	compositions.	The	results	are	shown	in	Fig.	4,	with	plots	for	
metrics	going	from	size	dynamics	to	more	smaller	scale	individual	cell	metrics	(Fig.	
4A-D).	 The	 diversity	 of	 best	 fits	 to	 the	 growth	 dynamics	 is	 plotted	 along	 with	 3	
examples	that	represent	tumor	densities	that	are	more	nodular	(high	density	with	a	
very	distinct,	steep	border),	diffuse	(the	tumor	core	is	dense	but	drops	off	slowly	in	
density),	and	intermediate.	Spatial	distributions	for	these	3	examples	are	shown	at	
17d.	 The	 size	 dynamics	 in	 Fig.	 4A	 demonstrate	 that	 the	 best	 fits	 all	 have	 similar	
trajectories	 with	 little	 overall	 variation.	 However,	 the	 sizes	 in	 the	 simulation	 are	

	 PARAMETER	 SYMBOL	 RANGE	(UNITS)	 SOURCES	

tissue	
Recruitable	cell	density	 𝜌R	 0.1-5	(%)	 (52,53)	
directionality	 deviation	 in	 white	
matter	 𝜎𝜃	 0-45	(degrees)	 -	

PDGF	

Initial	PDGF	 p0	 100-600	(ng/mL)	 estimated	
Diffusion	coefficient	for	PDGF	 Dp	 1-1000(x10-6	cm2/day)	 estimated	
PDGF	decay	rate	 rd	 0-0.500	(ng/mL.day)	 estimated	
PDGF	secretion	rate	 rs	 10-400	(ng/mL.cell.day)	 (14)	
PDGF	consumption	rate	 rc	 (0-1)rs	(ng/mL.cell.day)	 -	

PDGF	
response	

Autocrine	boost	 pa	 0.1-50	(ng/mL)	 (14)	
Half	max	proliferation	response	 Kp	 5-300	(ng/mL)	 (14,20,22)	
Half	max	migration	response	 Km	 5-300	(ng/mL)	 (14,20,22)	
Recruited	proliferation	sensitivity	 𝛽p	 0.1-1.0	 -	
Recruited	migration	sensitivity		 𝛽m	 0.1-1.0	 -	

proliferation	
Intermitotic	time	(ppot-1)	 𝜏	 20-100	(h)	 (14,20,22)	
Std	dev	intermitotic	time	 𝜎𝜏	 0-100	(h)	 variable	

migration	
Migration	speed	(mpot)	 v	 0-100	(𝜇m/h)	 (14,22)	
Std	dev	migration	speed	 𝜎v	 0-100	(𝜇m/h)	 variable	

Table	1.	List	of	all	variable	trait	ranges	in	the	mathematical	model.	They	are	categorized	into	tissue-related,	
PDGF-related	environmental	effects,	and	cell	specific	values,	such	as	response	to	PDGF	or	heterogeneity	in	
proliferation	and	migration	traits.		
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determined	 by	 the	 average	 maximum	 diameter	 exceeding	 10%	 of	 the	 carrying	
capacity.	The	many	ways	that	the	cells	can	be	distributed	and	still	meet	the	intended	
size	to	match	the	data	are	shown	below	Fig.	4A.	The	nodular	tumor	is	relatively	dense	
with	a	sharp	drop	at	the	edge,	whilst	the	diffuse	and	intermediate	tumors	have	more	
fuzzy	 borders	 due	 to	 a	 larger	 portion	 of	 cells	distributed	 sparsely	 throughout	 the	
brain.	These	density	differences	can	be	quantified	by	defining	respective	tumor	core	
diameters	(at	least	50%	cell	density)	and	rim	sizes	(tumor	edge	with	at	least	2%	cell	
density).	On	average,	 the	 core	diameters	were	2.2mm,	1.9mm,	and	1.9mm	 for	 the	
nodular,	intermediate,	and	diffuse	tumors,	and	the	rim	sizes	were	0.4mm,	0.9mm,	and	
1.5mm	respectively	(Fig.	S5).		
	 While	 the	 size	 dynamics	were	 similar	 amongst	 these	 tumors,	 smaller	 scale	
metrics	differed	substantially.	Fig.	4B	shows	the	variation	in	infected	(I)	and	recruited	
(R)	 cell	 numbers.	 The	 nodular,	 intermediate,	 and	 diffuse	 tumors	 end	 up	with	 I/R	
values	of	0.17,	0.04,	and	0.55,	respectively.	While	both	the	nodular	and	intermediate	
tumors	had	more	 recruited	 cells	 along	 the	periphery,	 the	 intermediate	 tumor	had	

	
Figure	4.	A	wide	range	of	in-silico	tumors	fit	to	the	size	dynamics	from	the	experimental	data.	The	top	row	
shows	 the	 wider	 variation	 of	 the	 whole	 cohort	 of	 fits,	 while	 the	 spatial	 distributions	 below	 show	
representative	 nodular,	 diffuse,	 and	 intermediate	 density	 tumors	 at	 the	 17d	 time	 point.	 The	 columns	
correspond	 to	 the	 (A)	 growth	 dynamics,	 (B)	 ratio	 of	 infected	 to	 recruited	 cells	 over	 time,	 (C)	measured	
proliferation	rate	and	migration	speed	averaged	over	all	cells,	and	the	(D)	potential	proliferation	rate	and	
migration	speed	(corresponds	to	the	maximum	values	allowed	given	a	saturated	PDGF	environment).	For	each	
metric,	the	data	points	are	shown	in	black,	the	best	fits	to	the	size	dynamics	of	the	data	are	shown	in	gray	(as	
a	mean	and	standard	deviation	for	dynamic	values),	and	each	example	tumor	is	represented	in	the	plots	in	
color	(as	a	mean	over	10	runs).	Parameter	values	for	each	tumor	are	given	in	Table	S2.		
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infected	 cells	 that	 extended	 farther	 along	 the	white	matter	 tracts.	 For	 the	 diffuse	
tumor,	infected	cells	had	advanced	deep	into	the	brain	tissue	in	all	directions.		

The	combination	of	measured	trait	values	covered	a	large	range	of	values	(Fig.	
4C).	On	average,	the	nodular	tumor	was	more	proliferative	and	less	migratory,	the	
diffuse	tumor	was	more	migratory	and	less	proliferative,	and	the	intermediate	tumor	
had	low	values	for	both	proliferation	and	migration.	However,	this	differs	spatially	
and	is	quantified	over	10	runs	for	each	tumor	in	Fig.	S6A-B.	High	cell	density,	usually	
in	 the	 tumor	 core,	 creates	 a	 quiescent	 phenotype	 (characterized	 by	 a	 low	 net	
proliferation	rate	blah	blah	blah),	which	also	varies	amongst	the	tumors.		

The	potential	phenotypes	cannot	be	measured	from	the	data	but	are	of	interest	
as	 they	 highlight	 difference	 between	 the	 realized	 (measured)	 and	 the	 possible	
(potential).	 The	 potential	 phenotypes	 are	 inherited	 over	 generations	 for	 each	
individual	 cell	 and	 represent	maximal	 possible	 trait	 values.	 The	 nodular	 tumor	 is	
highly	proliferative	and	minimally	migratory	throughout	spatially	and	temporally.	In	
contrast,	 the	 intermediate	 and	migratory	 tumors	 are	 both	 initialized	with	 similar	
potential	phenotypes	on	average,	however,	they	present	as	noticeably	distinct	tumors	
due	 to	 differences	 in	 heterogeneity	 and	 other	 parameter	 values.	 The	 effects	 of	
selection	can	be	seen	in	the	diffuse	tumor,	as	the	highly	migratory	and	proliferative	
cells	are	found	at	the	edge	of	the	tumor	and	the	less	migratory	cells	are	found	in	the	
tumor	core.	These	effects	are	quantified	in	Fig.	S6C-D.	

