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Abstract 20 

Background: Stratification of individuals for their risk to develop cardiovascular diseases can be 21 

used for effective prevention and intervention. A significant amount of information for risk 22 

assessment can be obtained through repurposing electronic health records (EHR). The objective 23 

of this study is to derive and assess the performance of prediction models for cardiovascular 24 

outcomes by using EHR-derived data. 25 

Methods: We used the Stanford Medicine Research Data Repository (STARR) data from 2000-26 

2017, containing over 2.1 million patients. A subset of 762,372 individuals with complete 27 

International Classification of Diseases (ICD) data was used to fit Cox proportional hazard 28 

models for prediction of six cardiovascular-related diseases and type 2 diabetes. 29 

Results: The derived prediction models indicated consistent high discrimination performance 30 

(C-index) for all diseases examined: coronary artery disease (0.85), hypertension (0.82), type 2 31 

diabetes (0.77), stroke (0.76), atrial fibrillation (0.82) and abdominal aortic aneurysm (0.77). 32 

 Lower prediction abilities were observed for deep vein thrombosis (0.67).  These results were 33 

consistent across age groups and maintained good prediction abilities among individuals with 34 

pre-existing diabetes or hypertension. Assessment of model calibration is ongoing. 35 

Conclusions: We proposed new prediction models for the seven diseases using ICD codes 36 

derived from EHR data.  EHR data can be used for health risk assessment, but challenges related 37 

to data quality and model generalizability and calibration remain to be solved. 38 
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Introduction 39 

Cardiovascular diseases (CVD), including diabetes, are the leading causes of global morbidity, 40 

mortality and health care costs [1-3].  Appropriate early risk assessment can identify high-risk 41 

individuals, spare those at lower risk from intensive interventions, educate patients, provide 42 

information on population outcomes, and help in resource allocation [4-6].  In order to 43 

accurately determine the risk of developing cardiovascular events, the multifactorial nature of 44 

these chronic diseases needs to be considered.   45 

Tools for evaluating cardiovascular risk have been available since the Framingham investigators 46 

developed the original algorithms in 1960s [7-10].  Since then, multitudes of other risk 47 

assessment approaches have been developed that incorporate an increasing number of risk 48 

factors, biomarkers, and comorbidities [10-14].    Clinical application of these models, either for 49 

individual patient care or for the purpose of population disease management, requires 50 

validation across different patient populations and data sources [15, 16].  There are 51 

considerable factors that hinder the performance analysis of any cardiovascular risk model; this 52 

is primarily due to the difficulty in obtaining standardized, pertinent large data sets that can be 53 

used for calibration and validation studies [17-19].   54 

EHR-based information represents a valuable source of data that can be used for evaluation of 55 

prediction modeling. EHRs have the distinct advantage of containing extensive biomedical 56 

information on large numbers of individuals across multiple data points. The purpose of the 57 

current study is to use EHR information from a large population of patients (STARR) to evaluate 58 
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the performance of newly developed risk assessment models using International Classification 59 

of Diseases (ICD) outcomes derived from the EHR data.   60 
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Material and Methods 61 

Data source 62 

We obtained de-identified patient data from the STARR dataset. The STARR population (2.1 63 

million) includes patients from all ages (0 to 91 years old) who have attended Stanford Hospital 64 

or any of its clinics from 2001 to 2017. Demographic information, encounters, lab results and 65 

pharmacy orders are recorded in the database. However, conventional cardiovascular risk 66 

factors (biomarkers, diabetes status and family history) had a high frequency of missing data 67 

(80-100 percent). For this reason (i.e. the complete data was limited) we looked into alternative 68 

types of data. Specifically, we focused on using only ICD-derived (International Classification of 69 

Diseases, Tenth Revision, Clinical Modification) risk factors for prediction of the cardiovascular-70 

related events. Thus, we included all individuals who were 18 years-old or older, who had at 71 

least one ICD code for the relevant cardiovascular risk factors and had non-missing information 72 

on age, BMI and sex. This decreased the population size to 762,372.  73 

 74 

Risk factors and outcome definitions 75 

In addition to age, BMI and sex, the presence of cardiovascular-related risk factors was defined 76 

using the following ICD-10 codes: elevated triglycerides (E78.1), elevated cholesterol (E78.00), 77 

depressed HDL cholesterol (E78.6), elevated LDL Cholesterol (E78.5), elevated creatinine 78 

