
Clonal replacement of tumor-specific T cells following PD-1 blockade 
 
Kathryn E. Yost1,#, Ansuman T. Satpathy1,2,3,#,*, Daniel K. Wells3, Yanyan Qi1, Chunlin 
Wang4, Robin Kageyama3, Katherine McNamara5,6,7, Jeffrey M. Granja1,6,8, Kavita Y. 
Sarin9, Ryanne A. Brown2,9, Rohit K. Gupta10, Christina Curtis5,6,7, Samantha L. 
Bucktrout3, Mark M. Davis3,11,12,13, Anne Lynn S. Chang9,*, Howard Y. Chang1,3,6,9,13,* 
 
1 Center for Personal Dynamic Regulomes, Stanford University School of Medicine, 
Stanford, CA 94305, USA. 
2 Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, 
USA. 
3 Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA. 
4 iRepertoire, Inc. 800 Hudson Way Suite 2304 Huntsville, AL 35806 
5 Department of Medicine, Division of Oncology, Stanford University School of Medicine, 
Stanford, CA 94305, USA. 
6 Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, 
USA. 
7 Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, 
USA. 
8 Program in Biophysics, Stanford University School of Medicine, Stanford, CA 94305, 
USA. 
9 Department of Dermatology, Stanford University School of Medicine, Redwood City, CA 
94063, USA. 
10 Stanford Biobank, Stanford University School of Medicine, Palo Alto, California 94304, 
USA. 
11 Department of Microbiology and Immunology, Stanford University School of Medicine, 
Stanford, CA 94305, USA. 
12 Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 
94305, USA. 
13 Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, 
CA 94305, USA. 
# These authors contributed equally 
*To whom correspondence should be addressed. E-mail: howchang@stanford.edu, 
alschang@stanford.edu and satpathy@stanford.edu  
 
 
 
 
 
 
 
 
 
 
 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 24, 2019. ; https://doi.org/10.1101/648899doi: bioRxiv preprint 

https://doi.org/10.1101/648899


  
	

	

Abstract 
Immunotherapies that block inhibitory checkpoint receptors on T cells have transformed 
the clinical care of cancer patients. However, which tumor-specific T cells are mobilized 
following checkpoint blockade remains unclear. Here, we performed paired single-cell 
RNA- and T cell receptor (TCR)- sequencing on 79,046 cells from site-matched tumors 
from patients with basal cell carcinoma (BCC) or squamous cell carcinoma (SCC) pre- 
and post-anti-PD-1 therapy. Tracking TCR clones and transcriptional phenotypes 
revealed a coupling of tumor-recognition, clonal expansion, and T cell dysfunction: the T 
cell response to treatment was accompanied by clonal expansions of CD8+CD39+ T cells, 
which co-expressed markers of chronic T cell activation and exhaustion. However, this 
expansion did not derive from pre-existing tumor infiltrating T cell clones; rather, it 
comprised novel clonotypes, which were not previously observed in the same tumor. 
Clonal replacement of T cells was preferentially observed in exhausted CD8+ T cells, 
compared to other distinct T cell phenotypes, and was evident in BCC and SCC patients. 
These results, enabled by single-cell multi-omic profiling of clinical samples, demonstrate 
that pre-existing tumor-specific T cells may be limited in their capacity for re-invigoration, 
and that the T cell response to checkpoint blockade relies on the expansion of a distinct 
repertoire of T cell clones that may have just recently entered the tumor. 
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Introduction 
Clinical therapies that enhance the activity of tumor-specific T cells have demonstrated 
efficacy in a variety of human cancers1. However, these immunotherapies are not 
effective in all patients with a given cancer subtype, nor in all cancers2,3. For example, 
while a subset of patients with metastatic melanoma experience a response to 
immunotherapy based on blocking the T cell inhibitory receptor programmed death-1 (PD-
1), including clinical remission up to 10 years after treatment, nearly 70% of patients do 
not respond or relapse shortly after remission4–6. Therefore, studies interrogating the 
molecular basis for successful clinical and immunological responses to therapy are 
needed.  
 
The efficacy of the anti-tumor T cell response relies on several mechanisms, including 
the presentation of tumor antigens by major histocompatibility complex (MHC) molecules, 
clonal expansion of tumor-specific T cells, and the sustained cytolytic activity of these 
cells for the duration of treatment. Deficiencies in any of these steps can lead to an 
ineffective or incomplete response and cancer progression. For example, tumor-
infiltrating T lymphocytes (TILs) can undergo ‘T cell exhaustion,’ a differentiation process 
that induces the upregulation of inhibitory surface receptors, decreases activation in 
response to cognate antigens, and limits the potential for reinvigoration following PD-1 
blockade7–12. However, since T cell clones bearing tumor-specific T cell receptors (TCR) 
represent only a minority of all TILs13, the measurement of such dysfunction-associated 
molecular pathways can be challenging in ensemble cell profiling experiments. Moreover, 
whether dysfunctional states limit the reinvigoration of tumor-intrinsic T cells by 
checkpoint blockade, and whether successful immunotherapy relies on overcoming such 
dysfunction remains unclear. 
 
These observations underscore the importance of single-cell analysis for dissecting the 
clonal T cell response to cancer. However, to date, such studies have not been 
adequately performed in site-matched human tumor samples following immunotherapy 
response, partly due the difficulty in obtaining the necessary clinical specimens. 
Therefore, the molecular profiles of TILs following immunotherapy and their clonal 
dynamics pre- and post-treatment remain poorly understood. Here we describe the 
single-cell landscape of advanced basal cell carcinoma (BCC) and squamous cell 
carcinoma (SCC) before and after anti-PD-1 treatment in site-matched primary tumors. 
We integrate scRNA- and scTCR-seq methods to show several principles of the clonal T 
cell response to checkpoint blockade in these tumor types: 1) T cells expressing the 
identical TCR exhibit highly correlated phenotypes, which are maintained after PD-1 
blockade, 2) clonally-expanded T cells are enriched in CD8+CD39+ cells post-therapy and 
co-express markers of chronic T cell activation and exhaustion, and 3) major pre-therapy 
T cell clones are not reinvigorated following PD-1 blockade, but rather are replaced by 
novel expanded TCR clones that were not previously observed in the same tumor. These 
results suggest that checkpoint blockade relies on the recruitment of tumor-extrinsic T 
cell clones, which has implications for response monitoring and prediction, as well as for 
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the future design of immunotherapies based on the premise of recruiting new waves of T 
cell clones to the tumor microenvironment (TME).  
 