	
Anti-proliferative	treatment	causes	a	range	of	responses	in	silico	tumors	
	
We	 examined	 the	 effect	 of	 applying	 an	 anti-proliferative	 drug	 treatment,	 which	
represents	a	cytotoxic	chemotherapy	assumed	to	kill	fast	proliferating	cells.	We	used	
a	 threshold	 cutoff	 of	 60	 hours,	 and	 all	 cells	 that	 are	 not	 currently	 quiescent	with	
shorter	 intermitotic	 times	 than	 the	 threshold	 are	 killed.	 The	 drug	 was	 applied	
instantaneously	at	day	14	and	 remained	on	continuously	until	 the	 simulation	was	
stopped	28	days	later.	Figure	5	shows	the	results.	

Using	the	individual	tumors	examined	in	the	previous	section,	we	found	that	
the	nodular	tumor	most	often	showed	a	complete	response	to	the	anti-proliferative	
treatment,	 whilst	 the	 intermediate	 and	 diffuse	 tumors	 both	 recurred	 (Fig.	 5A).	
Amongst	all	tumors	in	the	cohort,	there	was	a	broad	range	of	responses	to	the	anti-
proliferative	treatment.	In	general,	we	found	that	the	recurrent	growth	rate	was	the	
same	or	less	than	the	pre-treatment	growth	rate.	
	 We	 also	 examined	whether	 any	 phenotype	 changes	 prior	 to	 treatment	 had	
predictive	value.	Within	 this	 cohort,	 a	 slowing	proliferation	 rate	was	measured	 in	
tumors	that	had	a	complete	response	(Fig.	5B),	but	there	was	no	significant	trend	in	
the	measured	migration	 rates.	 Generally,	 tumors	had	 either	 decreasing	 activity	 in	
both	proliferation	and	migration,	no	significant	changes	in	either	trait,	or	increased	
the	 activity	 of	 both	 proliferation	 and	 migration.	 The	 largest	 changes	 prior	 to	
treatment	 were	 observed	 from	more	 heterogeneous	 tumors.	 Of	 the	 examples	 we	
examined	 in	 the	 previous	 section,	 the	 nodular	 and	 diffuse	 tumors	 did	 not	 change	
much	over	the	observation	period,	but	the	intermediate	tumor	dramatically	slowed	
in	proliferation	and	migration,	most	likely	due	to	recruitment	of	a	large	amount	of	
progenitor	cells.		
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While	the	measured	proliferation	rate	was	seen	to	slow	prior	to	treatment	for	
complete	responses,	we	 found	that	 these	tumors	showed	 little	 to	no	change	 in	the	
potential	proliferation	 rate	prior	 to	 treatment	 (Fig.	5C),	but	 they	were	 also	 rather	
homogeneous	 initially.	Amongst	 the	 full	 cohort,	 there	was	a	general	 trend	 toward	
both	 faster	proliferation	rate	and	migration	speed	that	resulted	 in	recurrence,	and	
larger	changes	in	the	more	initially	heterogeneous	tumors.		

	
Figure	5.	Range	in	long-term	responses	of	in-silico	tumors	to	an	anti-proliferative	drug.	The	drug	was	applied	
continuously	at	14d	until	42d.	We	compare	the	same	top	300	fits	and	3	tumors	(averaged	over	10	runs)	shown	
in	the	previous	figure.	A)	Growth	dynamics	before	and	during	treatment.	Change	from	t1=9d	to	t2=13d	in	B)	
measured	and	C)	potential	phenotypes.	Larger,	paler	dots	show	tumors	with	more	proliferative	heterogeneity	
𝜎𝜏	 and	dots	outlined	 in	yellow	represent	 complete	 responses	 to	 treatment.	D)	Density	distributions	of	 the	
nodular,	intermediate,	and	diffuse	tumors	before	(t2)	and	after	(t3)	treatment.	The	measured	E)	and	potential	
F)	 phenotypes	 before	 (t2)	 and	 after	 (t3)	 treatment	are	 shown	 spatially	 and	 as	a	 scatter	 plot	 of	 phenotype	
combinations	 of	 only	 the	 non-quiescent	 cells).	 Both	 plots	 use	 the	 same	 color	 key,	 which	 depends	 on	 the	
proliferation	rate	and	migration	speed	of	the	cells,	but	for	the	scatter	plot	the	size	of	the	circle	is	proportional	
to	the	number	of	cells	with	that	phenotype	combination,	while	a	white	dot	marks	the	mean	of	the	population.	
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Changes	to	 the	representative	nodular,	 intermediate	and	diffuse	tumors	are	
also	noted	post-treatment	(Fig.	5D-F).	The	density	distributions	of	recurrent	tumors	
had	similarly	sized	post-treatment	images,	but	were	more	diffusely	distributed	than	
pre-treatment	images	(Figs.	5D	and	S7).	The	nodular	tumor	had	very	little	variance	
in	 measured	 (Fig.	 5E)	 and	 potential	 (Fig.	 5F)	 phenotypes,	 and	 was	 rather	
homogeneously	proliferative	prior	to	treatment,	while	the	two	recurrent	tumors	had	
reduced	mean	proliferation	rates	upon	recurrence.	The	intermediate	tumor	had	less	
heterogeneity	 in	both	measured	and	potential	traits	upon	recurrence	compared	to	
pre-treatment	distributions,	while	the	diffuse	tumor	remained	heterogeneous.		

	
Cell	 autonomous	 heterogeneity	 causes	 little	 difference	 in	 tumor	 growth	
dynamics	but	can	lead	to	big	differences	in	response	to	treatment	
	
To	fit	the	model	at	the	cell	scale,	we	used	the	same	parameter	estimation	method	with	
all	 16	 measured	 observations	 from	 the	 experimental	 data.	 While	 the	 final	 best	
parameter	set	didn’t	fit	all	metrics	from	the	in	silico	model	equally	well	to	the	data,	
the	total	error	was	within	15%	for	a	cohort	of	parameter	sets	(Fig.	S4C-D).	Given	the	
best	fit	parameter	set	from	this	group,	we	examined	the	effect	of	heterogeneity	in	the	
potential	phenotype,	such	that	eliminating	heterogeneity	would	cause	all	observed	
heterogeneity	to	be	environmentally	driven,	such	as	quiescence	caused	by	high	cell	
density	and	modulation	of	phenotype	by	local	PDGF	concentration.	We	compared	the	
best	fit	parameter	set	(Heterogeneous)	to	one	with	the	same	mean	potential	values	

	
Figure	6.	The	top	fit	in-silico	tumor	to	the	multiscale	experimental	data	using	all	16	metrics.	The	top	300	fits	to	
all	data	(gray)	are	compared	to	the	top	fits	to	just	the	size	dynamics	from	Fig.	4	(green),	the	best	Heterogeneous	
fit,	and	its	Homogeneous	counterpart	(with	no	variation	in	potential	phenotypes,	i.e.	𝜎𝜏=0,	𝜎v=0).	The	data	is	in	
black.	The	For	each	metric,	 the	corresponding	spatial	maps	are	shown	below.	Measured	metrics	 include	A)	
growth	dynamics	and	B)	infected/recruited	cells	over	time,	and	at	10d	the	C)	mean	measured	proliferation	rate	
and	migration	speeds,	the	D)	mean	initial	potential	proliferation	rate	and	migration	speed,	and	the	E)	individual	
cell	speed	distributions	in	terms	of	mean	and	standard	deviation.	The	final	graphs	in	column	E	compare	the	10d	
distributions	of	speeds	of	individual	tracked	cells	to	the	data	separated	by	cell	type.	
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for	proliferation	and	migration,	but	without	heterogeneity	in	these	rates,	𝜎𝜏=0	and	
𝜎𝜈=0,	amongst	the	cells	(Homogenous)	along	with	the	cohort	of	fits	to	all	data	within	
the	15%	cutoff	and	the	previous	cohort	of	fits	to	the	size	dynamics	alone	(Fig.	6).	

