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Widefield calcium imaging enables recording of large-scale neural activity across the mouse

dorsal cortex. In order to examine the relationship of these neural signals to the resulting be-

havior, it is helpful to demix the recordings into meaningful spatial and temporal components

that can be mapped onto well-defined brain regions. However, no current tools satisfactorily

extract the activity of the different brain regions in individual mice in a data-driven manner,

while taking into account mouse-specific and preparation-specific differences.

1

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 25, 2019. ; https://doi.org/10.1101/650093doi: bioRxiv preprint 

https://doi.org/10.1101/650093


Here, we introduce Localized semi-Nonnegative Matrix Factorization (LocaNMF), that ef-

ficiently decomposes widefield video data and allows us to directly compare activity across

multiple mice by outputting mouse-specific localized functional regions that are significantly

more interpretable than more traditional decomposition techniques. Moreover, it provides

a natural subspace to directly compare correlation maps and neural dynamics across dif-

ferent behaviors, mice, and experimental conditions, and enables identification of task- and

movement-related brain regions.

1 Introduction

A fundamental goal in neuroscience is to simultaneously record from as many neurons as possible,

with high temporal and spatial resolution 1. Unfortunately, tradeoffs must be made: high-resolution

recording methods often lead to small fields of view, and vice versa. Widefield calcium imaging

(WFCI) methods offer a compromise: this approach offers a global view of the (superficial) dorsal

cortex, with temporal resolution limited only by the activity indicator and camera speeds. Single-

cell resolution of superficial neurons is possible using a “crystal skull” preparation 2 but simpler,

less invasive thinned-skull preparations that provide spatial resolution of around tens of microns

per pixel have become increasingly popular 2–14; of course there is also a large relevant literature

on widefield voltage and intrinsic signal imaging 15–18.

How should we approach the analysis of WFCI data? In the context of single-cell-resolution

data, the basic problems are clear: we want to denoise the CI video data, demix this data into

signals from individual neurons, and then in many cases it is desirable to deconvolve these signals
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to estimate the underlying activity of each individual neuron; see e.g. 19 and references therein for

further discussion of these issues.

For data that lacks single-neuron resolution, the relevant analysis goals require further re-

flection. One important goal (regardless of spatial resolution) is to compress and denoise the large,

noisy datasets resulting from WFCI experiments, to facilitate downstream analyses 20. Another

critical goal is to decompose the video into a collection of interpretable signals that capture all of

the useful information in the dataset. What do we mean by ”interpretable” here? Ideally, each

signal we extract should be referenced to a well-defined region of the brain (or multiple regions) –

but at the same time the decomposition approach should be flexible enough to adapt to anatomical

differences across animals. The extracted signals should be comparable across animals performing

the same behavioral task, or presented with the same sensory stimulus; at the very least the de-

composition should be reproducible when computed on data collected from different comparable

experimental blocks from the same animal.

Do existing analysis approaches satisfy these desiderata? One common approach is to define

regions of interest (ROIs), either automatically or manually, and then to extract signals by aver-

aging within ROIs 7. However, this approach discards significant information outside the ROIs,

and fails to demix multiple signals that may overlap spatially within a given ROI. Alternatively,

we could apply principal components analysis (PCA), by computing the singular value decompo-

sition (SVD) of the video 8. The resulting principal components serve to decompose the video into

spatial and temporal terms that can capture the majority of available signal in the dataset. How-
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ever, these spatial components are typically de-localized (i.e., they have support over the majority

of the field of view, instead of being localized to well-defined brain regions). More importantly,

these components are typically not reproducible across blocks of data from the same animal: the

PCs from one block may look very different from the PCs from another block (though the vector

subspace spanned by these PCs may be similar across blocks). Non-negative matrix factorization

(NMF) is a decomposition approach that optimizes a similar cost function as PCA, but with ad-

ditional non-negativity constraints on the spatial and/or temporal components 6, 21; unfortunately,

as we discuss below, many of the same criticisms of PCA also apply to NMF. Finally, seed-pixel

correlation maps 7 provide a useful exploratory approach for visualizing the correlation structure in

the data, but do not provide a meaningful decomposition of the full video into interpretable signals

per se.

In this work we introduce a new approach to perform a localized, more interpretable decom-

position of WFCI data. The proposed approach is a variation on classical NMF, termed localized

semi-NMF (LocaNMF), that decomposes the widefield activity by (a) using existing brain atlases

to initialize the estimated spatial components, and (b) limiting the spread of each spatial component

in order to obtain localized components. This procedure allows us to efficiently obtain temporal

components localized to well-defined brain regions in a data-driven manner. Empirically, we find

that the resulting components satisfy the reproducibility desiderata described above, leading to a

more interpretable decomposition of WFCI data. In experimental data from mice expressing dif-

ferent calcium indicators and exhibiting a variety of behaviors, we find that (a) spatial components

and temporal correlations (measured over timescales of tens of minutes) are consistent across dif-
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ferent sessions in the same mouse, (b) the frontal areas of cortex are consistently useful in decoding

the direction of licks in a spatial discrimination task, and (c) the parietal areas of cortex are useful

in decoding the movements of the paws during the same task, as tracked using DeepLabCut. We

begin below by describing the model, and then show applications to a number of datasets.
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Figure 1: Overview of LocaNMF: a decomposition of the WFCI video into spatial components A and temporal

components C, with the spatial components soft aligned to an atlas, here the Allen atlas.

2 Model

Here, we summarize the critical elements of the LocaNMF approach that enable the constrained

spatiotemporal decomposition of WFCI videos; full details appear in the Methods section. Our

proposed decomposition approach takes NMF as a conceptual starting point but enforces additional

constraints to make the extracted components more reproducible and interpretable. Our overall

goal is to decompose the denoised, hemodynamic-corrected, motion-corrected video Y into Ŷ =

AC, for two appropriately constrained matrices A = {ak} and C = {ck} (Figure 1). In more

detail, we model

Ŷ (n, t) =
∑
k

ak(n)ck(t), (1)
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i.e., we are expressing Ŷ as the sum over products of spatial components ak and temporal compo-

nents ck. It is understood that each imaged pixel n in WFCI data includes signals from a population

of neurons visible at n, which may include significant contributions from neuropil activity 22. Here,

we assume that the term ak(n) represents the density of calcium indicator 1 at pixel n governed by

temporal component k, and is therefore constrained to be non-negative for each n and k. Y , on the

other hand, corresponds directly to the mean-adjusted fluorescence of every pixel (∆F/F ), and as

such may take negative values. Therefore, we do not constrain the temporal components C to be

non-negative.