Results 
We sampled site-matched BCCs pre- and post-PD-1 blockade from 11 patients, many of 
whom were enrolled in a proof-of-principle, non-randomized, open-label study of 
pembrolizumab (anti-PD-1)14, and generated droplet-based 5’ scRNA- and TCR-seq 
libraries (24 samples total) (Fig. 1a, Supplemental Table 1, and Methods). All patients 
had histologically-proven advanced or metastatic BCC and were not good candidates for 
surgical resection14. Exclusion criteria included prior exposure to checkpoint blockade 
agents, use of systemic immunosuppressants within 4 weeks of first biopsy, or treatment 
with radiotherapy or any other anti-cancer treatment within 4 weeks of first biopsy14. Pre-
therapy biopsies were collected from accessible skin tumors either on Day 0 (prior to anti-
PD-1 blockade initiation) or during prior visits. Post-therapy specimens were collected 
from the same tumor site an average of ~2 months after treatment, and best response 
was assessed using RECIST criteria15 with 55% of patients demonstrating a clinical 
response, comparable with published results14 (Supplementary Table 1).  
 
We also performed several orthogonal measurements, including H&E staining and 
immunohistochemistry (IHC) for CD3, CD8, and PDL1, whole exome sequencing (WES), 
HLA typing, and bulk tumor and peripheral blood TCR-seq for the majority of samples 
(Fig. 1b-c and Supplementary Table 1). These data supported the presence of an 
immunological response to checkpoint blockade. First, histological assessments showed 
a diffuse stromal distribution of CD3+ T cells prior to checkpoint blockade and increased 
T cell infiltration following therapy (Fig. 1b). Second, WES revealed a high mutational 
burden characteristic of BCC (average 17 mutations/Mb, range 0.25-58 mutations/Mb), 
as well as mutations in known driver genes16 and a strong bias for C to T mutations 
characteristic of UV-induced mutations in skin cancers (Supplementary Fig. 1a). 
Analysis of mutation burden pre- and post-treatment from patients with matched WES 
identified several patients with significant mutational loss following treatment affecting 
both clonal and sub-clonal mutations, as well as neoepitopes, suggesting the presence 
of tumor immunoediting following PD-1 blockade (Fig. 1c, Supplementary Fig. 1b-c)17. 
Interestingly, we observed two cases of novel tumor sub-clones emerging post-treatment 
which were devoid of predicted neoepitopes (Supplementary Fig. 1c). 
 
In total, we obtained scRNA-seq profiles from 55,666 malignant, immune, and stromal 
cells from BCC samples, of which 53,030 cells passed quality control filters (95%; Fig. 
1d, Supplementary Fig. 1d and Methods). We performed a second cDNA amplification 
step to amplify TCR sequences and obtained TRA or TRB reads from 28,371/33,106 T 
cells (85%), of which 19,296 cells (68%) generated paired TRA and TRB data (Fig. 1e 
and Methods). We first broadly clustered single cells by scRNA-seq profiles using shared 
nearest neighbor (SNN) clustering based on significant principal components (PCs) and 
visualized cell clusters using UMAP projection (Fig. 1d, Methods)18–20. This method 
identified 19 clusters, which were annotated as 2 malignant cell clusters, 6 T cell clusters 
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(2 CD4+ T cell clusters, 3 CD8+ T cell clusters, and proliferating T cells), 4 stromal cell 
clusters (endothelial cells, melanocytes, myofibroblasts, and cancer-associated 
fibroblasts), 3 myeloid clusters (dendritic cells, macrophages, and plasmacytoid dendritic 
cells), 3 B cell clusters (2 B cell clusters and plasma cells), and 1 NK cell cluster (Fig. 
1d). Cell types were annotated using three parallel approaches: 1) correlation between 
aggregated cluster expression profiles and bulk RNA expression profiles from reference 
populations21, 2) differential gene expression, and 3) known marker gene expression 
(Methods, Supplementary Fig. 2a-c). Immune cell classifications based on gene 
expression profiles were consistent with the staining characteristics of labeled antibodies 
to cell surface markers used to isolate cells prior to scRNA-seq, and TCR sequences 
were almost exclusively detected in cells classified as T cells (Fig. 1e, Supplementary 
Fig. 2d). Notably, immune cells from different patients clustered together, indicating that 
immune cell types in the BCC tumor microenvironment (TME) were largely consistent 
across patients and did not represent patient-specific subpopulations or batch effects 
(Fig. 1e, Supplementary Fig. 2d). We confirmed malignant cell classification using 
single-cell copy number variation (CNV) estimation relative to non-malignant stromal cells 
(Methods)22. This analysis revealed patient-specific copy alterations only in malignant 
cell clusters, which were consistent with CNVs detected by bulk tumor exome 
sequencing, as well as with previously described CNVs in BCC (Fig. 1f, Supplementary 
Fig. 3a)16. 
 
The samples in this study included the full spectrum of BCC subtypes, including nodular, 
infiltrative, and metatypical subtypes, which are characterized by differences in 
histopathology and clinical outcome (Fig. 1g, Supplementary Table 1)23. To explore 
gene expression associated with BCC subtypes, we re-clustered 3,548 malignant cells 
and found that malignant cells segregated by patient and by subtype (Fig. 1h), indicating 
significant intertumoral heterogeneity, as has been observed in other cancer types24,25. 
We identified a core tumor gene expression program that was consistent across tumor 
cells from all patients and distinguished malignant cells from non-malignant cells based 
on differential expression (Supplementary Fig. 3b). This gene signature included 
EPCAM, BCAM and TP63, which are diagnostic markers of BCC and encode key 
regulators of cellular adhesion and epithelial identity (Supplementary Fig. 3b)26–28. We 
also identified 577 genes differentially expressed across patient tumors, including genes 
related to Ras signaling, suggesting aberrant activation of squamous cell pathways, as 
has been suggested previously (Supplementary Fig. 3b)29. To explore this further, we 
scored individual malignant cells for enrichment of BCC and squamous cell carcinoma 
(SCC) gene expression signatures derived from bulk data30,31. This analysis revealed 
mutually exclusive gene expression patterns in individual tumors (Fig. 1i). Namely, 
tumors cells from individual patients existed along a spectrum from basal cell to 
squamous cell differentiation. Ordering of cells based on signature scores revealed an 
association of differentiation signatures and histological presentation; nodular BCCs were 
enriched for the basal cell signature, while infiltrative and metatypical BCCs were 
enriched for the squamous signature (Fig. 1i). Altogether, these results demonstrate that 
BCC gene expression is driven by patient-specific malignant pathways, but largely does 
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not influence immune cell infiltration patterns in the TME.  
 