Fitting	to	all	data,	compared	to	just	the	size	dynamics,	proved	to	narrow	the	
ranges	 to	 all	metrics	 shown	here	with	 the	 exception	 of	 the	 size	 dynamics,	 which	
broadened	slightly.	Both	the	heterogeneous	and	homogeneous	tumors	reasonably	fit	
the	 size	 dynamics	 (Fig.	 6A)	 and	 had	 similar	 density	 distributions	 (Fig.	 S8).	 Both	
tumors	and	the	larger	cohort	fit	to	all	data	underestimated	the	infected	to	recruited	
ratio	(Fig.	6B).	Both	tumors	had	similar	values	 for	 the	measured	proliferation	and	
migration	 rates	 (Fig.	 6C),	 showing	 that	 the	 observed	 heterogeneity	 is	 largely	
influenced	by	environmental	drivers	such	as	tumor	density	and	PDGF	concentration.	

	
Figure	7.	Range	in	long-term	response	of	in-silico	tumors	to	an	anti-proliferative	drug	comparing	fits	to	size	vs.	
fits	to	all	16	metrics.	The	Heterogeneous	best	fit	is	compared	to	its	Homogeneous	counterpart	(with	no	variation	
in	potential	phenotypes,	i.e.	𝜎𝜏=0,	𝜎v=0).	The	drug	is	applied	continuously	at	14d	until	42d.	A)	Growth	dynamics	
before	and	during	treatment	are	shown	for	the	cohort	of	top	300	fits	to	all	metrics,	the	previous	cohort	of	300	
fits	to	sizes,	and	the	heterogeneous	and	homogeneous	tumors.	Change	from	t1=9d	to	t2=13d	in	B)	measured	and	
C)	potential	proliferation	rate	and	migration	speed.	The	larger	paler	dots	show	tumors	with	less	proliferative	
heterogeneity	𝜎𝜏,	 and	outlined	 in	yellow	are	 the	 tumors	 that	showed	a	 complete	 response	 to	 treatment.	D)	
Density	distribution	of	the	heterogeneous	and	homogeneous	tumors	before	(t2)	and	after	(t3)	treatment.	The	
measured	E)	and	potential	F)	phenotypes	before	(t2)	and	after	(t3)	treatment	are	shown	spatially	and	as	a	scatter	
plot	 of	 phenotype	 combinations	 (of	 only	 the	 non-quiescent	 cells).	The	 phenotype	 plots	 are	 represented	 as	
described	in	Fig.	5.	
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Because	the	PDGF	is	highly	concentrated	at	the	tumor	core	and	drops	off	at	the	tumor	
edge,	 the	 measured	 proliferation	 and	 migration	 rates	 reduce	 with	 the	 PDGF	
concentration	(Fig.	S9A-B).	Both	tumors	were	 initialized	with	the	same	mean	trait	
values	 (Fig.	 6D),	 but	 the	 spatial	 distribution	 of	 potential	 trait	 values	 shows	 that	
heterogeneity	 in	 potential	 phenotypes	 can	 be	 present	 without	 manifesting	 any	
noticeable	differences	in	larger	scale	metrics.	For	the	heterogeneous	tumor,	effects	of	
selection	 could	 be	 observed	 as	 the	 more	 migratory	 cells	 are	 found	 at	 the	 tumor	
periphery	along	with	less	proliferative	cells	(Fig.	S9C-D).	We	also	found	differences	in	
the	distribution	of	individual	cell	speeds.	The	mean	and	standard	deviation	of	speeds	
fit	better	when	heterogeneity	is	present	than	when	it	is	not	(Fig.	6E),	and	comparing	
the	distributions,	which	were	averaged	over	10	runs,	further	emphasizes	this	point	
(column	6E,	lower).	The	in	silico	measurements	for	the	heterogeneous	tumor	fit	the	
data	 by	 not	 just	 matching	 to	 the	 peak,	 but	 also	 capturing	 the	 long	 tail	 of	 the	
distribution.	The	distribution	for	the	homogeneous	tumor	drops	off	sharply	at	high	
cell	 speeds,	 which	 most	 likely	 occurs	 due	 to	 the	 maximum	 speed	 achieved	 at	
saturated	 PDGF	 levels.	 Only	 a	 small	 number	 of	 highly	 migratory	 cells	 like	 in	 the	
heterogeneous	tumor	is	needed	to	create	the	long	tail	in	this	distribution.		

When	these	tumors	are	treated	with	an	anti-proliferative	drug,	there	is	enough	
heterogeneity	 in	 the	 heterogeneous	 tumor	 to	 cause	 recurrence	 and	 enough	
sensitivity	 in	 the	 homogeneous	 tumor	 for	 a	 complete	 response	 (Fig.	 7A).	 The	
recurrent,	 heterogeneous	 tumor	was	 slightly	more	 diffuse	 on	 the	 edge	 (Fig.	 S10).	
There	was	a	shift	in	both	the	observed	(Fig.	7B)	and	potential	phenotypes	(Fig.	7C)	
prior	 to	 treatment	 to	 faster	 proliferation	 rates	 and	 faster	 migration	 speeds	 on	
average.	The	observed	phenotypic	activation	increase	is	likely	due	to	more	sustained	
PDGF	responses	and	heterogeneity	necessary	to	fit	the	individual	level	metrics.	Prior	
to	treatment,	the	potential	proliferation	rates	increased,	while	the	potential	migration	
speeds	 only	 slightly	 increased.	 On	 recurrence	 of	 the	 heterogeneous	 tumor,	
phenotypes	with	slower	proliferation	rates	were,	again,	selected.		
	
Anti-proliferative	treatment	leads	to	a	less	proliferative	tumor	at	recurrence	in	
in	silico	and	human	tumors	
	
Using	 the	mathematical	model,	we	 found	 that	antiproliferative	drugs	 caused	 some	
degree	 of	 tumor	 recession	 over	 all	 cases	 tested,	 but	 the	 effect	 was	 often	 only	
temporary,	and	the	recurring	tumor	had	variable	growth	dynamics	upon	recurrence.	
Furthermore,	there	was	some	selection	for	slightly	less	proliferative	cells,	which	give	
rise	to	recurrence.	We	also	found	similar	results	comparing	the	proliferating	fraction	
of	cells	(Ki-67+)	before	and	after	chemoradiation	for	nine	GBM	patients	(Fig.	8,	upper).	
The	 proliferating	 fraction,	measured	 through	Ki67	 staining,	was	 seen	 to	 decrease	
upon	 tumor	 recurrence	 (p	 =	 0.012,	Wilcoxon	matched-pairs	 signed	 rank	 test).	 In	
these	cases,	recurrence	was	defined	as	the	first	instance	of	measurable	growth	of	the	
lesion	 on	MRI	 with	 a	 clinical	 determination	 of	 disease	 progression	 resulting	 in	 a	
change	of	 therapy,	 excluding	pseudo-progression,	 in	which	 the	disease	appears	 to	
progress	and	subsequently	regress	without	change	in	treatment	(59,60).	Patients	that	
demonstrated	multifocal	recurrence	defined	by	multiple	 lesions	not	contiguous	on	
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MRI	were	excluded.	Using	a	 similar	metric	 in	 the	model	 to	Ki67,	we	 found	similar	
results	(Fig.	8,	lower).	
	