The low-rank decomposition of Y into a non-negative spatial A matrix and a corresponding

temporal C matrix falls under the general class of “semi-NMF” decomposition 23. However, as

detailed below, the components that we obtain using this decomposition are not typically inter-

pretable; the spatial components can span the entire image due to the spatial correlations in the

data. (Similar comments apply to principal components analysis or independent components anal-

ysis applied directly to Y ). To extract more interpretable components, we would like to match

each of them to a well-defined brain region. This corresponds to each component ak being sparse,

but in a very specific way, i.e. sparse outside the functional boundaries of a specific region. We

use the Allen CCF brain atlas 24 to guide us while determining the initial location of the different

1Note that we are not making any assumption here about the cellular compartmental location of this calcium

indicator density (e.g., somatic versus neuropil). For example, if the indicator is localized to the neuropil (or if the

neuropil of the labeled neural population is superficial but the cell bodies are located more deeply), then a strong

spatial component ak in a given brain region may correspond to somatic activity in a different brain region.
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brain regions2, and constrain the spatial components to not stray too far from these region bound-

aries by including an appropriate penalization as we minimize the summed square residual of the

factorization.

To develop this decomposition, we first introduce some notation. We provide a summary

of the notation in Table 1. We use a 2D projection of the Allen CCF map here, as in 8, which is

partitioned into J disjoint regions Π = {π1, · · · , πJ}. Using LocaNMF, we identify K compo-

nents. Specifically, each atlas region j gets kj components, possibly corresponding to different

populations displaying coordinated activity, and K :=
∑

j kj . Each component k maps to a single

atlas region.

We solve the following optimization problem, where Y ∈ RN×T :

minA,C ‖Y − AC‖2F (2)

s.t. A ≥ 0, ‖ak‖∞ = 1 ∀k ∈ [1, K], A ∈ RN×K (3)

C ∈ RK×T (4)
N∑
n=1

|dk(n)ak(n)|2 ≤ Lk ∀k ∈ [1, K], (5)

whereN is the number of pixels and T the number of frames in the video, andD ∈ RN×K is an L2

distance penalty term, whose entries dk(n) quantify the smallest euclidean distance from pixel n

to the atlas region corresponding to component k. {Lk} are constants used to enforce localization.
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Figure 2: LocaNMF can accurately recover the spatial and temporal components in simulated WFCI data. (A) Left

column: two example ground truth spatial components; Middle and Right columns: the corresponding spatial com-

ponents as recovered by (Middle column) LocaNMF; (Right column) vanilla NMF (vNMF). (B) Correlation between

ground truth spatial components and those recovered by (Top) LocaNMF; (Bottom) vNMF. (C) Eight example ground

truth temporal components, overlaid with those recovered by LocaNMF and vNMF. The LocaNMF components are

lying directly on top of the ground truth components when these are not visible. (D) The histograms of the R2 be-

tween the recovered and ground truth temporal components using LocaNMF and vNMF, with the median and quartiles

displayed in black. On average, the R2 are higher for LocaNMF as compared to vNMF (one-tailed t-test p = 0.0021).
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3 Results

Application to simulated data We begin by applying LocaNMF to decompose simple simulated

data (Figure 2). We simulate each region k to be modulated with a Gaussian spatial field centered

at the region’s spatial median, with a width proportional to the size of the region. The tempo-

ral components Creal for the K regions were simulated to be sums of sinusoids with additional

Gaussian noise. Full details about the simulations are included in the appendix.

We ran the LocaNMF algorithm with localization threshold 70% (i.e., at least 70% of the

mass of each recovered spatial component was forced to live on the corresponding Allen brain

region; see Methods for details), and recovered the spatial and temporal components as shown in

Figure 2. We also ran vanilla semi-NMF (vNMF; i.e., semi-NMF with no localization constraints)

for comparison, and aligned the recovered and true components (by finding a matching that ap-

proximately maximized the R2 between the real C matrix and the recovered C matrix). While

LocaNMF recovered A and C accurately, vNMF did not; there is a poor correspondence between

the true A and the A recovered by vNMF, and the temporal components C recovered by vNMF are

not as accurate as the temporal components recovered by LocaNMF.

Application to experimental data Next we applied LocaNMF to two real WFCI datasets. Data

type (1) consisted of WFCI videos of size [540×640×T ], with T ranging from 88, 653 to 129, 445

time points (sampling rate of 30Hz), from 10 mice expressing GCaMP6f in excitatory neurons. For

each mouse, we analyzed movies from two separate experimental sessions recorded over different

2A different brain atlas could easily be swapped in here to replace the Allen CCF atlas, if desired.
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Figure 3: Spatial and temporal maps of all regions in three different sessions from two different mice, as found

with LocaNMF. Note that LocaNMF outputs multiple components per atlas region. Left: the first, second and third

component extracted from each region provided in each row, colored by region. Right: The trial-averaged temporal

components for Session 1, Mouse 1 (aligned to lever grab), with the same color scheme as the spatial components.

Link to a decomposed video of one trial here.

days. LocaNMF run on one GPU card (NVIDIA GTX 1080Ti) required a median of 29 minutes

per session (on recordings of median length 1 hour) for this dataset. Data type (2) consisted of

WFCI videos of size [512 × 512 × 5990] (sampling rate of 20Hz) from two sessions from one

Thy1 transgenic mouse expressing jRGECO1a. See appendix for full experimental details. Unless

mentioned explicitly, the analyses below are performed on data type (1).
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LocaNMF can be understood as a middle ground between two extremes. If we enforce no

localization, we obtain vNMF with an atlas initialization. Alternatively, if we enforce full local-

ization (i.e., force each spatial component ak to reside entirely within a single atlas region), we

obtain a solution in which NMF is performed independently on the signals contained in each in-

dividual atlas region. (Note that even in this case we typically obtain multiple signals from each

atlas region, instead of simply averaging over all pixels in the region.) Across the 20 sessions in 10

mice in dataset (1), this fully-localized per-region NMF requires an average of 452 total compo-

nents to reach our reconstruction accuracy threshold (R2
thr = 0.99) on denoised data, while vNMF

requires on average 188 components to capture the same proportion of variance. Meanwhile, Lo-

caNMF with a localization threshold of 80% outputs an average of 205 components (with the same

accuracy threshold); thus enforcing locality on the LocaNMF decomposition does not lead to an

over-inflation of the number of components required to capture most of the variance in the data.