We next focused our analysis on TILs to understand the clonal T cell response to 
checkpoint blockade using paired scRNA and TCR-seq (scRNA+TCR-seq). First, we re-
clustered 33,106 TILs and identified 9 distinct T cell clusters (Fig. 2a, Supplementary 
Fig. 4a-c). These included 3 predominantly CD4+ T cell clusters, 4 predominantly CD8+ 
T cell clusters, and 2 clusters that included both subtypes. All clusters contained cells 
from multiple patients and both pre- and post-treatment timepoints (Fig. 2a, 
Supplementary Fig. 4d). We annotated cluster phenotypes using differentially 
expressed marker genes and comparisons to bulk RNA-seq data13 (Methods, Fig. 2b, 
Supplementary Fig. 4a-c). CD4+ clusters included: 1) regulatory T cells (Tregs), which 
expressed FOXP3, IL2RA, and CTLA4, 2) follicular helper T cells (Tfh), which expressed 
BTLA and CD200, and 3) T helper 17 cells (Th17), which expressed IL26 and KLRB1 
(Fig. 2a-b). CD8+ T cell clusters spanned the spectrum of T cell activation and included: 
1) naïve cells, which expressed CCR7 and IL7R, 2) memory cells, which expressed 
EOMES and CXCR3, 3) effector memory cells, which expressed memory cell genes and 
effector genes (FGFBP2 and KLRD1), 4) activated cells, which expressed cytotoxic 
genes (IFNG and TNF) and AP-1 transcription factors (FOS, JUN), and 5) chronically 
activated/exhausted cells (hereafter referred to as exhausted cells), which expressed 
known markers of T cell dysfunction (PDCD1, HAVCR2, CTLA4, TIGIT, and LAG3; Fig 
2a-b)9. Finally, CD8+ T cells also included an intermediate ‘exhausted/activated’ cluster, 
which contained cells that expressed genes associated with both T cell activation and 
exhaustion. Notably, comparisons of cluster frequencies pre- and post-therapy revealed 
an increased frequency of Tfh cells and activated, exhausted, and exhausted/activated 
CD8+ T cells after treatment, supporting reports that PD-1 blockade primarily impacts the 
expansion of CD8+ T cell phenotypes in the TME (Fig. 2b)32,33. 
 
We used diffusion maps to visualize the relationship between CD8+ T cell clusters on a 
pseudotime trajectory which placed each single cell along a two-component trajectory 
(Methods, Fig. 2c)34. The first diffusion component separated activated and exhausted 
cells, and the second diffusion component separated naïve and memory cells from 
activated and exhausted cells (Fig. 2c, Supplementary Fig. 5a). Accordingly, the first 
diffusion component was highly correlated with terminal differentiation and T cell 
exhaustion genes, and the average expression of dysfunction genes, including PDCD1 
and HAVCR2, increased along this component (Fig. 2c, Supplementary Fig. 5b). The 
second diffusion component was highly correlated with the expression of T cell activation 
genes, and the average expression of cytotoxic genes, including IFNG and TNF, 
increased along this component (Fig. 2c, Supplementary Fig. 5b). To define a core gene 
signature of T cell exhaustion in the setting of immunotherapy, we analyzed the co-
expression of differentially expressed genes between activated and exhausted clusters 
(Fig. 2d). This analysis identified an exhaustion-specific gene expression module 
containing known exhaustion markers (HAVCR3, TIGIT), tissue resident memory T cell 
(Trm) markers (ITGAE, CXCR6)35,36, and the extracellular ATPase CD39 (ENTPD1), 
which has been shown to identify CD8+ TILs that recognize tumor antigens13,37–39. The 
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high levels of PDCD1 (PD-1)40, presence of ITGAE (CD103) and lack of KLRG113,37–39 in 
exhausted clusters also supported an enrichment of tumor-specific T cells in this 
population. Altogether, these results suggest that exhausted CD8+ TILs increase after 
PD-1 blockade and express gene signatures of chronic activation, T cell dysfunction, and 
tumor reactivity. 
 
Since tumor antigen-specific CD8+ T cell clones will expand during a productive immune 
response (pre- or post-therapy), we analyzed scTCR-seq profiles to identify clonally-
expanded cells as a surrogate marker for tumor-specificity. We grouped cells by 
clonotype based on both TCRa and TCRb chain sequences and first examined the 
distribution of clone sizes found in each cluster (Fig. 2e). This analysis showed that the 
exhausted T cell cluster was enriched for large clone sizes compared to other CD8+ 
clusters. We also calculated the Gini index, a statistical measure of distribution inequality, 
for each scRNA-seq cell cluster and found that exhausted T cells had significantly higher 
clonality compared to all other CD8+ T cell clusters (mean Gini index = 0.46 for exhausted 
T cells, mean Gini index = 0.19 for other CD8+ clusters; p = 0.0022; Fig. 2e). We further 
examined the relationship between T cell states and clonal expansion by scoring all CD8+ 
T cells for activation and exhaustion signatures, calculated from the top 50 genes 
correlated with IFNG and HAVCR2 expression, respectively (Methods, Fig. 2f). We 
found that enrichment of the two signatures in individual cells was largely mutually 
exclusive, and only a small population of cells showed high enrichment of both exhaustion 
and activation signatures. As in the prior analysis, we found that T cells with a high 
exhaustion signature enrichment also exhibited patterns of gene expression associated 
with tumor reactivity, including the expression of CD39 (ENTPD1) and CD103 (ITGAE), 
and the absence of KLRG1 expression13,37–39. To examine the phenotypes of individual 
expanded clones in this context, we grouped individual cells by clonotype and assigned 
exhaustion and activation scores to each clone based on the average score of all cells 
belonging to that clone (Fig. 2g). Indeed, the most expanded TIL clones showed a high 
exhaustion gene signature. We also examined the proliferative capacity of distinct clones 
by scoring individual cells for expression of cell cycle associated genes (Methods) and 
calculating the average cell cycle score for all cells belonging to each clone. Exhausted 
cells also exhibited a high proliferation signature, in line with similar analysis of 
dysfunctional CD8+ T cells in melanoma38. Of note, clones with the highest exhaustion 
signature enrichment were not considerably proliferative or clonally expanded, similar to 
previous reports suggesting that later stages of T cell dysfunction may have limited 
proliferative potential38. Analyses of clonal expansion in CD4+ T cell clusters 
demonstrated a similar increase in clonality in Tfh cells following treatment, which in one 
patient was accompanied by an increase in B cells expressing germinal center markers, 
suggesting the presence of a tertiary lymphoid organ (Supplementary Fig. 6a-d).  
 