Anti-migratory	 and	 anti-proliferative	 treatment	 combinations	 may	 improve	
outcomes	in	some	in	silico	tumors	
	
Anti-migratory	drugs	are	an	attractive	option	for	very	diffuse	tumors	to	try	to	prevent	
further	invasion	into	the	brain	tissue.	We	examined	the	effects	of	an	anti-migratory	
treatment,	represented	as	any	agent	 that	slows/stops	the	migration	ability	of	cells	
(61,62).		We	simulated	this	treatment	by	slowing	the	migration	speeds	of	all	cells	to	
10%	of	their	original	speed.	We	compared	an	anti-proliferative	treatment	alone	(AP),	
an	anti-migratory	treatment	alone	(AM),	and	an	anti-proliferative	and	anti-migratory	
combination	 (AP+AM).	We	 examined	 the	 effect	 of	 these	 treatments	 on	 the	 diffuse	
tumor	from	Fig.	4	as	a	prime	example	for	an	invasive	tumor	that	could	benefit	from	
these	treatments.	

The	 in	 silico	 results	 show	 that	 the	AM	 treatment	 alone	 is	 not	 successful	 in	
slowing	the	growth	of	most	tumors,	and	the	diffuse	tumor	grows	especially	fast	under	
this	treatment	(Fig.	9A).	Compared	to	the	AP	treatment,	most	in	silico	tumors	do	not	
do	as	well	on	AP+AM	treatment	at	first,	but	appear	to	catch	up	over	long	applications	
of	treatment.		

The	full	cohort	of	in	silico	tumors	fit	to	the	size	dynamics	was	examined	for	
their	 response	 to	 the	different	 treatments	 in	Fig.	9B.	We	plot	 the	 change	 in	 tumor	
diameter	before	 and	after	each	 treatment	and	 see	 that	 a	 reduction	 in	diameter	 in	
observed	with	27%	under	AP,	0%	with	AM,	and	36%	with	AP+AM.	However,	only	8%		

	
Figure	8.	Proliferation	is	reduced	in	recurrent	tumors.	Upper:	diagnosis	and	recurrent	tumor	specimens	from	
9	GBM	patients	stained	with	Ki-67	antibody	indicating	proliferating	cells.	Lower:	pre-treatment	(14d)	and	
post-treatment	 (42d)	 proliferation	 index	 for	 the	 virtual	 cohort	 of	 fits	 to	 size	 dynamics.	 For	 the	 patient	
samples,	 the	 labeling	 index	 is	defined	as	the	%	of	DAB-stained	area	out	of	 the	total	nuclear	area	for	each	
patient	in	the	region	of	highest	staining	density.	For	the	model,	we	assume	that	Ki67	is	positive	only	in	the	
last	20	hours	of	the	cell	cycle,	which	is	counted	as	a	%	in	the	area	of	highest	activity.	These	are	shown	on	the	
left	with	pre	and	post	Tx	variation	and	 compared	using	a	Wilcoxon	matched-pairs	 signed	 rank	 test.	The	
middle	shows	a	representative	pre	and	post	Tx	sample,	and	the	right	shows	the	correlation	between	pre	and	
post	Tx	samples.	
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actually	 showed	a	 complete	 response	with	either	AP	or	AP+AM.	Although	 in	most	
cases,	AP+AM	resulted	in	better	or	similar	outcomes	than	with	AP	alone	(Fig.	S11),	in	
some	cases,	such	as	the	representative	diffuse	tumor,	a	better	response	was	seen	with	
AP	alone.		
	 The	response	of	diffuse	tumor	to	each	treatment	is	further	examined	in	Fig.	9C.	
Prior	to	treatment,	the	tumor	had	a	mean	core	diameter	(dc)	of	1.5mm	with	a	mean	
rim	 size	 (dr)	 of	 1.4	mm.	With	 the	 AP	 treatment	 alone,	 the	 tumor	 appears	 to	 stay	
smaller	 for	 longer	 after	 treatment,	 but	 this	measurement	 ignores	many	 cells	 that	
invaded	 deep	 into	 the	 brain	 tissue	 under	 the	 imaging	 density	 threshold	 (at	 41d,	
dc=2.6mm	dr=2.8mm).	With	the	AP	treatment	cells	continue	to	migrate	into	the	tissue,	
and	slower	proliferating	cells	are	selected.	With	the	AM	treatment,	the	tumor	grows	
very	large	since	there	is	no	killing	taking	place,	but	since	the	migration	has	essentially	
been	turned	off,	growth	is	driven	by	proliferation	alone	rather	than	proliferation	and	
dispersion	(at	41d,	dc=6.3mm	dr=0.5mm).	AM	treatment	selects	 for	cells	with	high	
proliferative	and	migratory	potential	since	they	were	previously	selected	for	during	
growth	and	already	populate	the	outer	edges	when	migration	is	shut	off.	The	PDGF	
concentration	also	becomes	saturated	in	the	tissue	mediated	by	lack	of	cell	dispersal,	
which	 further	 drives	 tumor	 growth.	 With	 the	 AP+AM	 treatment,	 the	 tumor	 is	

	
Figure	9.	In-silico	tumors	do	not	respond	well	to	an	anti-migratory	drug	alone	(AM),	but	may	benefit	from	an	
anti-proliferative,	 anti-migratory	 (AP+AM)	combination	 treatment.	The	drug	 is	 applied	 continuously	at	14d	
until	28d.	A)	We	show	the	growth	dynamics	for	the	AP,	AM,	and	AP+AM	treatments	for	the	top	300	fits	to	the	
size	dynamics.	The	average	response	(from	10	 runs)	to	each	treatment	of	 the	 same	diffuse	 tumor	from	the	
previous	sections	is	also	shown.	B)	Waterfall	plot	of	the	changes	in	tumor	diameter	from	t1	to	t2	for	the	cohort	
of	top	300	fits	to	size	when	treated	with	AP	(top)	AM	(middle),	and	AP+AM	(bottom)	treatments.	The	response	
of	the	diffuse	tumor	to	these	treatments	is	shown	as	a	yellow	line.	C)	Treating	just	the	diffuse	tumor	example,	
we	show	the	spatial	density	distributions,	the	core	(>50%	density)	vs.	the	edge	(>2%	density),	the	measured		
and	potential	phenotype	distributions	(colored	according	to	the	key),	and	the	PDGF	distribution.	The	plots	for	
the	phenotype	distributions	are	represented	the	same	as	described	in	Fig.	5.	
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observed	 to	 be	 about	 the	 same	 size	 as	 the	 AP	 treatment	 (at	 41d,	 dc=2.3mm	
dr=1.3mm),	but	the	tumor	was	more	cohesive	and	less	diffuse.	There	was	selection,	
again,	 for	 less	 proliferative	 cells	 after	 the	 AP+AM	 treatment,	 but	 the	 PDGF	
concentration	 was	 saturated	 within	 the	 tumor	 core.	 While	 the	 AP+AM	 treatment	
worked	well	over	this	time	period	for	this	tumor,	a	balance	that	needs	to	be	made	
between	preventing	 the	widespread	 distribution	 of	 cells	 into	 the	 brain	 tissue	 and	
preventing	the	buildup	of	growth	factor	concentrations	to	such	saturated	levels	that	
causes	aggressive	cell	proliferation	at	the	tumor	core.	
	
Discussion	
	
Tumor	heterogeneity	is	fundamental	to	treatment	success	or	failure.	When	predicting	
a	tumor’s	long-term	response	to	treatment	(observed	on	serial	clinical	imaging	such	
as	MRI),	it	is	imperative	to	consider	not	just	the	change	in	the	tumor	size	but	also	the	
variation	in	single	cell	phenotypes	and	heterogeneity	in	the	environment.	Our	results	
suggest	that	growth	rates	alone	are	not	enough	to	predict	drug	response;	the	tumor	
shape,	 density,	 and	 phenotypic	 and	 genotypic	 compositions	 can	 all	 signify	
characteristics	 of	 the	 underlying	 dynamics	 that	 affect	 longer	 term	 responses	 to	
therapy.		
	 A	 tumor’s	 environmental	 context	 can	 play	 a	 huge	 role	 in	 malignant	
progression	 (5,38).	We	 found	 through	experiment	and	 simulation	 that	phenotypic	
heterogeneity	 is	 highly	 modulated	 by	 the	 environmental	 context.	 The	 local	
environment	creates	larger	scale	variations	in	the	observed	phenotypes	that	might	
be	 inhibiting,	 from	factors	such	as	lack	of	space	or	resources	caused	by	a	high	cell	
density,	 or	 stimulatory,	 such	as	an	overabundance	of	 growth	 factors.	These	 large-
scale	 variations	 can	 give	 insight	 on	 environmental	 niches	 formed	 throughout	 the	
tumor.	At	the	imaging	scale,	spatial	variations	can	be	quantified	to	reveal	habitats	and	
predict	treatment	response.	Radiomic	imaging	does	just	that,	because	nuances	in	the	
shape,	morphology,	and	texture	of	tumor	density	maps	gives	more	information	than	
size	dynamics	alone	(3,6–8,18).	
	