We also implemented a decomposition that computes the mean denoised activity in each

Allen brain region. On a typical example session in dataset (1), this led to a mean R2 = 0.65

(computed on the denoised data) as compared to the corresponding LocaNMF R2 = 0.99; thus

simply averaging within brain regions discards significant signal variance.

We show an example LocaNMF decomposition for one trial with the mouse performing a

visual discrimination task in this video, with localization threshold 80%. This shows the denoised

brain activity for reference, and the modulation of the first two components LocaNMF extracted

from each region, with different regions assigned different colors. We also display the rescaled
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residual as the normalized squared error between the denoised video and the LocaNMF recon-

struction, as a useful visual diagnostic; in this case, we perceive no clear systematic signal that is

being left behind by the LocaNMF decomposition.

In Figure 3 (left), we examine the top three components of the spatial maps of all regions

across three different sessions from two different mice; we can see that the spatial maps are similar

across sessions and mice (quantified across sessions in Figure 4, below). The trial-averaged tem-

poral components on the right show modulations of a large number of components, time-locked to

task-related behavioral events during the trial.

LocaNMF outputs localized spatial maps that are consistent across experimental sessions

When recording two different sessions in the same mouse, it is natural to expect to recover sim-

ilar spatial maps. To examine this hypothesis, we analyzed the decompositions of two different

recording sessions in the same mouse (Figure 4); we then repeated this analysis using a different

mouse from dataset (2) (Figure 5). In both datasets, LocaNMF outputs localized spatial maps that

are consistent across experimental sessions, as shown in the bottom of Figures 4 and 5, whereas

vNMF outputs components that are much less localized and much less consistent across sessions.

Correlation maps of temporal components show consistencies across animals Next, we wanted

to examine the relationship between the temporal activity extracted from different mice. We ap-

ply LocaNMF to all 10 mice in dataset (1) and examine the similarities in correlation structure in

the temporal activity across sessions and mice. Since LocaNMF provides us with multiple com-

ponents per atlas region, and we wish to be agnostic about which components in one region are
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correlated with those in another region, we use Canonical Correlation Analysis (CCA) to summa-

rize the correlations from components in one region to the components in another region. CCA

maps for four sessions of 49− 65 minutes each, from two different mice, are shown in Figure 6A.

In all sessions, the mice were engaged in either a visual or an audio discrimination task. We see

that we recover clear similarities across CCA maps computed at the timescale of tens of minutes

in different recording sessions, and different animals. We find that CCA maps of different sessions

in the same mouse tend to be more similar than are CCA maps of sessions across different mice,

as quantified in Figure 6C.

Event-driven temporal modulation of brain regions is consistent across mice and is time-

locked to key behavioral markers Using LocaNMF, it is straightforward to isolate the activity of

the different regions in response to certain stimuli or behavioral variables in order to find possible

consistencies across mice. To illustrate this point, we use the activity of different brain regions to

decode the direction of individual lick movements, i.e. the left (lickL) or right (lickR) direction on

each instance of the lick movement. The input to the decoder on each lick instance consists of all of

the temporal components from a given brain region, from 0.67s before each lick, up to lick onset

(corresponding to 21 timepoints per temporal component). We build an L2 regularized logistic

decoder based on this input to decode the direction of each lick (using 5-fold cross-validation

to estimate the regularization hyperparameters). For data from held-out lick instances, we test the

ability of each region’s components to decode the lick direction (Figure 7A); we see that the frontal

regions contain significant information that can be used to decode the lick direction.
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Next, we consider the trial-averaged responses of each region. In Figure 7B, we show the

trial-averaged activity in key brain areas during behaviorally relevant markers. (Since LocaNMF

extracts multiple temporal components per region, we perfom principal components analysis on

the averaged signals in each region to extract a dominant signal to display here.) We see signifi-

cant modulation of the primary visual cortex following the onset of visual stimulation, and of the

primary somatosensory cortex (upper limb area) time-locked to lever grab behavior.

Finally, we take the trial-averaged response of the LocaNMF components of each functional

region while the mouse is licking the spout in the Left vs Right direction, and form a [Direction×

Components×Time] tensor. We wanted to assess the dependence of the different regions’ activity

on the lick direction, and to quantify the consistency of this dependence across sessions. Demixed

Principal Component Analysis 25 is a method designed to separate out the variance in the data

related to trial type (e.g., lick direction) vs. variance related to other aspects of the trial such as

time from lick event. We show the top dPCs of the trial-averaged response of the right hand side

primary somatosensory area, mouth region (SSp-m1:R), and the right hand side of the secondary

motor cortex (MOs1:R), of one mouse during two different sessions (Figure 7 C). These can be

interpreted as 1D latent variables for the two lick directions, here capturing 87% ± 4% of the

variance in the trial-averaged components. We see that these latents start modulating before lick

onset, and continue modulating well past lick onset. Moreover, we see that the latents in these two

areas modulate consistently across different sessions before and after a lick.
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Decoding of behavioral components quantifies the informativeness of signals from different

brain regions Finally, we examine how the activity of different brain regions is related to con-

tinuous behavioral variables, rather than the binary behavioral features (i.e., lick left or right),

addressed in the preceding section. We tracked the position of each paw using DeepLabCut (DLC)

26 applied to video monitoring of the mouse during the behavior; an example frame is shown in

Figure 8. We decoded the position of these markers using the temporal components extracted by

LocaNMF (Figure 8 Bottom). (See Methods for full decoder details.) We found that temporal sig-

nals extracted from the primary somatosensory cortex, the olfactory bulb, or the visual cortex lead

to the highest decoding accuracy (Figure 8, top right). The primary somatosensory cortex may be

receiving proprioceptive inputs resulting from the movements of the paws, and the olfactory bulb

is known to encode movements of the snout which may be correlated with the movements of the

paws.

4 Conclusion

Widefield calcium recordings provide a window onto large scale neural activity across the dorsal

cortex. Here, we introduce LocaNMF, a tool to efficiently and automatically decompose this data

into the activity of different brain regions. LocaNMF outputs reproducible signals and enhances

the interpretability of various downstream analyses. After having decomposed the activity into

components assigned to various brain regions, this activity can be directly compared across ses-

sions and mice. For example, we build correlation maps that can be compared across different

sessions and mice. Recently, several studies have shown the utility of having a fine-grained gauge
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of behavior alongside that of WFCI activity 8, 14. We highlight that in order to have a more com-

plete understanding of how the cortical activity may be leading to different behaviors, we first need

an interpretable low dimensional space common to different animals in which the cortical activity

may be represented.