To understand the lineage relationships between T cell phenotypes, we performed a 
paired analysis of T cell clonotypes and phenotypes. Globally, we found that T cells of the 
same clonotype were significantly more likely to share a common phenotype and have 
more highly correlated gene expression signatures than randomly grouped cells (p < 2.2 
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x 10-16, unpaired t-test), in line with prior studies (Fig. 3a-c, Supplementary Fig. 7a-c)41–

43. Notably, this property was observed in each individual patient, in CD4+ and CD8+ T 
cells, and both pre- and post-therapy (Fig. 3b, Supplementary Fig. 7a-c). We also used 
GLIPH (grouping of lymphocyte interactions by paratope hotspots) to identify ‘TCR 
specificity groups,’ clusters of distinct TCR sequences that are likely to recognize 
common antigens via shared motifs in the CDR3 sequence44. Similar to the analysis of 
cells within a given clonotype (that is, sharing identical TCR sequences), T cells 
expressing distinct TCRs within a specificity group were also more likely to share a 
common phenotype (pre-treatment: p = 0.00035, post-treatment: p = 0.0088, unpaired t-
test) and have more highly correlated gene expression signatures compared to randomly 
grouped TCRs (pre-treatment: p < 2.2 x 10-16, post-treatment: p = 3.7 x 10-16, unpaired t-
test; Fig. 3a-c, Supplementary Fig. 7d). However, cells with distinct TCRb sequences 
in the same specificity group were significantly more dissimilar than cells which shared 
the same TCR sequences (p < 2.2 x 10-16, unpaired t-test; Fig. 3c). These results suggest 
that clonally-expanded TILs are highly correlated in cellular phenotype (perhaps due to 
the epigenetic stability of parent T cells11), and that PD-1 blockade does not lead to 
instability of phenotypes or the emergence of distinct TIL phenotypes within clones. 
Moreover, the comparison of specificity groups suggests that antigen context may also 
have a role in establishing T cell fate choice. 
 
Since some clones contained cells with divergent phenotypes, we asked whether these 
cells could indicate lineage transitions between T cell phenotypes. We aggregated all 
clonotypes belonging to a given cluster (‘primary phenotype’) and measured the fraction 
of clonotypes that belonged to another cell cluster (‘secondary phenotype’) (Fig. 3d). 
Broadly, we noted significant overlaps between either activated, memory, effector 
memory, or exhausted CD8+ T cell phenotypes, demonstrating that CD8+ T cells clusters 
represent a continuum of activation and memory states that can be accessed by cells 
within a clone. For example, primarily activated T cell clones showed the most overlap 
with naïve and memory T cells, suggesting a transition between memory and activated 
states. Similarly, primarily exhausted or exhausted/activated cells showed overlaps with 
each other, or with memory or activated cells, respectively. In line with recent reports, we 
detected minimal clonotype sharing between exhausted and effector cells, suggesting a 
strict bifurcation in the fate decision towards either phenotype38. In contrast to CD8+ T 
cells, CD4+ T cell clones were largely restricted to single phenotypes, suggesting minimal 
plasticity of cell states. For example, Treg clonotypes were almost exclusively restricted 
to the Treg cell fate (Fig. 3d). We also examined divergent phenotypes within specificity 
groups by comparing the distribution of phenotypes for individual clones within specificity 
groups (Supplementary Fig. 7e). We found that this distribution was non-random, 
suggesting that certain groups of T cell phenotypes may be similarly driven by specific 
TCR signal strength thresholds. For example, specificity groups containing exhausted 
clones are most often shared with clones of memory and naïve phenotypes, but never 
with clones of effector phenotypes. Unlike phenotype overlap within TCR clones, we 
noted more significant overlaps between CD8+ and CD4+ phenotypes within specificity 
groups, such as the co-occurrence of CD8+ exhausted and CD4+ Treg and Tfh clones 
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within the same specificity group. These results suggest that CD4+ and CD8+ TILs 
responding to the same antigen may arise from distinct clonotypes (Supplementary Fig. 
7e).  
 
To track clonal cell fates after PD-1 blockade, we matched clonotypes between treatment 
timepoints, based on shared TCRb sequences, and detected on average 121 overlapping 
clonotypes present at any frequency between paired patient samples (range 6-531, 
median 65), with the exception of one pair with limited cell numbers and no clonotype 
overlap (su003) (Supplementary Fig. 8a). We detected on average <1 overlapping clone 
between different patients, confirming the accuracy of tumor sample identities. To globally 
assess treatment-induced clone transitions across all patients, we compared the primary 
phenotypes at each timepoint for matched clones with at least three cells per timepoint 
(Fig. 3e, Supplementary Fig 8b). We observed stability among CD4+ T cell clusters and 
frequent transitions among CD8+ T cell clusters, similar to the pattern observed in 
individual timepoints. While we observed frequent transitions between memory and 
effector states to an activated state post-treatment, clones in an exhausted state prior to 
treatment did not transition to non-exhausted phenotypes post-treatment, suggesting that 
exhausted T cells may be limited in their capacity for phenotype transition after PD-1 
blockade.  
 