Knowledge	 of	 intratumoral	 heterogeneity	 is	 required	 to	 predict	 patterns	 of	
treatment	response	and	recurrence	
	
Our	results	suggest	that	tumor	heterogeneity	is	also	not	strictly	a	factor	determined	
by	 the	 microenvironment,	 but	 a	 combination	 of	 cell	 autonomous	 drivers	 and	 the	
environmental	context.	 In	silico	 tumors	that	were	 fit	 to	 the	same	growth	dynamics	
with	 similar	 density	 distributions	 displayed	 a	 huge	 variation	 in	 underlying	
phenotypes	 (Fig.	 4).	 Furthermore,	 measurements	 at	 the	 single	 cell	 level	 do	 not	
necessarily	match	 up	with	 the	 potential	 behavior	 that	 cells	 could	 achieve	 given	 a	
different	 environmental	 context.	 It	 is	 often	 only	 after	 big	 changes	 in	 the	 tumor	
microenvironment,	such	as	during	therapy,	that	intrinsic	variations	at	the	single	cell	
scale	 become	 apparent	 through	 natural	 selection	 (Fig.	 5).	 Importantly,	 our	 data	
suggest	that	more	information	on	single	cell	heterogeneity	before	treatment	can	lead	
to	better	treatment	decisions.	By	fitting	the	in	silico	model	to	all	of	the	experimental	
data,	from	bulk	to	single	cell	metrics,	we	found	a	best	fit	parameter	set	that	resulted	
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in	a	 tumor	with	heterogeneity	 in	 the	proliferative	and	migratory	potential	 (Fig.	6).	
The	 best	 fit	 responded	 to	 an	 anti-proliferative	 drug	 but	 ultimately	 resulted	 in	
recurrence	(Fig.	7).	Eliminating	the	potential	phenotypic	heterogeneity	in	the	best	fit	
tumor	did	not	drastically	alter	the	resulting	growth	dynamics,	yet	upon	exposure	to	
the	anti-proliferative	treatment	there	was	a	complete	response.	Only	at	the	single	cell	
scale	level	(Fig.	6E)	were	we	able	to	distinguish	these	two	tumors	that	ultimately	had	
divergent	fates.	From	this	result,	it	is	clear	that	some	degree	of	single	cell	observation	
could	 aid	 in	 the	 prediction	 of	 recurrence	 and	 a	 possible	 alteration	 of	 treatment	
strategy.		
	
Model	prediction	for	response	to	anti-proliferative	treatment	is	recapitulated	
in	human	patients	
	
Based	on	our	mathematical	modeling	results	suggesting	a	diversity	of	phenotypes	in	
response	 to	 treatment,	 we	 carefully	 investigated	 the	 role	 of	 anti-proliferative	
treatments	since	they	 form	the	basis	of	 the	vast	majority	of	 traditional	anti-cancer	
treatments	(e.g.	radiation	and	chemotherapies).	When	fitting	the	mathematical	model	
to	 the	 cell	 level	 and	 tissue	 level	 data,	we	 found	 a	 consistent	 pattern	 of	 decreased	
proliferation	in	simulated	recurrent	tumors.		This	finding	was	recapitulated	when	we	
compared	a	histological	marker	for	proliferation	in	human	GBM	patients	at	diagnosis	
and	recurrence	following	chemoradiation	(Fig.	8).		
	
Model	 predicts	 anti-migratory	 therapy	 may	 have	 limited	 impact	 as	 a	
monotherapy	
	
Due	to	the	invasiveness	of	GBM,	the	use	of	anti-migratory	drugs	is	appealing	(61,63–
66).	However,	the	in	silico	model	suggests	that	anti-migratory	drugs	do	not	help	when	
the	 tumor	 is	 largely	 driven	 by	 environmental	 factors	 (Fig.	 9).	Moreover,	 stopping	
migration	 also	 prevented	 the	 widespread	 dispersal	 of	 PDGF,	 leading	 to	 more	
proliferative	tumors	due	to	local	accumulation	of	PDGF.	This	result	indicates	that,	for	
this	type	of	tumor,	anti-migratory	therapy	alone	is	not	significantly	helpful.	However,	
under	the	right	conditions,	it	might	be	useful	in	combination	with	an	anti-proliferative	
treatment	or	as	a	primer	for	an	anti-proliferative	drug.	The	anti-migratory	drug	was	
seen	to	select	for	more	proliferative	cells,	so	perhaps	it	could	be	used	prior	to	an	anti-
proliferative	treatment	to	select	for	more	sensitive	cells.	Combining	these	treatments	
with	an	anti-PDGF	drug	could	also	help,	to	stop	the	response	to	environmental	driving	
force	in	the	first	place	(67).		
	
Model	design	limits	interpretation	of	other	biological	mechanisms	
	
In	our	model	system	we	focused	on	phenotypic	heterogeneity	within	a	population	of	
individual	 cells,	 which	 are	 modulated	 by	 the	 environment	 through	 cell	 density	
variation,	 the	 white/gray	 matter	 environment,	 and	 PDGF	 gradients.	 In	 order	 to	
simplify	 an	 already	 complex	 model	 that	 focuses	 on	 the	 relationship	 between	 cell	
autonomous	 heterogeneity	 and	 environmentally	 driven	 heterogeneity	 due	 to	 the	
growth	factor,	we	excluded	some	significant	drivers	of	environmental	variation	such	
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as	 the	 angiogenic	 response,	 hypoxia,	 and	 necrosis	 (5,68,69).	 These	 are	 important	
components	in	the	formation	and	progression	of	GBM	in	particular,	however,	in	order	
to	 fit	 to	 the	 experimental	 data,	 we	 assumed	 that	 these	 factors	 played	 a	 backseat	
compared	to	the	driving	force	of	PDGF.	While	the	ex	vivo	model	allows	for	collection	
of	data	on	multiple	scales,	 it	 also	 represents	an	extreme	case	 compared	 to	human	
glioblastoma.	The	PDGF-driven	rat	model	grows	incredibly	fast	and	recruits	a	large	
portion	of	resident	progenitor	cells	by	paracrine	growth	factor	stimulation.	The	most	
sensitive	parameter	in	the	in	silico	model	was	the	consumption	rate	of	PDGF,	which	
was	quickly	pushed	to	low	values	by	the	parameter	estimation	algorithm,	a	necessary	
component	to	promote	a	rapidly	growing	tumor.	In	the	context	of	a	slower	growing	
tumor	with	 less	 progenitor	 recruitment,	which	might	 be	more	 accurate	 of	 human	
GBM,	the	growth,	distribution,	and	evolution	of	cells	could	be	quite	different.		
	