Although we used the Allen atlas to localize and analyze the WFCI activity in this paper,

LocaNMF is amenable to any atlas that partitions the field of view into distinct regions. As better

structural delineations of the brain regions emerge, the anatomical map for an average mouse may

be refined. In fact, it is possible to test different atlases using the generalizability of the resulting

LocaNMF decomposition on different trials as a metric. As potential future work, LocaNMF could

also be adapted to refine the atlas directly by optimizing the atlas-defined region boundaries to more

accurately fit functional regions.

Analyses using other imaging modalities, particularly fMRI, have also been faced with the

issue of needing to choose between interpretability (for example, as provided by more conventional

atlas-based methods) and efficient unsupervised matrix decomposition (for example, as in PCA,

independent component analysis, NMF, etc) 27. Typically, diffusion tensor tractography 28 or MRI

29, 30 can be used for building an anatomical atlas, and seed-based methods are used for obtaining

correlations in fMRI data. In all these methods, a registration step is first performed on structural

data (typically, MRI), thus providing data that is well aligned across subjects. More recently,

graph theoretic measures as well as other techniques for characterizing the functional connections

between different anatomical regions have become increasingly popular in fMRI 31–33; these first
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perform a parcellation of the across-subject data into regions of interest (ROIs), then average the

signals in each ROI before pursuing downstream analyses. Parcellations combining anatomical

and functional data have also been pursued 34.

We view LocaNMF as complementary to these methods; here we perform an atlas-based yet

data-driven matrix decomposition; importantly, instead of simple averaging of signals within ROIs

we attempt to extract multiple overlapping signals from each brain region, possibly reflecting the

contributions of multiple populations of neurons in each region. One very related study is by 35,

where the authors perform NMF on fMRI data, and introduce group sparsity and spatial smooth-

ness penalties to constrain the decomposition. LocaNMF differs in the introduction of an atlas

to localize the components; this directly enables across-subject comparisons and assigns region

labels to the components (while still allowing the spatial footprints of the extracted components

to shift slightly from brain to brain), which can be helpful for downstream analyses. Furthermore,

recent studies have shown that the spatial and temporal activity recorded from WFCI and fMRI

during spontaneous activity show considerable similarities 3, 36. Given these conceptual similari-

ties, we believe there are opportunities to adapt the methods we introduced here to fMRI or other

three-dimensional (3D) functional imaging modalities 37, 38, while using a 3D atlas of brain regions

to aid in localization of the extracted demixed components. We hope to pursue these directions in

future work.
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Figure 4: LocaNMF extracts localized spatial components that are consistent across two sessions (session length

= 49 and 64 minutes; in each case the mouse was performing a visual discrimination task). Top: Example spatial

components extracted from three different regions and two different sessions for one mouse expressing GCaMP6f,

using vanilla sNMF (vNMF) with random initialization (left), and LocaNMF as in Algorithm 1 (right). Note that

LocaNMF components are much more strongly localized and reproducible across sessions. Bottom: Cosine similarity

of spatial components across two sessions in the same mouse using vNMF after component matching using a greedy

search (left) and LocaNMF (right). As in the simulations, note that LocaNMF components are much more consistent

across sessions.
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Figure 5: LocaNMF applied to data from a mouse expressing jRGECO1a. Legend and conclusions similar to Figure

4. 20
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Figure 6: Correlation maps of temporal components extracted by LocaNMF show consistencies across sessions and

animals. A. Top canonical correlation coefficient between the temporal components of any two regions, shown for

four different sessions of 49 to 64 minutes each, recorded across two mice. B. Example traces of two highly correlated

regions. C. Violin plot of mean squared difference between the correlation maps of the 20 different sessions across 10

mice; on average, within-mice differences are smaller than across-mice differences (One-tailed t-test p = 0.0025).
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Figure 7: Brain areas show consistencies in ability to decode direction of licking activity, and in their activity around

task-related behavior. A. Decoding accuracy on held-out data for the direction of lick (Left vs. Right spout) using

only components in a shaded brain region. A logistic decoder was used on the time courses on data from 0.67s before

and 0.33s after the event (lick left or lick right). B. The top Principal Component of the trial-averaged activity of the

primary visual cortex (VISp) under visual stimulus, and of the primary somatosensory area, upper limb area (SSp-ul),

before and after the lever grab. Standard error of the mean is shaded. C. The top demixed Principal Component

of the trial-averaged activity of the right hand side primary somatosensory area, mouth (SSp-m1:R) and right hand

side secondary motor cortex (MOs1:R) before and after the onset of a lick to the left or right spout (onset at time 0).

Standard error of the mean is shaded. The activity around licking left or right in both regions is consistent across the

two sessions.
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Figure 8: Decoding paw position from WFCI signals. Top Left: One frame of the DeepLabCut output, with decoded

positions of left and right paws in blue and red. Top right: Relative decoding accuracy when the decoder was restricted

to use signals from just one brain region, as a fraction of the R2 using all signals from all brain regions. Area acronyms

are provided in Table 2. Bottom: Decoding of DLC components using data from all brain regions for one mouse. Link

to corresponding real-time videos for a few trials here, with DLC labels in black, and decoded paw location in blue

and red for left and right paw respectively.
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5 Methods

Preprocessing: motion correction, compression, denoising, hemodynamic correction, and

alignment We analyze two datasets in this paper; full experimental details are provided in the

appendix. After motion correction, imaging videos are denoted as Yraw, with size N × T , where N

is the total number of pixels and T the total number of frames. NT may be rather large (≥ 1010)

in these applications; to compress and denoise Yraw we experimented with simple singular value

decomposition (SVD) approaches as well as more sophisticated penalized matrix decomposition

methods 20. We found that the results of the LocaNMF method developed below did not depend

strongly on the details of the denoising / compression method used in this preprocessing step.

Regardless of these details, the denoising step outputs a low-rank decomposition of Yraw = UV +E

represented as an N × T matrix; here UV is a low-rank representation of the signal in Yraw and E

represents the noise that is discarded. The output matrices U and V are much smaller than the raw

data Yraw, leading to compression rates above 95%, with minimal loss of visible signal.