Prior studies identified a stem-like T cell population expressing the transcription factor 
TCF7 that provides the proliferative T cell burst in response to PD-1 blockade33,45–48. We 
asked whether similar cells could be observed in our dataset, and whether these cells 
persisted in post-therapy samples. We scored individual CD8+ cells for the expression of 
exhaustion signature genes or TCF7+ stem-like signature genes, as defined previously 
(Fig. 3f)45. This analysis revealed three primary categories of cells: 1) cells with a high 
TCF7+ signature and low exhaustion signature, consisting primarily of naïve, activated 
and memory cells, 2) cells with a high exhaustion signature and low TCF7+ signature, 
consisting primarily of exhausted and activated/exhausted cells, and 3) cells with low 
expression of both signatures. We further examined all cells belonging to exhausted 
clones and observed a small population of exhausted cells (28% of exhausted cells, 1.5% 
of all CD8+ T cells) with expression of both TCF7+ and exhaustion signatures (Fig. 3f). 
Since these cells have been shown to proliferate after PD-1 blockade, we asked whether 
clones that persisted or expanded post-therapy in each patient displayed a higher TCF7+ 
signature pre-therapy compared to clones that contracted. Indeed, we found that for both 
memory and exhausted phenotypes, persistent clones had a significantly higher TCF7+ 
signature pre-treatment compared to clones that contracted (Fig. 3f). However, we only 
identified two exhausted clones that significantly expanded following treatment, limiting 
our ability to assess their TCF7+ signature expression pre-therapy. To look into this 
further, we identified 10 exhausted clones pre-treatment that increased in frequency post-
therapy but were excluded from the previous analysis due to low clonal size and limited 
expansion (Fig. 3g). Of these clones, the majority remained exhausted after therapy, but 
we did observe that those with a high TCF7+ signature pre-treatment expanded more 
substantially than those with a low TCF7+ signature, confirming the prior proliferative 
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behavior of these cells in the setting of PD-1 blockade. Nevertheless, this phenomenon 
only appeared to explain a minority of T cell expansion post-therapy, since only a small 
fraction (10%) of post-therapy clones were derived from exhausted clones containing 
TCF7+ cells pre-therapy, suggesting that post-treatment exhausted clones may be 
derived from additional sources (Fig. 3h).  
 
Since few pre-existing exhausted T cells showed expansion post-therapy, we asked how 
clone abundance changed globally in response to treatment by comparing the pre-
treatment frequency of each clone to its frequency post-treatment based on scTCR-seq 
(Fig. 4a). We noted that while the majority of clones did not significantly change in 
abundance (93%), we could detect many significantly expanded clones post-therapy that 
were not detected prior to treatment (68% of significantly expanded clones). Integration 
of scRNA-seq data revealed strikingly different patterns of persistence for each cell 
phenotype. Namely, compared to other CD8+ T cell subsets, a relatively small fraction of 
post-therapy exhausted T cell clones could be observed anywhere in the pre-therapy 
tumor; on average only 40% of naïve, activated, memory, or effector memory clones were 
derived from novel clonotypes, while 84% of exhausted clones were derived from novel 
clonotypes (p = 0.027, unpaired t-test, Fig. 4a-b). We further visualized the contribution 
of pre-existing clones to overall clonality of each population using a Lorenz curve, which 
shows the cumulative proportion of all TCRb clones ranked by size compared to the 
cumulative proportion of the T cell subset covered by those clones (Fig. 4c). Among 
memory T cells post-therapy, only 20% of expanded clones greater than or equal to 5 
cells in size were derived from novel clonotypes. In contrast, 55% of the top clones in the 
exhausted cluster post-therapy were novel. We next asked how the expansion of novel 
clones, a phenomenon we termed ‘clonal replacement,’ contributed to the overall 
frequency of exhausted T cells in each patient (Fig. 4d, Supplementary Fig. 9a). We 
found that 7/11 patients had an increased frequency of exhausted CD8+ cells following 
treatment, and in 6/7 patients, the majority of post-treatment exhausted cells were derived 
from novel clonotypes (Fig. 4d). We also compared the proportion of exhausted cells 
post-treatment in responder and non-responder patients and noted some differences 
between groups (Fig. 4d). However, meaningful associations of clonal replacement with 
clinical outcomes will require further work in much larger and prospective studies across 
diverse patient populations. These findings suggest that PD-1 blockade does not act by 
re-invigorating exhausted tumor-specific T cells that are clonally-expanded prior to 
therapy, but rather by expanding a distinct TCR repertoire. Interestingly, novel post-
treatment exhausted clones were enriched for novel TCR specificity groups, suggesting 
that novel clones may also represent new antigen specificities (Supplementary Fig. 9b) 
 
To increase sampling depth and sensitivity for detecting rare clonotypes, we performed 
bulk TCR-seq on the remaining biopsy material from 8/11 patients (Methods). We 
obtained on average 19,114 TCR templates from tumor samples (range 554-71,031), 
representing an average of 5,527 unique clonotypes (range 237-14,197) per sample, over 
a 20-fold increase in TCR sampling depth compared to the scRNA-seq experiments. We 
again compared pre- and post-therapy TCR sequences from each patient and identified 
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clones that expanded or contracted post-therapy, excluding clones with less than five 
templates detected (Fig. 4e). Similar to the analysis done with scTCR-seq data, we 
observed a significant number of novel expanded clones that were either not expanded 
prior to treatment (<5 cells) or entirely absent pre-treatment, and these clones were 
enriched in cells annotated with an exhausted phenotype based on integration of scRNA-
seq data. Indeed, compared to all other CD8+ phenotypes, exhausted cells had a higher 
proportion of significantly expanded clones following treatment, and the majority of 
expanded clones were derived from novel clonotypes (Fig. 4f). Again, clonal replacement 
of exhausted clones was observed in every patient that demonstrated expanded 
exhausted cells post-therapy (Supplementary Fig. 9c). Conversely, in non-exhausted 
CD8+ T cell populations with significantly expanded clones following treatment, across all 
patients, few were derived from novel clones (Supplementary Fig. 9c). To address 
whether these effects could simply be attributed to sampling bias rather than PD-1 
blockade effects, we sampled one patient twice before therapy (site-matched but at 
different timepoints) and twice after therapy (site-matched but at different timepoints) at 
approximately two-month intervals (Supplementary Fig. 9d). Importantly, we only 
observed clonal replacement of exhausted clones when comparing pre- to post-treatment 
samples, but not when comparing two timepoints within pre- or post-treatment groups, 
suggesting that TCR dynamics of exhausted cells were mainly influenced by PD-1 
blockade and not the timing or location of tumor biopsies. Altogether, these results 
confirm that after PD-1 blockade, a significant proportion of clonally-expanded 
CD8+CD39+ T cells arise from novel clones, which are not detected in the tumor prior to 
treatment. 
 