A	 proliferation-migration	 dichotomy	 was	 not	 observed	 in	 the	 experimental	
data	
	
We	also	made	assumptions	on	the	available	phenotypes	in	this	model,	focusing	on	the	
most	apparently	important	traits	in	GBM:	proliferation	rate	and	migration	speed.	A	
number	of	models	and	experiments	find	a	limit	to	achieving	both	fast	proliferating	
and	fast	migrating	phenotypes,	the	idea	of	go-or-grow	(70,71).	However,	even	though	
it	makes	sense	 from	a	 limited	resource	standpoint	 that	cells	have	to	divert	energy	
from	one	task	to	another	we	found	no	dichotomy	in	the	experimental	data	to	warrant	
this	 assumption	 and	 perhaps	 an	 environment	 rich	 in	 growth	 factors	 caused	 no	
tradeoff.	However,	we	found	that	in	silico	tumors	with	the	same	size	dynamics	tended	
to	 have	 measured	 proliferation	 and	 migration	 values	 that	 were	 not	 often	 both	
simultaneously	 high.	 It	 is	 possible	 that	 the	 proliferation-migration	 dichotomy	 is	
actually	 a	 consequence	 of	 environmental	 variation	 rather	 than	 a	 cell	 autonomous	
feature	as	seen	in	the	model	of	Scribner	et	al	(37).	We	also	did	not	consider	the	impact	
of	 phenotypic	 evolution	 (13,41).	 The	 ex	 vivo	 data	 showed	 that	 the	 recruited	 cells,	
driven	 at	 least	 initially	 by	 the	 environment,	 proliferate	 and	 migrate	 faster	 than	
infected	 cells,	 which	 was	 found	 in	 the	 fully	 fit	 in	 silico	 model,	 but	 the	 rate	 of	
proliferation	and	migration	of	progenitor	cells	also	increase	over	time.	This	could	not	
be	reiterated	in	the	in	silico	model	like	the	rest	of	the	observations	quantified	here.	If	
we	were	to	consider	phenotypic	drift	or	transformation	in	the	progenitor	population,	
which	 has	 been	 reported	 to	 occur	 in	 other	 PDGF-driven	 glioma	models	 (72),	 it	 is	
possible	that	the	model	would	have	fit	the	data	better.		
	
Model	 suggests	 knowledge	 of	 intratumoral	 heterogeneity	 is	 required	 to	
effectively	predict	response	to	treatment	
	
The	in	silico	model	allowed	us	to	explore	spatial	dynamics	of	a	tumor	as	a	population	
and	as	individual	cells	to	track	heterogeneity	over	time	and	match	to	the	experimental	
model.	 It	 showed	 that	 there	 likely	 needs	 to	 be	 both	 environmental	 and	 cell	
autonomous	 heterogeneity	 in	 order	 to	 fit	 to	 the	 smaller	 scale	 data,	 but	 these	
components	 are	 difficult	 if	 not	 impossible	 to	 separate	 by	 observation	 alone	 in	 a	
clinical	 setting.	 Specifically,	 there	 is	 no	 easy	 way	 to	 disentangle	 the	 drivers	 of	
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observed	phenotypic	behaviors,	since	intrinsic	cell	autonomous	drivers	are	modified	
by	cell	extrinsic	environmental	signals	that	themselves	are	modified	by	the	cells.	Here	
we	 have	 attempted	 to	 tackle	 this	 question	 through	 an	 integrated	 approach	 and	
hopefully	shed	light	on	this	complex	feedback.	Using	the	hybrid	agent-based	model,	
we	 were	 able	 to	 combine	 data	 at	 different	 scales	 to	 study	 the	 environment	 and	
phenotypic	heterogeneity	separately	and	observe	how	single	cell	behavior	influenced	
measurements	at	different	scales.	Although	the	anti-proliferative	treatments	showed	
variable	responses	 in	 the	 in	silico	model,	most	were	not	sustaining	and	resulted	 in	
recurrence	with	slower	proliferating,	drug	resistant	phenotypes.	Smarter	strategies	
can	be	employed	when	more	information	is	known	about	the	tumor	heterogeneity	on	
all	scales.		
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Supplement	

S1.	Single	cell	analysis		
From	the	single	cell	tracks	we	quantified	the	migration	behavior	as	depicted	in	Fig.	
S1.	The	speed	for	each	cell	over	the	time	period	was	calculated	as	the	total	distance	
travelled	over	the	total	time	spent	moving.	Since	the	cells	frequently	stopped	for	long	
periods	of	time,	we	excluded	this	from	the	calculation.	Due	to	uncertainty	in	the	cell’s	
center	we	defined	a	stopped	cell	as	moving	less	than	5	µm	over	the	sampling	time.	
The	 turning	 angles	 and	 persistence	 times	 were	 calculated	 by	 defining	 run	 times	
punctuated	 by	 frequent	 stops.	 We	 defined	 a	 single	 run	 as	 i)	 traveling	 a	 distance	
greater	 than	 5	microns	 during	 the	 sampling	 time,	 and	 ii)	 continuing	 in	 the	 same	
direction	to	within	15	degrees	of	the	original	trajectory.	A	single	stop	time	is	just	the	
amount	 of	 time	 spent	 before	 moving	 more	 than	 5	 µm	 .	 The	 sampling	 frequency	
matters	when	capturing	the	observed	speed	and	angle	distributions	(73,74).	Due	to	
the	 noisy	 data,	 which	 was	 recorded	 every	 3	 minutes,	 we	 sampled	 in	 30-minute	
intervals,	starting	at	different	initial	3-minute	time	point	within	the	30-minute	time	
interval,	so	no	data	was	missed.	Using	these	rules,	we	calculated	turning	angles,	and	
persistence	times.		
		

	
	
	
	
	
	
	
	
	
	

	
Figure	S1.	The	cell	track	data	analysis	algorithm.	Stops,	runs,	and	turning	angles	are	defined	from	each	cell’s	2D	
track.	The	cell	speed	was	calculated	from	the	total	distance	travelled	over	the	total	time	travelled	(trajectory	
from	solid	black	lines).	If	the	cell	moves	greater	than	5	𝜇m	and	does	not	turn	more	than	15	degrees	during	its	
trajectory,	it	is	considered	a	single	run	(two	runs	and	one	turning	angle	labeled	in	blue).		
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S2.	Hexagonal	lattice	diffusion	
We	create	a	hexagonal	lattice	to	store	information	on	the	type	of	tissue	(gray	or	white	
matter)	and	the	concentration	of	PDGF.	Since	the	lattice	has	a	staggered	layout,	it	is	
indexed	according	to	the	scheme	shown	in	Fig.	S2.	The	concentration	of	PDGF	at	any	
time	point	is	determined	by	adding	to	the	concentration	at	the	previous	time	point	
the	sum	of	the	differences	between	all	the	neighboring	lattice	sites	times	the	diffusion	
coefficient	and	the	time	step	over	the	distance	travelled	from	the	center	of	one	lattice	
site	to	its	neighbor.	For	each	lattice	point	i,	we	write	the	concentration	of	PDGF	as:		

𝑝S,T(𝑡 + ∆𝑡) = 𝑝S,T(𝑡) +
𝐷X∆𝑡
∆𝑥Z [𝑝S,T(𝑡)

\

]^_

− 𝑝a(𝑡)																								(𝑆1)	

where	is	Δt	the	time	step,	and	Δx	is	the	distance	from	one	lattice	point	to	a	neighboring	
one,	which	 is	 just	 twice	 the	 apothem,	 so	 Δx	 =	 r√3/2	where	 r	 is	 the	 radius	 of	 the	
hexagon,	which	in	this	model	is	also	the	same	size	as	the	radius	of	a	cell.	There	is	no	
flux	at	the	boundaries,	so	there	is	no	contribution	from	off-grid	neighbors.	

	
	
	
	
	
	
	
	
	
	
	
	
	

	
Figure	S2.	Hexagonal	lattice	diffusion.	The	lattice	points	are	indexed	as	shown,	with	the	even	columns	(black	
center	dots)	shifted	down	halfway	in	between	the	even	rows	(white	center	dots).	Diffusion	occurs	at	each	lattice	
point	px,y	between	the	nearest	neighbors	only	within	the	boundary	of	the	domain.	Off-grid	lattice	points	(gray	
region)	do	not	contribute	to	any	flux.	
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S3.	Single	cell	data	analysis	
Using	 the	 detailed	 spatial	movement	 behavior	 analysis	 explained	 in	 Section	 1,	we	
analyzed	the	data	to	learn	more	about	migration	patterns.	The	results	are	shown	in	
Fig.	S3	and	described	in	detail	here.		
	