As is well-known, to interpret WFCI signals properly it is necessary to apply a hemodynamic

correction step, to separate activity-dependent from blood flow-dependent fluorescence changes

18, 39. We applied hemodynamic correction to both datasets as detailed in the appendix. Finally,

for both datasets, we rigidly aligned the data to a 2D projection of the Allen Common Coordinate

Framework v3 (CCF) 40 as developed in 8, using four anatomical landmarks: the left, center, and

right points where anterior cortex meets the olfactory bulbs and the medial point at the base of

retrosplenial cortex. We denote the denoised, hemodynamic-corrected video as Y (i.e., Y = UV
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after appropriate alignment).

More information about the Allen CCF is provided in the Appendix.

Details of Localized Non-Negative Matrix Factorization (LocaNMF) Here, we provide the al-

gorithmic details of the optimization involved in LocaNMF, as detailed in Equations 2-5; provided

here again for the reader’s convenience.

minA,C ‖Y − AC‖2F (2)

s.t. A ≥ 0, ‖ak‖∞ = 1 ∀k ∈ [1, K], A ∈ RN×K (3)

C ∈ RK×T (4)
N∑
n=1

|dnkank|2 ≤ Lk ∀k ∈ [1, K], (5)

A summary of the notation for this section is provided in Table 1.

5.0.1 Spatial and Temporal Updates

Hierarchical Alternating Least Squares (HALS) is a popular block-coordinate descent algorithm

for NMF 23 that updatesA and C in alternating fashion, updating each component of the respective

matrices at a time. It is straightforward to adapt HALS to the LocaNMF optimization problem

defined above. We apply the following updates for the spatial components in A (where we are

utilizing the low-rank form of Y = UV ):

ak ←
[
ak +

1

cTk ck

(
(Y CT )k − A(CCT )k − λkdk

)]
+

=

[
ak +

1

cTk ck

(
U(V CT )k − A(CCT )k − λkdk

)]
+

(6)
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Here, [x]+ = max{0, x}, k ∈ {1, . . . , K}, and λk is a Lagrange multiplier introduced to enforce

equation 5; we will discuss how to set λk below. We normalize the spatial components {ak} after

every spatial update, thus satisfying the constraint ‖ak‖∞ = 1 for each k in Equation 3.

The corresponding updates of C are a bit simpler:

ck ← ck +
1

aTk ak

(
ATYk − (ATA)kC

)
= ck +

1

aTk ak

(
(ATU)kV − (ATA)kC

)
. (7)

We can simplify these further by noting that each temporal component ĉk for a given solution Ĉ

is contained in the span of V ∈ RKd×T . Using this knowledge, we can avoid constructing the full

matrix C ∈ RK×T , and instead use a smaller matrix B ∈ RK×Kd by representing each component

within a Kd-dimensional temporal subspace spanned by the columns of V . Specifically, we can

apply an LQ-decomposition to V , to obtain V = LQ where L ∈ RKd×Kd is a lower triangular

matrix of mixing weights and Q ∈ RKd×T is an orthonormal basis of the temporal subspace. If

we decompose C as C = BQ, it becomes possible to avoid ever using Q in all computations

performed during LocaNMF (as detailed below). Thus, we can safely decompose V = LQ, save

Q and use L in all computations of LocaNMF to find A and B, and finally reconstruct C = BQ

as the solution for the temporal components. In the case where Kd � T , this leads to significant

savings in terms of both computation and memory.
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Variable Dimensions Description

N 1× 1 Number of pixels in video

T 1× 1 Number of time points in video

Kd 1× 1 Rank of denoised video

Y N × T Denoised video; Y = UV

U N ×Kd Low-rank denoised spatial components

V Kd × T Low-rank denoised temporal components

L Kd ×Kd Lower triangular matrix in the LQ decomposition of V ; V = LQ

Q Kd × T Orthogonal matrix in the LQ decomposition of V ; V = LQ

J 1× 1 Number of regions predefined in the brain atlas.

kj 1× 1 Number of LocaNMF components in jth region

K 1× 1 Total number of components found by LocaNMF; K =
∑J

j=1 kj

A N ×K LocaNMF spatial components

C K × T LocaNMF temporal components

Ŷ N × T LocaNMF decomposed video; Ŷ = AC

B K ×Kd Multiplicative matrix in the decomposition of C; C = BQ

Lk 1× 1 Localization constant for the kth component

Λ K × 1 Lagrangian parameters for the localization constraint in Equation 5.

Table 1: A summary of the notation for LocaNMF, with the corresponding matrix dimensions and descriptions.
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5.0.2 Hyperparameter selection

To run the method described above, we need to determine two sets of hyperparameters. One set

of hyperparameters consists of the number of components in each region k = (k1, · · · , kJ), which

dictate the rank of each region. Each component k maps to a single atlas region. φ : {1, · · · , K} 7→

{π1, · · · , πJ} (surjective K ≥ J). The second set of hyperparameters consists of the Lagrangian

weights for each component Λ = (λ1, · · · , λK), chosen to be the minimum value such that the

localization constraint in Equation 5 is satisfied. These two sets of hyperparameters intuitively

specify (1) that the signal in each region is captured well, and (2) that all components are localized,

respectively. These hyperparameters can be set based on two simple, interpretable goodness-of-

fit criteria that users can set easily: (1) the variance explained across all pixels belonging to a

particular atlas region, and (2) how much of a particular spatial component is contained within its

region boundary. These can be boiled down to the following easily specified scalar thresholds.

1. R2
thr: a minimum acceptable R2 to ensure the neural signal for all pixels in an atlas region’s

boundary is adequately explained

2. Lthr: the percentage of a particular region’s spatial component that is constrained to be inside

the atlas region’s boundary

The procedure consists of a nested grid search wherein a sequence of proposals k(0),k(1), . . . are

generated and for each k(n) a corresponding sequence Λ(i,0),Λ(i,1), . . . are proposed. We term kj

the local-rank of region j. Intuitively, we wish to restrict the local-rank in each region as much
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as possible while still yielding a sufficiently well-fit model. Moreover, for each proposed k(n),

we wish to select the lowest values for Λ, while still ensuring that each component is sufficiently

localized. In order to achieve this, each layer of this nested search uses adaptive stopping criteria

based on the following statistics for the jth region and kth component.