We next asked whether novel clonally-expanded T cells in the tumor could also be 
detected in the peripheral blood. We performed bulk TCR-seq on 12 peripheral blood 
samples taken at the time of tumor biopsy either pre- or post-therapy, with 10 peripheral 
blood samples from 5 patients also matched with bulk TCR-seq from TILs. Overall, 41% 
of TIL TCR clonotypes could also be detected in blood (range: 18-44% per sample), but 
only represented 6% (range 0.2-19%) of the total number of blood clonotypes (Fig. 4g, 
Supplementary Fig. 10a). Importantly, blood clonotypes represented clones from all T 
cell phenotypes identified in the tumor, and in all patients who demonstrated a significant 
expansion of exhausted clones in the tumor (> 5 exhausted clones detected by scRNA-
seq), these cells could also be detected in the blood (Supplementary Fig. 10a,b). 
Moreover, novel clonally-expanded clonotypes in the tumor post-therapy could be 
detected in the peripheral blood both post- and pre-therapy, suggesting that peripheral 
sources of T cells might be recruited to drive the response to PD-1 blockade 
(Supplementary Fig. 10a). Overall, 35.5% of novel exhausted clonotypes detected post-
treatment in the tumor could also be detected in the peripheral blood post-therapy, 
suggesting that clones responding to PD-1 blockade may circulate in both sites. 
Surprisingly, 11.8% of novel exhausted clonotypes detected in the tumor post-treatment 
could even be detected in peripheral blood pre-treatment, demonstrating that clones 
which are undetectable by deep TCR sequencing in the tumor prior to treatment could be 
detected in the peripheral blood (Fig. 4g). We also compared clonotype enrichment in the 
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tumor to the peripheral blood for different phenotypes by comparing the frequency of each 
clonotype in each location. Many CD8+ phenotypes showed a significant enrichment in 
the tumor compared to the peripheral blood, but we noted a significant increase in the 
enrichment of exhausted clones compared to other phenotypes following treatment, 
suggesting that these clones may preferentially expand and be retained in the tumor, 
supporting their tumor-specificity (p < 2x10-16, unpaired t-test, Fig. 4h). We observed a 
similar trend for an enrichment of exhausted TCR specificity groups compared to other 
phenotypes in the TME following treatment, suggesting that antigen-specificity drives the 
expansion of these cells in the tumor (Supplemental Fig. 10c). These results suggest 
that it may be feasible, though challenging, to monitor the clonal tumor-specific T cell 
response to checkpoint blockade in the blood49,50.  
 
Finally, we asked whether clonal replacement of exhausted cells could be observed in a 
different cancer type. We generated scRNA+TCR-seq profiles of 26,016 tumor-infiltrating 
T cells from serial tumor biopsies in 4 patients with SCC treated with anti-PD-1 (Fig. 4i, 
Supplementary Fig. 11a). SCC is a natural choice for comparison to BCC, since this 
cancer type also exhibits high levels of UV-induced tumor mutation burden, is accessible 
for site-matched pre- and post-therapy samples, and has a similar clinical response rate 
to PD-1 blockade51. Due to clinical constraints, SCC samples were obtained an average 
of 31 days post-treatment, enabling an analysis of TIL clonotype/phenotype dynamics 
relatively early after treatment. We first confirmed a number of our prior findings in the 
context of SCC: 1) TIL phenotypes in SCC were highly correlated TIL phenotypes in BCC 
(Supplementary Fig. 11b), 2) exhausted CD8+ T cells were clonally expanded 
(Supplementary Fig. 11c) and marked by surface proteins associated with tumor-
specificity, including CD3913,37–39 (Supplementary Fig. 11d), 3) TILs sharing a TCR 
clonotype or TCR specificity group were highly correlated in cellular phenotype, and PD-
1 blockade did not lead to phenotype instability or the emergence of new phenotypes 
(Supplementary Fig. 11e-f), 4) T cell clone phenotypes were largely stable between 
treatment timepoints (Supplementary Fig. 11g), and 5) clones with a high TCF7+ 
signature were more likely to persist after therapy (Supplementary Fig. 11h,i). Next, we 
compared clonal replacement in pre- and post-therapy SCC samples and observed that 
a significant proportion of exhausted cells detected post-treatment were derived from 
novel clonotypes (Fig. 4j). Integration of scRNA-seq data with bulk TCR-seq confirmed 
that novel clones comprised a significantly larger portion of expanded clones compared 
to other phenotypes, with overall only 29% of expanded naïve, activated, memory, or 
effector memory clones derived from novel clonotypes, while 50% of expanded exhausted 
clones were derived from novel clonotypes (Supplementary Fig. 11j, Fig. 4k). Notably, 
we observed a similar degree of expansion of pre-existing clones at early timepoints in 
SCC as we did at later timepoints in BCC, suggesting that pre-existing clones have a 
limited capacity for clonal expansion and that the T cell response to PD-1 blockade is 
primarily derived from novel clones. 
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Discussion 
Here, we performed single-cell multi-omic profiling of clinical tumor biopsies to measure 
the clonal evolution of the T cell response to PD-1 blockade. Integration of TCR clonotype 
and scRNA-seq phenotype in 51,493 single TILs revealed several principles of the tumor-
specific T cell response. First, although the TME contained a rich diversity of T cell 
phenotypes, including several CD4+ T helper subtypes and a spectrum of CD8+ activation 
and dysfunction phenotypes, clonally-expanded cells post-therapy were highly-enriched 
in CD8+ T cells that were phenotypically exhausted. These cells co-expressed several 
markers of T cell dysfunction, as well as markers previously shown to enrich for tumor-
specific T cells, including CD39 and CD10313,37–39. These results suggest that tumor 
recognition, clonal expansion, and T cell dysfunction are intimately linked processes, and 
that the TME contains a large number of ‘bystander’ T cells, as has been previously 
suggested13,52. Second, tracking individual T cell clones before and after therapy in site-
matched specimens provided insights into the origin of clonally-expanded T cells. 
Namely, while a significant fraction of memory CD8+ T cell clones persisted in tumors 
post-therapy (as did a similar fraction of all other non-exhausted clones), the clonal 
repertoire of exhausted CD8+ T cells was largely replaced by novel clones after therapy. 
This phenomenon was observed in both BCC and SCC patients and was confirmed by 
deep TCR sequencing of tumor biopsies. Taken together, these results support the 
concept that the chronic activation and exhaustion of pre-existing tumor-infiltrating T cells 
limits their re-invigoration following checkpoint blockade11, and that the T cell response 
relies on the expansion of a distinct repertoire of tumor-specific T cell clones. 
 