Cell	trajectories	and	distribution.	To	visualize	the	general	distribution	of	cells	over	the	
time	period	of	the	movie,	we	show	a	Wind	Rose	plot	of	the	trajectories	(Fig.	S3A).	This	
plot	shows	the	trajectories	of	all	cells	in	one	slice	of	data	at	10d	with	all	of	the	starting	
points	 for	 each	 cell	 placed	 at	 the	 same	 origin.	 It	 is	 observed	 that	 the	 cells	 have	 a	
variety	of	paths	with	a	variety	of	distances	travelled.	The	red	progenitor	cells	appear	
to	move	farther	over	the	same	time	period.		
	
	Mean	squared	distances.	To	quantify	how	far	the	population	of	cells	moved	over	the	
length	of	 time	of	 the	movie,	we	calculated	the	mean	squared	distances	(MSDs)	 for	
each	population	at	each	time	point	(Fig.	S3-B).	At	both	time	points,	the	red	progenitor	
cells	are	seen	to	have	a	greater	MSD	slope.	However,	while	the	green	infected	cells	
have	similar	slopes	at	both	time	points,	the	red	progenitor	cells	appear	to	slow	down	
at	the	later	time	point.		
	

	
Figure	S3.	Behavior	of	single	cells	from	rat	data.	A)	Wind-Rose	plot	for	infected	and	progenitor	cells	at	10d,	B)	
Mean	squared	distance	(MSD)	for	infected	and	recruited	cells	at	both	2d	and	10d,	C)	distribution	of	migration	
speeds	 at	 10d,	 D)	 distribution	 of	 turning	 angles	 averaged	 over	 infected	 and	 recruited	 cells	 at	 10d,	 and	 E)	
distribution	of	moving	and	stopping	persistence	times	at	10d	averaged	over	all	cells.		

	
ing	
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Migration	speeds.	We	calculated	the	migration	speeds	for	each	cell	using	the	method	
in	Section	S1	and	found	that	there	is	a	large	variation	in	the	cell	speeds,	going	up	to	
100	μm/h	but	peaking	round	10	μm/h	(Fig.	S3-C).	Because	the	both	time	points	had	
similar	 distributions,	 we	 grouped	 the	 two	 time	 points	 into	 one	 plot,	 but	 the	
distribution	of	progenitor	cells	speeds	is	slightly	shifted	toward	higher	values.	
	
Turning	angles.	The	turning	angles	are	calculated	to	have	a	narrow	peak	at	0	degrees,	
indicating	that	there	is	a	lot	of	persistent	movement,	but	there	is	also	a	broad	uniform	
coverage	of	larger	angles	(see	Fig.	S3-D).		
	
Persistence	times.	The	cells	move	and	stop	often	over	the	25-hour	time	period	of	the	
movie.	 We	 found	 that	 the	 overall	 time	 spent	 moving	 and	 not	 moving	 is	 not	
significantly	different	between	 infected	and	progenitor	cells.	However,	on	average,	
cells	are	more	often	stopped	than	moving	(Fig.	S4-E).	
	
Values	for	model	fitting.	The	values	gathered	from	the	data	from	which	we	matched	to	
the	model	are	summarized	in	Table	S1.	This	contains	tumor	scale	data	from	imaging,	
and	single	cell	scale	data	from	the	tissue	slice	data.		

	
	
	
	
	
	

PARAMETER	 SCALE	 TIME	POINT	(d)	 VALUE	 SOURCES	

Diameter	(mm)	

tumor	 5	 1.7	 (14,33)	
tumor	 10	 2.4	 (14,33)	
tumor	 17	 3.2	 (14,33)	

Ratio	I/R	 tumor	 17	 0.2	 (14)	

mean	proliferation	
rate		
(%	cells/h)	

infected	cells	 2	 0.33	 calculated	
recruited	cells	 2	 0.85	 calculated	
infected	cells	 10	 0.83	 calculated	
recruited	cells	 10	 1.89	 calculated	

mean	migration	rate	
(𝜇m/h)	

infected	cells	 2	 21.3	 calculated	
recruited	cells	 2	 24.9	 calculated	
infected	cells	 10	 20.6	 calculated	
recruited	cells	 10	 25.2	 calculated	

standard	deviation	
migration	(𝜇m/h)	

infected	cells	 2	 5.7	 calculated	
recruited	cells	 2	 7.6	 calculated	
infected	cells	 10	 5.7	 calculated	
recruited	cells	 10	 8.8	 calculated	

Table	S1.	Data	measured	from	the	rat	experiment	that	was	used	to	fit	the	model.	The	larger	scale	data	was	
taken	from	Assanah	et	al	(12)	and	Massey	et	al	(44),	whilst	the	single	cell	data	was	calculated	from	the	cell	
tracks	as	stated	in	the	methods.		
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S4.	Parameter	estimation	
Matching	model	to	data	metrics	
Tumor	size.	
Since	the	tumor	consists	of	cells	often	spread	out	with	no	clear	boundary,	the	tumor	
size	was	measured	by	finding	the	maximum	distance	from	the	center	of	mass	where	
the	cell	density	is	>=	10%	of	the	carrying	capacity	(averaged	over	12	angles).		
	
I/R.	
The	ratio	of	infected	to	recruited	cells	is	calculated,	as	with	the	data,	by	observing	the	
number	of	each	cell	type	within	the	tumor	core.		
	
Single	cell	metrics.	
For	the	single	cell	metrics,	a	randomly	chosen	subset	of	up	to	200	cells	were	tracked	
of	the	initially	injected	and	labeled	subset	(as	opposed	to	native	inactive	progenitors)	
outside	of	the	densest	regions	(less	than	25%	of	the	carrying	capacity).	These	criteria	
bias	 the	 tracks	 to	 the	 tumor	 edge	 where	 it	 is	 not	 too	 dense	 to	 agree	 with	 the	
experimental	tracking	limitations.	Proliferation	events	and	positions	of	the	cells	were	
tracked	 every	 3	min.	 The	measured	 proliferation	 rate	 and	migration	 speeds	were	
calculated	by	recording	the	percent	of	divisions	over	the	observation	period	and	the	
total	distance	traveled	over	the	time	spent	moving,	respectively.	These	values	were	
averaged	for	infected	and	recruited	cells.		
	
Convergence	scheme	
There	are	16	free	parameters	that	are	either	a)	not	measured,	b)	not	well	determined	
by	experimental	estimates,	or	c)	variables	in	the	simulation.	These	are	listed	in	Table	
1	of	the	main	text.		