R2(j) := 1− 1

|πj|
∑
n∈πj

‖Y (n)− Ŷ (n)‖22
‖Y (n)− Ȳ (n)‖22

= 1− 1

|πj|
∑
n∈πj

‖U(n)L− A(n)B‖22
‖U(n)L− U(n)L̄‖22

(8)

L(k) :=

∑
n∈φ(k) ak(n)2

‖ak‖22
(9)

Here, Y (n) and A(n) denote the value of these matrices at pixel n. Note that the right hand side

term in Equation 8 is computationally less expensive, as detailed in the following subsection. The

algorithm terminates as soon as a pair (k(n),Λ(n,m)) yields a fit satisfying R2(j) ≤ R2
thr ∀j and

L(k) ≥ Lthr ∀k.

Details of the LQ decomposition of V We show here that we can perform LQ decomposition

of V at the beginning of LocaNMF, proceed to learn A,B using LocaNMF as in Algorithm 1, and

reconstruct C = BQ at the end of LocaNMF, without changing the algorithm or the optimization

function. The term C is traditionally used in (1) the spatial updates, (2) the temporal updates, and

(3) computing the optimization function. Here, we address how we can replace C by B in each of

these computations.

1. For the spatial updates in Equation 6, we need two quantities; namely (1) U(V CT ) and (2)

A(CCT ). We can use the decompositions V = LQ and C = BQ to the two quantities; (1)

U(V CT ) = U(LQQTBT ) = U(LBT ) and (2) A(CCT ) = A(BQQTBT ) = A(BBT ).
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2. For the temporal update in Equation 7, using the LQ decomposition, we set C = BQ =

(ATA)−1ATULQ; thus it suffices to update B to (ATA)−1ATUL. The spatial and temporal

updates are also detailed in Algorithms 3 and 4.

3. Finally, we need to compute the errors in Equation 8. We note that ‖Y (n) − Ŷ (n)‖22 =

‖U(n)V − A(n)C‖22 = ‖(U(n)L− A(n)B)Q‖22 = ‖U(n)L− A(n)B‖22. While computing

UV and AC have a computational complexity of O(NKdT ) and O(NKT ) respectively,

this operation decreases the computational cost to O(NK2
d) and O(NKKd); for T large,

this denotes a significant saving in both memory and time taken for the algorithm.

Thus, we do not need the term Q for the bulk of the computations involved in LocaNMF, making

the algorithm considerably more efficient.

Adaptive number of components per region We wish to restrict the local-rank in each region

as much as possible while still yielding a sufficiently well-fit model. In order to do so, we gradually

move from the most to least-constrained versions of our model and terminate as soon as the region-

wise R2 is uniformly high as determined by the threshold R2
thr. Specifically, we iteratively fit a

seqeunce of LocaNMF models. The search is initialized with k(0) = 1Jkmin and after each fit

Ŷ(iterK) = Â(iterK)Ĉ(n) is obtained, set

k
(iterK+1)
j =


k
(iterK)
j + 1 if R2(iterK)(j) < R2

thr

k
(iterK)
j otherwise

until R2(iterK)(j) ≥ R2
thr ∀j = 1, · · · , J .
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Adaptive λ For brain regions that have low levels of activity relative to their neighbors, or have

a smaller field of view, it is possible that the activity of a large amplitude neighboring region is

represented instead of the original region’s activity. However, we do not want to cut off the spread

of a component in an artificial manner at the region boundary. Thus, we impose the smallest

regularization possible while still ensuring that each component is sufficiently localized. To do so,

we will gradually move from the least constrained (small λ) to most constrained (large λ) model,

terminating as soon as the minimum localization threshold is reached. The search is initialized

with Λ(0) = 1Kλmin and after each fit Ŷ(iterλ) = Â(iterλ)Ĉ(iterλ) is obtained, set

λ
(iterλ+1)
k =


τλ

(iterλ)
k if L(iterλ)(k) < Lthr

λ
(iterλ)
k otherwise

until L(iterλ)(k) ≥ Lthr ∀k = 1, · · · , K. This requires a user-defined λ-step, τ = 1 + ε, where ε is

generally a small positive number.

Initialization Finally, for a fixed set of hyperparameters Λ,k the model fit is still sensitive to

initialization (since the problem is non-convex). Hence, in order to obtain reasonable results we

must provide a data driven way to initialize all K =
∑J

j=1 kj components.

To initialize each iteration of the local-rank line search, the components for each region are

set using the results of sNMF fits to their respective regions. To facilitate this process, a rank kmax

SVD is precomputed within each individual region and reused during each initialization phase.

For a given initialization, denote the number of components in region j as kj . The initialization is
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the result of a rank kj sNMF fit to the rank kmax SVD of each region. The components of these

initializations are themselves initialized using the top kj temporal components of each within-

region SVD. This is summarized in Algorithm 2.

Computation on a GPU Most of the steps of LocaNMF involve large matrix operations which

are well suited to parallelization using GPUs. While the original data may be very large, U and

L are relatively much smaller, and often fit comfortably within GPU memory in cases where Y

does not. Consequently, implementations which take low rank structure into account may take full

advantage of GPU-acceleration while avoiding repeated memory transfer bottlenecks. Specifically,

after the LQ decomposition of V , we load U and L into GPU memory once and keep them there

until the Algorithm 1 has terminated. This yields a solution Â, B̂ which can transferred back to

CPU in order to reconstruct Ĉ = B̂Q. We provide both CPU and a GPU implementations of the

algorithm in the code here.

Decimation As in 41 and 20, we can decimate the data spatially and temporally in order to run

the hyperparameter search, and then run Algorithm 1 once in order to obtain the LocaNMF de-

composition (A, C) on the full dataset. In this paper, we have not used this functionality due to

speedups from using a GPU, but we can envision that it might be necessary for bigger datasets and

/ or limitations in computational resources.
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Computational Cost The computational cost of LocaNMF isO(NKdK) (assumingN ≥ Kd ≥

K), with the most time consuming steps being the spatial and temporal HALS updates. maxiterλ

and maxiterK both provide a scaling factor to the above cost. Note that the computational scaling

is also linear in T , but this just enters the cost twice, once during the LQ decomposition of V , and

once more when reconstructing C after the iterations; in practice, this constitutes a small fraction

of the computational cost of LocaNMF. For runtime of LocaNMF on datasets of several sizes, see

the Results section.

Vanilla semi non-negative matrix factorization (vNMF) We use vNMF with random initializa-

tion as a comparison to LocaNMF. When performing a comparison, we use the same number of

components K as found by LocaNMF. The algorithm is detailed in Algorithm 5.