Clonal replacement of the tumor-specific T cell response is consistent with several prior 
lines of investigation. First, studies in mouse models of chronic viral infection have 
demonstrated that T cell exhaustion is associated with a broad remodeling of the 
epigenetic landscape, which underlies the inability to stably reverse this phenotype 
through PD-1 blockade11,12,53. Second, analysis of T cells that proliferate after PD-1 
blockade during viral infection identified a population of responding CD8+ cells which 
expressed markers associated with Tfh cells, such as CXCR545. Notably, CXCR5+CD8+ 
cells were only present in lymphoid organs, and not in tissues, suggesting that the 
response to PD-1 blockade is initiated outside of tissues and requires migration to the site 
of infection or cancer. Accordingly, studies in murine cancer models demonstrated that 
checkpoint inhibitors initiated a systemic immune response in many organs, and that 
chemically blocking T cell migration abrogated the anti-tumor T cell response54,55. It is 
important to note that our study did not definitively identify the organ source of novel 
expanded T cell clones post-therapy, and at least two possibilities exist: 1) novel clones 
could originate from tumor-extrinsic sources, such as lymphoid organs, or 2) novel clones 
could originate from rare unexpanded clones present within the TME or tumor periphery. 
Although the bulk TCR sequencing results support the first possibility, this study is limited 
by the sampling (time and material) constraints of human tumor biopsies, and further work 
will be required to dissect the timing and extent of pre-existing TIL expansion after PD-1 
blockade in human tumors. Importantly, both possibilities are compatible with the potential 
derivation of these cells from a TCF7+ precursor T cell population, which has been shown 
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to proliferate after PD-1 blockade (both in the tumor and in peripheral sites) and correlates 
with clinical outcomes33,45–48. 
 
Regardless of the site of origin, our results demonstrate that PD-1 blockade unleashes a 
novel tumor-specific TCR repertoire that was not previously expanded in the tumor, which 
has significant implications for patient prognosis and treatment. Namely, efforts to predict 
the response to immunotherapy from blood may be more informative than from the pre-
treatment tumor, and efforts to expand TILs for therapy may need to identify relevant 
clones rather than bystander cells in the tumor. These findings also raise several 
questions. First, how do the clonal origins of T cell response differ in CTLA4 blockade, 
and how does this impact PD-1 blockade? It is possible that these agents recruit distinct 
phenotypic populations of novel clones to the tumor, which have synergistic effects. 
Second, the presence of novel clones suggests an alternative hypothesis for the improved 
activity of checkpoint blockade agents in immune-infiltrated (‘hot’) vs immune-desert 
(‘cold’) tumors. That is, perhaps the reason that ‘hot’ tumors respond to therapy is due to 
an intrinsic ability of the tumor to constantly attract new T cells56, rather than the presence 
of pre-existing T cells in the tumor. Therefore, therapeutic agents that improve recruitment 
or infiltration of T cells into the tumor might be sufficient to rescue therapeutic responses 
in cold tumors. Finally, the expansion of novel TCR clones and TCR specificity groups 
following PD-1 blockade, coupled with the presence of neoepitope loss, suggests that 
pre-existing and novel T cell clones may recognize different tumor antigens and initiate 
distinct waves of immunoediting57. The identity of antigens recognized by each wave and 
the biophysical properties of their TCR:peptide-MHC interactions require further 
investigation, perhaps using high-throughput tumor specificity assays52,58. In summary, 
this study reveals new insights into the clonal T cell response to checkpoint blockade in 
human cancer, which has important implications for the future design of checkpoint 
blockade immunotherapies. 
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Methods 
 
Human subjects 
This study was approved by the Stanford University Administrative Panels on Human 
Subjects in Medical Research, and written informed consent was obtained from all 
participants. Patients were treated with 200 mg pembrolizumab every 3 weeks or 350 mg 
cemiplimab every 2 weeks. A subset of patients received ongoing treatment with 150 mg 
vismodegib daily (Supplementary Table 1). Response was assessed by RECIST version 
1.114. 
 
Sample Collection and Processing 
Fresh biopsies were collected from the primary tumor site. A portion of the tumor was 
stored in RNAlater for whole exome sequencing and bulk TCR sequencing. The 
remaining tissue was processed for single cell RNA sequencing.  
 
H&E and Immunohistochemical (IHC) staining 
For H&E staining, formalin-fixed, paraffin-embedded tissue cut at 4 microns and stained 
using the Tissue-Tek Prisma automated slide stainer. Immunostaining was performed on 
the Ventana Benchmark Ultra platform (CD3) and the Leica Bond platform (CD8, PD-L1). 
Antibodies used include anti-human CD3 (cat. no. 103A-76, Cell Marque), anti-human 
CD8 (cat. no. M7103, Dako) and anti-human PD-L1 (cat. no. 13684S, Cell Signaling 
Technology). 
 