To	converge	on	reasonable	parameter	estimates	that	result	in	good	fits	to	the	
data	in	Table	S1,	we	start	by	drawing	5000	sets	of	random	values	for	each	parameter	
within	 the	 determined	 ranges.	 From	 each	 parameter	 set	 we	 run	 the	 simulation,		
calculate	the	output	values	for	each	metric,	and	compare	to	the	data	output	to	get	a	
total	 error.	 We	 then	 sort	 these	 from	 least	 to	 most	 error	 and	 take	 the	 top	 10%,	
excluding	any	set	of	parameters	that	have	more	than	50%	of	the	total	error	in	one	
metric,	and	transfer	these	directly	to	the	next	iteration.	For	the	next	40%	of	the	next	
iteration,	we	tweak	all	of	the	parameters	in	the	top	10%	by	a	random	value	sampled	
from	a	normal	distribution	with	a	standard	deviation	of	10%	of	the	parameter	range.	
For	the	final	50%	of	the	next	parameter	set,	we	draw	randomly	from	the	parameter	
distribution	of	the	top	10%	to	introduce	new	combinations	of	values.	We	iterate	this	
procedure	until	the	output	error	is	within	10%	for	fitting	the	size	dynamics,	which	
turns	out	to	be	after	5	iterations,	and	within	15%	for	fitting	all	metrics,	which	is	after	
13	 iterations.	The	distributions	at	each	 iteration	are	shown	in	Fig.	S4	and	the	 final	
parameter	values	used	for	each	tumor	type	are	given	in	Table	S2.		
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Figure	S4.	Parameter	estimation	by	matching	to	data.	Values	over	iterations	of	the	convergence	are	shown	for	
A)	metrics	of	top	300	fits	fit	to	size	dynamics	only,	B)	parameters	from	the	top	300	fits	to	size	dynamics	only,	C)	
metrics	of	top	300	fits	using	all	data,	and	D)	parameters	from	the	top	300	fits	using	all	data.	Each	iteration	is	
shown	starting	at	light	gray	and	going	to	black	for	the	final	fit.	The	red	dashed	line	for	the	metrics	indicates	the	
measured	data	values,	while	the	blue	lines	and	error	bars	show	the	mean	and	standard	deviation	over	iterations	
for	each	parameter.		
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SYMBOL	(UNITS)	 RANGE	 Nodular	 Intermediate	 Diffuse	 Hetero	 Homo	

𝜌R		(%)	 0.1-5		 3.3	 3.2	 4.8	 3.8	 3.8	

𝜎𝜃	(degrees)	 0-45		 23	 15	 29	 41	 41	

p0	(ng/mL)	 100-600		 425	 425	 499	 400	 400	

Dp	(x10-6	cm2/day)	 1-1000	 67	 165	 187	 301	 301	

rd	(ng/mL.day)	 0-0.500		 0.343	 0.299	 0.064	 0.025	 0.025	

rs	(ng/mL.cell.day)	 10-400		 169	 190	 115	 361	 361	

rc	(%	of	rs)	 0-100		 2	 5	 20	 5	 5	

pa	(ng/mL)	 0.1-50		 36.7	 47.9	 37.5	 7.6	 7.6	

Kp	(ng/mL)	 5-300		 55	 183	 56	 94	 94	

Km	(ng/mL)	 5-300		 25	 162	 56	 256	 256	

𝛽p	 0.1-1.0	 0.66	 0.10	 0.93	 0.47	 0.47	

𝛽m	 0.1-1.0	 0.63	 0.72	 0.71	 0.51	 0.51	

𝜏	(h)	 20-100		 24	 45	 40	 48	 48	

𝜎𝜏	(h)	 0-100	 3	 12	 51	 5	 0	

𝜈	(𝜇m/h)	 0-100		 12	 51	 62	 60	 60	

𝜎𝜈	(𝜇m/h)	 0-100	 2	 9	 58	 25	 0	

Table	S2.	Parameter	sets	used	for	the	example	tumors	in	main	text.	The	parameter	ranges	are	used	to	search	for	fits	to	the	
data.	The	nodular,	intermediate,	and	diffuse	tumors	are	found	by	fitting	only	to	the	tumor	size	data,	and	the	heterogeneous	
tumor	is	found	by	fitting	to	all	of	the	data.	The	homogeneous	tumor	is	just	the	heterogeneous	tumor	with	the	variation	in	
proliferation	and	migration	set	to	zero.	
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S5.	Supplemental	Results

	

	
Figure	S7.	Changes	in	density	profiles	of	nodular,	intermediate,	and	diffuse	in-silico	tumors	before	and	after	an	anti-
proliferative	treatment	application.	A)	For	the	nodular,	intermediate,	and	diffuse	tumors,	the	core	and	rim	as	defined	
in	Fig.	S5	are	shown.	B)	Stacked	bar	plot	of	average	core	diameter	and	average	rim	diameter	over	10	runs.	The	average	
core	diameter	pre-treatment	was	1.7mm,	1.8mm	and	1.6mm	for	the	nodular,	intermediate,	and	diffuse	tumors,	and	
post-treatment	were	0mm,	1.5mm,	and	1.5mm,	respectively.	The	average	rim	size	pre-treatment	was	0.4mm,	0.7mm,	
and	1.3mm	for	the	nodular,	 intermediate,	and	diffuse	tumors,	and	post-treatment	were	0mm,	2.2mm,	and	3.1mm,	
respectively.	 
	
	

	
Figure	S5.	Tumor	density	profiles.	A)	For	the	nodular,	intermediate,	and	diffuse	tumors,	the	core	(yellow)	is	defined	
as	having	a	cell	density	of	at	 least	50%	of	the	carrying	capacity,	while	the	rim	(green)	is	defined	as	having	a	cell	
density	of	at	least	2%	of	the	carrying	capacity.	B)	Stacked	bar	plot	of	average	core	diameter	and	average	rim	diameter	
over	10	runs.	We	define	the	average	rim	size	as	the	difference	between	the	average	rim	diameter	and	the	average	
core	diameter.	The	average	core	diameters	were	2.2mm,	1.9mm	and	1.9mm	for	the	nodular,	intermediate,	and	diffuse	
tumors,	and	the	average	rim	sizes	were	0.4mm,	0.9mm,	and	1.5mm,	respectively.	
					
	

	
Figure	S6.	Spatial	phenotype	distributions	along	the	radius	of	the	tumor	are	shown	at	17d.	The	average	values	over	
10	runs	are	plotted:	A)	measured	proliferation	rate,	B)	measured	migration	speed,	C)	potential	proliferation	rate,	and	
D)	potential	migration	speed.		
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Figure	S8.	Density	profiles	of	the	heterogeneous	and	homogeneous	in-silico	tumors.	A)	The	core	and	rim	as	
defined	in	Fig.	S5	are	shown.	B)	Stacked	bar	plot	of	average	core	diameter	and	average	rim	diameter	over	10	
runs.	The	average	core	diameters	were	both	1.9mm,	and	the	average	rim	sizes	were	both	0.5mm.	

	
Figure	S9.	Spatial	phenotype	distributions	along	the	radius	of	the	tumor	are	shown	at	17d.	The	average	values	
over	 10	 runs	 are	 plotted:	 A)	 measured	 proliferation	 rate,	 B)	 measured	 migration	 speed,	 C)	 potential	
proliferation	rate,	and	D)	potential	migration	speed.	

	
Figure	S10.	Changes	in	density	profiles	of	the	heterogeneous	and	homogeneous	in-silico	tumors	before	and	
after	 an	anti-proliferative	 treatment	application.	A)	The	 core	and	 rim	as	defined	 in	Fig.	 S5	are	 shown.	B)	
Stacked	bar	plot	of	average	core	diameter	and	average	rim	diameter	over	10	runs.	The	average	core	diameter	
pre-treatment	was	1.6mm	for	both,	and	the	post-treatment	heterogeneous	tumor	was	1.9mm.	The	average	
rim	size	pre-treatment	was	0.7mm	for	both,	and	the	post-treatment	heterogeneous	tumor	was	1.0mm.	
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Figure	 S11.	 Correlation	 between	 treatment	 outcomes	 over	 cohort	 of	 simulated	 tumors.	 We	 show	 the	
distribution	of	response	as	A)	a	waterfall	plot	with	each	treatment	sorted	ranked	from	best	to	worst	response	
and	 B)	 a	 waterfall	 plot	 for	 AP	 treatment	 sorted	 ranked	 from	 best	 to	 worst	 response	 but	 preserving	 the	
correlation	of	how	each	tumor	responds	to	the	other	treatments.	The	yellow	line	shows	the	responses	for	the	
diffuse	 tumor	 from	 Fig.	 9.	 C)	 Comparison	 of	 the	 responses	 for	 AP	 treatment	alone	 to	 AP+AM	combination	
treatment.	The	red	line	shows	where	the	response	is	the	same	for	both	treatments.	
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