(R79.89) and vitamin D deficiency (E55.9).  79 

Disease outcomes were defined based on the following ICD codes: coronary artery disease 80 

(CAD): I20–I25 and T82 codes; hypertension (HTN): I10, I15, and R03.0 codes; type 2 diabetes 81 

mellitus (DM); E11, E13, and E14 codes, stroke: G46.3, G46.4, I63, I66, I67, and I693 codes; deep 82 
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vein Thrombosis (DVT): H34.8, H40.8, I23.6, I24.0, I63, I67.6, I74, I81, I82, I87.2, I87.3, K64.5, 83 

N48.8, N52.0, O03.3, O03.8, O04.8, O07.3, O08.7, 022, O87, Q26, T82.8, T83.8, T84.8, T85.8, 84 

and Z86.7 codes; abdominal aortic aneurysm (AAA): I71 and I79.0 codes; and for atrial 85 

fibrillation (AF): I48-49 codes. For each disease endpoint, we also obtained the date when the 86 

patient was diagnosed with the endpoint. 87 

 88 

Statistical Analysis 89 

We consider risk factors recorded from 2001 to 2012 and use these risk factors to predict five-90 

year risk for each disease outcome between 2012 and 2017. For each disease outcome, we also 91 

excluded individuals who were diagnosed with that disease before the baseline year of 2012. 92 

That is, we considered only incident outcomes. End-of-follow up is defined as the diagnosis of 93 

the disease, death or end of the study (December 2017).  94 

Linear Cox proportional hazard (PH) models were developed using lifelines 0.13.0 Python 95 

library.  96 

Since the risk factors were not measured at baseline, but during an 11 year period, they were 97 

modeled as time-varying covariates. If multiple instances of the same risk factors were 98 

measured for the same individual we considered the last instance, as this is the closest to the 99 

baseline. 100 

The discrimination was assessed on the basis of five-fold cross-validated Harrell's concordance 101 

index (C-index) [20-22]. The cross-validated C-index was used as a main metric for assessing 102 

discriminative ability of the Cox PH-based models.  103 
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Principal component analysis (PCA) was used for validating the selection of variables and to 104 

avoid overfitting through comparison of the number of selected variables and optimal number 105 

of principal components [23]. The number of components to be retained was determined by 106 

using maximum-likelihood density estimation and full singular value decomposition as 107 

parameters of the PCA function, which applies Bayesian model selection to probabilistic PCA in 108 

this configuration. 109 

 110 

Sensitivity Analysis 111 

To evaluate the prediction performances of the derived models across different subsets of the 112 

population we performed sensitivity analyses in the following subpopulations: 1) healthy 113 

participants without any of the cardiovascular-related diseases or type 2 diabetes at the 114 

baseline, 2) the following age groups, with age measured at baseline: <45, 45-55, 56-65, 66-75, 115 

>75, 3) individuals with at least one non-target disease (DM, HTN, Stroke, DVT). 116 
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Results 117 

The study population included 762,372 adult patients ages 18 years old and above, which 118 

visited Stanford Hospital and clinics during the period spanning 2000-2017, had at least one 119 

cardiovascular-related ICD code and information on age, sex and BMI (Table 1). We notice that 120 

this approach reduces the generalizability of our results. Nonetheless, this study represents a 121 

proof of concept that prediction models can be derived from ICD data. Table 2 reports the 122 

number of individuals included in each disease-specific analysis and the incidence of the main 123 

disease outcome for general population and age stratified sub-populations. Individuals 124 

reported in Table 2 were used to derive the final predictions. As presented in Table 3, the cross-125 

validated discrimination metrics (C-index) across all disease was high (>0.75) except for DVT 126 

with a C-index of 0.67. 127 

Modeling performance was further evaluated across clinically-distinct sub-populations (Table 128 

4).  Prediction models for each disease had consistent behavior across all the subpopulations 129 

examined.   130 
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Discussion  131 

The extensive availability of EHR data offers a unique and promising opportunity for the 132 

application of prediction models at the point of care or for population planning. EHR data have 133 

the advantage of including large numbers of individuals and recording many interactions that 134 

an individual has with the health system. This aspect allows us to model longitudinal changes in 135 

risk factors. The main disadvantage of the EHR-based data is low data quality, poor 136 

generalizability outside the specific EHR system and loss at follow-up (i.e. inability to track 137 

people that change health systems or emigrate). 138 

The models derived in this paper focus on the same set of diseases that have been the focus of 139 

a companion paper developed on a large epidemiological cohort study (UK Biobank) [24]. 140 