Details of simulations We use LocaNMF to decompose simulated data (Figure 2). We simulate

each region k to be modulated with a gaussian spatial field with centroid at the region’s median,

and a width proportional to the size of the region (σk = 0.2
√

(dk), where dk is the number of

pixels in region k). The spatial components are termed Areal(k), and were 534x533 pixels in size.

The temporal components for the K regions in simulated datasets (1) and (2) were specified as the

following.
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Data: U , V , Π, D, R2
thr, Lthr, kmin, λmin, τ , maxitersK , maxitersλ, maxitersHALS

Result: A, C

[L,Q] = LQ(V ) # LQ decomposition of V

kj ← kmin ∀j ∈ [1, J ]

for iterK ← 1 to maxitersK do
[A,B]← Init-sNMF(U, L, Π, k,maxitersHALS)

λk ← λmin ∀k ∈ [1, K]

for iterλ ← 1 to maxitersλ do

for iterHALS ← 1 to maxitersHALS do
A← HALSspatial(U , L, A, B, Λ, D)

Normalize A

B ← HALStemporal(U , L, A, B)

end

λk:Lk<Lthr ← τλk:Lk<Lthr

end

kj:R2
j<R

2
thr
← kj:R2

j<R
2
thr

+ 1

end

C = BQ
Algorithm 1: Localized semi Nonnegative Matrix Factorization (LocaNMF)

Creal(k) ∼ N

(
3∑
j=1

αjk sin(βjkt), 0.1

)
∀k ∈ [1, K] (10)

αjk ∼ U(−1.5, 1.5) ∀j, k (11)

βjk ∈ {β′1, . . . , β′10}, β′i ∼ U(0.5, 0.63) ∀i ∈ [1, 10]. (12)
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Data: U , L, Π, k,maxitersHALS

Result: A, B

for j ← 1 to J do
Uj = U [πj]

Bj =SVD(UjL, kj); Aj = 1[N×kj ]

for iterHALS ← 1 to maxitersHALS do
Aj ← HALSspatial(Uj, L, Aj, Bj)

Normalize Aj

Cj ← HALStemporal(Uj, L, Aj, Bj)

end

end
Algorithm 2: Initialization using semi Nonnegative Matrix Factorization (Init-sNMF)

Data: U , L, A, B, D (defaults to 0[N×K]), Λ (defaults to 0[K])

Result: A

for k ← 1 to K do

ak ← ak +
[

1
lTk lk

(
U(LBT )k − A(BBT )k − λkdk

)]
+

end
Algorithm 3: Localized spatial update of hierarchical alternating least squares (HALSspatial)

We simulated 10, 000 time points at a sampling rate of 30Hz, and specified the decomposition

U = Areal, and V = Creal.

Tracking parts in behavioral video For the analysis involving the decoding of movement vari-

ables in the Results, we used DeepLabCut (DLC) 26 to obtain estimates of the position of the paws.
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Data: U , L, A, B

Result: B

for k ← 1 to K do
bk ← bk + 1

aTk ak

(
(ATU)kL− (ATA)kB

)
end

Algorithm 4: Temporal update of hierarchical alternating least squares (HALStemporal)

Data: U , V , K,maxitersHALS

Result: A, C

Ak ∼ B(N, 0.1) ∀k ∈ [1, K] # Bernoulli draws over pixels

Ck = E[(Ak ◦ U)V ] ∀k ∈ [1, K]

for iterHALS ← 1 to maxitersHALS do
Normalize C

A← HALSspatial(U , V , A, C)

C ← HALStemporal(U , V , A, C)

end
Algorithm 5: vanilla semi-Nonnegative Matrix Factorization (vNMF)

We hand-labeled 144 frames as identified by K-means, with the locations of the right and left paws.

We used standard package settings for obtaining the evaluations on all frames of one session.

For decoding the X and Y coordinate of each DLC tracked variable using inputs as the

LocaNMF temporal components, we used an MSE loss function to train a one layer dense feed-

forward artificial neural network (64 nodes each, ReLu activations), with the last layer having as

target output the relevant X or Y coordinate. We used 75% of the trials as training data (which is
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itself split into training and validation in order to implement early stopping), and we report the R2

on the held out 25% of the trials.
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6 Appendix

Experimental details

Data type (1) Detailed experimental details are provided in 8; we briefly summarize the experi-

mental procedures below.

Ten mice were imaged using a custom-built widefield macroscope. The mice were trans-

genic, expressing the Ca2+ indicator GCaMP6f in excitatory neurons. Fluorescence in all mice

was measured through the cleared, intact skull. The mice were trained on a delayed two-alternative

forced choice (2AFC) spatial discrimination task. Mice initiated trials by making contact with their

forepaws to either of two levers that were moved to an accessible position via two servo motors.

After one second of holding the handle, sensory stimuli were presented for 600 ms. Sensory stim-

uli consisted of either a sequence of auditory clicks, or repeated presentation of a visual moving bar

(3 repetitions, 200 ms each). For both sensory modalities, stimuli were positioned either to the left

or the right of the animal. After the end of the 600 ms period, the sensory stimulus was terminated

and animals experienced a 500 ms delay with no stimulus, followed by a second 600 ms period

containing the same sensory stimuli as in the first period. After the second stimulus period, a 1000

ms delay was imposed, after which servo motors moved two lick spouts into close proximity of the

animal’s mouth. Licks to the spout corresponding to the stimulus presentation side were rewarded

with a water reward. After one spout was contacted, the opposite spout was moved out of reach to

force the animal to commit to its initial decision. Each animal was trained exclusively on a single
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modality (6 vision, 4 auditory).

Widefield imaging was done using an inverted tandem-lens macroscope (Grinvald et al.,

1991) in combination with an sCMOS camera (Edge 5.5, PCO) running at 60 fps. The top lens

had a focal length of 105 mm (DC-Nikkor, Nikon) and the bottom lens 85 mm (85M-S, Rokinon),

resulting in a magnification of 1.24x. The total field of view was 12.4 x 10.5 mm and the spatial

resolution was ∼20um/pixel. To capture GCaMP fluorescence, a 500 nm long-pass filter was

placed in front of the camera. Excitation light was coupled in using a 495 nm long-pass dichroic

mirror, placed between the two macro lenses. The excitation light was generated by a collimated

blue LED (470 nm, M470L3, Thorlabs) and a collimated violet LED (405 nm, M405L3, Thorlabs)

that were coupled into the same excitation path using a dichroic mirror (#87-063, Edmund optics).