Despite different data sources, we observed comparable prediction abilities across the studies. 141 

However, one advantage of large epidemiological studies as compared to EHR-based data is the 142 

limited number of missing data that allows for direct modeling of biomarkers as risk factors. In 143 

the current study this was not possible, and we had to rely on ICD-based diagnosis. This is 144 

suboptimal as the lack of ICD codes does not necessarily imply that the risk factor is not present 145 

in the individual. Moreover, this binarizes the underlying continuous variables (e.g. cholesterol), 146 

which limits the predictive value of such risk factors. Nonetheless, we still observe good 147 

prediction abilities indicating that the current, pragmatic approach has some value. 148 

In this study we didn’t evaluate model calibration. This is a limitation that will be addressed in a 149 

future revision of the manuscript. 150 
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Conclusions 151 

In this report, we present the development and validation of risk prediction models for 152 

cardiovascular-related diseases and type 2 diabetes using EHR data. Due to the large number of 153 

missing data for traditional risk factors, ICD codes were used to define the model predictors. 154 

The developed models had good prediction abilities in the entire study population as well in 155 

specific clinically-relevant subgroup populations. Future research will focus on including 156 

additional risk factors, such as biomarkers and genetic information, and on evaluating the 157 

generalizability outside this specific study population. Prediction models derived from EHR data 158 

have the potential to be used for primary prevention of cardiovascular-related disease. 159 

  160 
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Table 1: Characteristics of the population included for the final analysis (762, 372). Number of 161 

individuals in each group, on brackets, percentage of individuals in each group. 162 

Gender No. [%] 

   Male 412,062 [54.05] 

   Female 350,310 [45.94] 

Race  

   White 368,378 [48.32] 

   African-American 28,436 [3.73] 

   Asian 91,103 [11.95] 

   Unknown 142,182 [18.26] 

   Other 135,244 [17.74] 

Age  

   18-35 182,969 [23.99] 

   35-45 126,554 [16.60] 

   45-55 134,940 [17.70] 

   55-65 129,603 [17.00] 

   65-75 109,019 [14.30] 

   75+ 79,287 [10.40] 

 163 
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Table 2: Population size and disease incidence. Incidence (number of incident cases/total 164 

population) for each target disease is presented for the total population as well as age groups 165 

for each disease. Numbers inside the parenthesis are the Incidence percentages. 166 

 CAD DM HTN Stroke AF DVT AAA 

   General 

25,409 / 

762,372 

(3.33%) 

30,652 / 

762,372 

(4.02%) 

101,901 / 

762,372 

(13.37%) 

8,810 / 

762,372 

(1.16%) 

23,035 / 

762,372 

(3.02%) 

13,857/ 

762,372 

(1.82%) 

3,260 / 

762,372 

(0.43%) 

   < 45 

1202 / 

309,523 

(0.39%) 

4,504 / 

309,523 

(1.46%) 

14,803 / 

309,523 

(4.78%) 

1,046 / 

309,523 

(0.34%) 

1,421 / 

309,523 

(0.46%) 

2,301 / 

309,523 

(0.74%) 

322 / 

309,523 

(0.10%) 

   46-55 

2,631 / 

134,940 

(1.95%) 

5,384 / 

134,940 

(3.99%) 

17,312 / 

134,940 

(12.83%) 

1,039 / 

134,940 

(0.77%) 

1,970 / 

134,940 

(1.46%) 

2,253 / 

134,940 

(1.67%) 

337 / 

134,940 

(0.25%) 

   56-65 

5,611 / 

129,603 

(4.33%) 

7,724 / 

129,603 

(5.96%) 

23,432 / 

129,603 

(18.08%) 

1,620 / 

129,603 

(1.25%) 

4,070 / 

129,603 

(3.14%) 

2,955 / 

129,603 

(2.28%) 

609 / 

129,603 

(0.47%) 

   66-75 

8,100 / 

109,019 

(7.43%) 

7,958 / 

109,019 

(7.30%) 

25,129 / 

109,019 

(23.05%) 

2235 / 

109,019 

(2.05%) 

6,552 / 

109,019 

(6.01%) 

3,216 / 

109,019 

(2.95%) 