From frame to frame, we alternated between the two LEDs, resulting in one set of frames with

blue and the other with violet excitation at 30 fps each. Excitation of GCaMP at 405 nm results

in non-calcium dependent fluorescence (Lerner et al., 2015), we could therefore isolate the true

calcium-dependent signal as detailed below.

Motion correction was carried out per trial using a rigid-body image registration method

implemented in the frequency domain, with a given session’s first trial as the reference image 42.

We use an established regression-based hemodynamic correction method 4, 8, 40, with an efficient

implementation that takes advantage of the low-rank structure of the denoised signals. In brief, the

hemodynamic correction method consists of low pass filtering a hemodynamic channel Yh (405nm

illumination), then rescaling and subtracting this signal from the GCaMP channel Yg (473nm illu-
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mination), in order to isolate a purely calcium dependent signal. We utilize the low-rank structure

of the denoised data in order to perform the hemodynamic correction efficiently, i.e., we perform

the low-rank decomposition separately for each channel, and then perform hemodynamic correc-

tion using the low rank matrices. Specifically, we obtain Yh = UhVh + Eh and Yg = UgVg + Eg.

We low pass filter Vh (2nd order Butterworth filter with cutoff frequency 15Hz) to get V lpf
h , and

estimate parameters bi and ti for each pixel i such that (Ug)iVg = bi(Uh)iV
lpf
h + ti using linear

regression. We now obtain our hemodynamic corrected GCaMP activity Y as the residual of the

regression, i.e. Y = UgVg − BUhV
lpf
h + T , where B is a diagonal matrix with the terms bi’s

in the diagonal, and T is a vector made by stacking the terms ti. In fact, we keep the low rank

decomposition of Y as UV , with U = [Ug −BUh T ] and V = [Vg; V
lpf
h ; 1], where U ∈ RN×Kd ,

V ∈ RKd×T . We then convert this value into a mean-adjusted fluorescence value of every pixel

(∆F/F ).

Data type (2) Following are the experimental details for widefield imaging experiments involv-

ing an adult Thy1-jRGECO1a mice (line GP8.20, purchased from Jackson Labs) 43. In preparation

for widefield imaging, a thinned-skull craniotomy was performed over the cortex, in which the

mouse was anesthetized with isoflurane, had its skull thinned, and was implanted with an acrylic

headpiece for restraint. The mouse underwent a two-day post operative recovery period and were

habituated to head-fixation and wheel running for two days. To perform the imaging, we head-

fixed the mouse on a circular wheel with rungs. The mouse was free to run for approximately

5 minutes at a time, while an Andor Zyla sCMOS camera was used to capture widefield images
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512x512 pixels in size, at 60 frames per second, with an exposure time of 23.4 ms. To collect

fluorescence data along with hemodynamic data, we used three LEDs which were strobed syn-

chronously with frame acquisition, producing an effective frame rate of 20fps. Two LEDs were

strobed to capture hemodynamic fluctuations (green: 530nm with a 530/43 bandpass filter and red:

625nm), and a separate LED (lime: 565 nm with a 565/24 bandpass filter) was strobed to capture

fluorescence from jRGECO1a. A 523/610 bandpass filter placed in the path of the camera lens to

reject emission LED light. Once collected, images were processed to account for hemodynamic

contamination of the neural signal. Red and green reflectance intensities were used as a proxy

for hemodynamic contribution to the lime fluorescence channel. The differential path length factor

(DPF) was estimated and applied to calculate the DF/F neural signal. We performed hemodynamic

correction as in 18, and then performed the denoising by performing SVD and keeping the top 200

components. Note that this also outputs a low-rank decomposition Yraw = UV + E.

Allen Common Coordinate Framework The anatomical template of Allen CCF v3 as used in

this paper is a shape average of 1675 mouse specimens from the Allen Mouse Brain Connectivity

Atlas 44. These were imaged using a customized serial two-photon tomography system. The maps

were then verified using gene expression and histological reference data. For a detailed description,

see the Technical White Paper here. The acronyms for the relevant components used in this study

are provided in Table 2.
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Acronym Name

MOp primary motor cortex

MOs secondary motor cortex

SSp primary somatosensory cortex

SSs1 supplemental somatosensory cortex

AUD auditory cortex

VIS visual cortex

ACAd1 anterior cingulate cortex (dorsal part)

PL1 prelimbic cortex

RSP retrosplenial cortex

Table 2: Acronyms of the regions in the Allen atlas
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37. Macé, É. et al. Whole-brain functional ultrasound imaging reveals brain modules for visuo-

motor integration. Neuron 100, 1241–1251 (2018).

38. Zhang, P. et al. High-resolution deep functional imaging of the whole mouse brain by photoa-

coustic computed tomography in vivo. Journal of biophotonics 11, e201700024 (2018).

47

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 25, 2019. ; https://doi.org/10.1101/650093doi: bioRxiv preprint 

https://doi.org/10.1101/650093


39. Ma, Y., Thibodeaux, D. N., Shaik, M. A., Kim, S. & Hillman, E. M. Wide-field optical

mapping of neural activity in awake mice and the importance of hemodynamic correction. In

Optics and the Brain, BrS1B–3 (Optical Society of America, 2017).

40. Allen, W. E. et al. Global representations of goal-directed behavior in distinct cell types of

mouse neocortex. Neuron 94, 891–907 (2017).

41. Friedrich, J. et al. Multi-scale approaches for high-speed imaging and analysis of large neural

populations. PLoS computational biology 13, e1005685 (2017).

42. Reddy, B. S. & Chatterji, B. N. An fft-based technique for translation, rotation, and scale-

invariant image registration. IEEE transactions on image processing 5, 1266–1271 (1996).

43. Dana, H. et al. Thy1 transgenic mice expressing the red fluorescent calcium indicator jrgeco1a

for neuronal population imaging in vivo. PloS one 13, e0205444 (2018).

44. Oh, S. W. et al. A mesoscale connectome of the mouse brain. Nature 508, 207 (2014).

48

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 25, 2019. ; https://doi.org/10.1101/650093doi: bioRxiv preprint 

https://doi.org/10.1101/650093

	Introduction
	Model
	Results
	Conclusion
	Methods
	Spatial and Temporal Updates
	Hyperparameter selection


	Appendix
	Acknowledgements