1,025 / 

109,019 

(0.94%) 

> 75 

7,865 / 

79,287 

(9.92%) 

5,082 / 

79,287 

(6.41%) 

21,225 / 

79,287 

(26.77%) 

2,870 / 

79,287 

(3.62%) 

9,022 / 

79,287 

(11.38%) 

3,132 / 

79,287 

(3.59%) 

967 / 

79,287 

(1.22%) 

 167 
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Table 3: Five-fold cross validated C-index [95% CI] as a measure of prediction performance for 168 

each disease.  169 

Disease General 

CAD 0.86 [0.83-0.90] 

DM  0.77 [0.75-80] 

HTN  0.82 [0.79-0.86] 

Stroke  0.76 [0.72-0.79] 

AF  0.82 [0.80-0.85] 

DVT 0.67 [0.64-0.70] 

AAA 0.77 [0.73-0.80] 

  170 
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Table 4: Discriminative ability of risk prediction models across different subgroups. 171 

Test Subpopulation CAD DM HTN Stroke AF DVT AAA 

General 
0.86  

[0.83-0.90] 

0.77 

[0.75-0.80] 

0.82 

[0.79-0.86] 

0.76 

[0.72-0.79] 

0.82 

[0.80-0.85] 

0.67 

[0.64-0.70] 

0.77 

[0.73-0.80] 

Healthy + Target 

Disease 

0.85 

[0.83-0.88] 

0.77 

[0.75-0.80] 

0.82  

[0.79-0.86] 

0.76 

[0.72-0.79] 

0.82 

[0.80-0.85] 

0.67 

[0.64-0.70] 

0.77 

[0.73-0.80] 

Age < 45 
0.85 

[0.82-0.87] 

0.77 

[0.75-0.80] 

0.82 

[0.79-0.86] 

0.76 

[0.73-0.79] 

0.82 

[0.80-0.85] 

0.66 

[0.64-0.70] 

0.77 

[0.74-0.80] 

Age 45-56 
0.85 

[0.83-0.88] 

0.77 

[0.74-0.79] 

0.81 

[0.77-0.84] 

0.74 

[0.71-0.76] 

0.81 

[0.79-0.83] 

0.67 

[0.64-0.70] 

0.78 

[0.75-0.80] 

Age 55-65 
0.85 

[0.83-0.88] 

0.76 

[0.73-0.80] 

0.82 

[0.79-0.86] 

0.74 

[0.72-0.76] 

0.81 

[0.79-0.83] 

0.67 

[0.64-0.70] 

0.75 

[0.73-0.78] 

Age 66-75 
0.85 

[0.82-0.87] 

0.77 

[0.73-0.80] 

0.82 

[0.78-0.86] 

0.77 

[0.75-0.79] 

0.82 

[0.80-0.85] 

0.68 

[0.66-0.71] 

0.78 

[0.76-0.80] 

Age > 75 
0.85 

[0.83-0.88] 

0.78 

[0.75-0.81] 

0.80 

[0.77-0.82] 

0.77 

[0.74-0.79] 

0.82 

[0.80-0.85] 

0.68 

[0.65-0.70] 

0.75 

[0.73-0.77] 

DM 
0.84 

[0.81-0.88] 

0.77 

[0.75-0.80] 

0.82 

[0.79-0.86] 

0.74 

[0.72-0.79] 

0.81 

[0.79-0.84] 

0.65 

[0.62-0.68] 

0.76 

[0.73-0.80] 

HTN 
0.86 

[0.82-0.89] 

0.75 

[0.75-0.80] 

0.82 

[0.79-0.85] 

0.76 

[0.72-0.79] 

0.82 

[0.80-0.85] 

0.67 

[0.64-0.70] 

0.78 

[0.7-0.80] 

Stroke 
0.83 

[0.81-0.86] 

0.77 

[0.74-0.79] 

0.83 

[0.81-0.86] 

0.76 

[0.72-0.79] 

0.80 

[0.78-0.83] 

0.70 

[0.67-0.72] 

0.72 

[0.70-0.75] 

DVT 
0.87 

[0.83-0.90] 

0.75 

[0.72-0.79] 

0.81 

[0.79-0.83] 

0.75 

[0.72-0.79] 

0.83 

[0.81-0.85] 

0.67 

[0.64-0.70] 

0.82 

[0.80-0.85] 
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