Exome Sequencing 
Exome capture was performed by Accuracy and Content Enhanced (ACE) augmented 
exome strategy (Personalis) and sequenced on an Illumina HiSeq 2500 with paired-end 
100-bp sequencing, with an average of 110-fold coverage (range 82-138).  
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HLA Typing 
All samples were genotyped for HLA-A, -B, -C, -DPA1, -DPB1, -DQA1, -DQB1, -DRB1 
and -DRB3/4/5 loci using the MIA FORA NGS FLEX HLA Typing 11 Kit 96 Tests 
(Immucor, Inc. Norcross, GA, USA), following manufacturer’s semi-automated protocol 
and as described previously59,60. Briefly, paired-end sequence reads were generated 
using an NGS-based HLA genotyping method targeting 11 HLA genes with extensive 
coverage of the HLA genomic region by long-range polymerase chain reaction (PCR). 
Coverage for HLA class I loci is >200 bp 5’UTR to 3’UTR ~200-400 bp. In the case of 
HLA-DQA1 locus is ~200 bp of the 5’UTR to ~200 bp of the 3’UTR and for HLA-DQB1 
locus is ~70bp of the 5’UTR to ~100 bp of the 3’UTR. For the remaining class II loci 
specific key regions of the gene were amplified. For HLA-DPA1 locus, this coverage is 
from exon 1 to exon 4 and for HLA-DPB1 locus from exon 2 to exon 4. All HLA-
DRB1/3/4/5 genes were co-amplified in two separate reactions. The coverage for HLA-
DRB1/3/4 loci included ~300-500 bp of the 5’UTR to the first ~270 bp of intron-1 and the 
3’ end of intron-1 (~250 bp) to exon-6. For the HLA-DRB5 gene exon 2 to exon 6 were 
amplified. All libraries were sequenced on an Illumina MiSeq. For assignment of HLA 
genotypes, NGS paired-end reads were analyzed using the MIA FORA FLEX v3.0 
software (Immucor). Final HLA genotyping calls were confirmed by manual review. 
 
Bulk TCR Sequencing 
Deep sequencing of the TCRb gene was performed using the immunoSEQ platform 
(Adaptive Biotechnologies) on genomic DNA extracted from tumor biopsies or peripheral 
blood with input amounts ranging from 616 ng to 6,004 ng. Only data from productive 
rearrangements was exported from the immunoSEQ Analyzer for further analysis. On 
average, 26,066 TCR templates were detected from tumor samples (range 554-99,264), 
representing an average of 6,041 unique clonotypes (range 237-17,181), ~20-fold 
increase in sampling depth compared to scTCR-seq. For peripheral blood samples, on 
average 113,528 TCR templates were detected (range 24,679-257,772), representing an 
average of 36,536 unique clonotypes (range 7,041-71,462).  
 
Tumor Dissociation 
Fresh tumor biopsies were minced and digested in 5 mL digestion media (DMEM/F12 
media + 250 µg/mL Liberase TL + 200 U/mL DNAse I) in a C-tube using the gentleMACS 
Octo system at 37°C for 3 hours at 20 rpm. Following digestion, 50 µL of 500 mM EDTA 
was added and sample collected by centrifugation at 300xg for 5 minutes. The cell 
suspension was then passed through a 70 µm filter and pelleted by centrifugation at 
300xg at 4°C for 10 minutes. Cells were then resuspended in 1 mL of RPMI media and 
cryopreserved in FBS supplemented with 10% DMSO until further processing. 
 
Cell Sorting 
Cells were categorized as peri-tumoral T cells (CD45+CD3+), other peri-tumoral 
lymphocytes (CD45+CD3-) and tumor/stromal cells (CD45-CD3-). For patients su009, 
su010, su011, su012, su013, and su014, only peri-tumoral T cells were isolated and used 
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for scRNA-seq. For sample su010-S, we additionally sorted CD8+CD39+ peri-tumoral T 
cells (CD45+ CD3+ CD8+ CD39+). Antibodies used included anti-human CD45 conjugated 
to V500 (clone HI30, cat. no. 560779, BD Biosciences), anti-human CD3 conjugated to 
FITC (clone OKT3, cat. no. 11-0037-41, Invitrogen), anti-human CD8 conjugated to 
Pacific Blue (clone 3B5, cat. no. MHCD0828, Invitrogen), anti-human CD39 conjugated 
to APC (clone A1, cat. no. 328210, BioLegend), anti-human PD-1 conjugated to APC/Cy7 
(clone EH12.2H7, cat. no. 329921, BioLegend) and anti-human HLA-DR conjugated to 
eVolve 605 (clone LN3, cat. no. 83-9956-41, Affymetrix-Ebioscience). For bulk RNA-seq 
datasets, CD4+ T helper cells were sorted as naive T cells (CD4+CD25-CD45RA+), Treg 
(CD4+CD25+IL7Rlo), Th1 (CD4+CD25-IL7RhiCD45RA-CXCR3+CCR6-), Th2 (CD4+CD25-

IL7RhiCD45RA-CXCR3-CCR6-), Th17 (CD4+CD25-IL7RhiCD45RA-CXCR3-CCR6+), Th1-
17 (CD4+CD25-IL7RhiCD45RA-CXCR3+CCR6+), and Tfh subsets (CXCR5+ counterparts 
of each). All antibodies were used at a 1:200 dilution, with the exception of anti-CD45 and 
anti-HLA-DR antibodies which were used at a 1:100 dilution. Propidium iodine (cat. no. 
P3566, Invitrogen) was used for live/dead staining at a final concentration of 2.5 µg/mL.  
 
Single-cell RNA-seq Library Preparation 
Single-cell RNA-seq and TCR-seq libraries were prepared using the 10X Single Cell 
Immune Profiling Solution Kit, according to the manufacturer’s instructions. Briefly, FACS 
sorted cells were washed once with PBS + 0.04% BSA and resuspended in PBS + 0.04% 
BSA to a final cell concentration of 100-800 cells/µL as determined by hemacytometer. 
Cells were captured in droplets at a targeted cell recovery of 500-7000 cells, resulting in 
estimated multiplet rates of 0.4-5.4%. Following reverse transcription and cell barcoding 
in droplets, emulsions were broken and cDNA purified using Dynabeads MyOne SILANE 
followed by PCR amplification (98°C for 45 sec; 13-18 cycles of 98°C for 20 sec, 67°C for 
30 sec, 72°C for 1 min; 72°C for 1 min). Amplified cDNA was then used for both 5’ gene 
expression library construction and TCR enrichment. For gene expression library 
construction, 2.4-50 ng of amplified cDNA was fragmented and end-repaired, double-
sided size selected with SPRIselect beads, PCR amplified with sample indexing primers 
(98°C for 45 sec; 14-16 cycles of 98°C for 20 sec, 54°C for 30 sec, 72°C for 20 sec; 72°C 
for 1 min), and double-sided size selected with SPRIselect beads. For TCR library 
construction, TCR transcripts were enriched from 2µL of amplified cDNA by PCR (primer 
sets 1 and 2: 98°C for 45 sec; 10 cycles of 98°C for 20 sec, 67°C for 30 sec, 72°C for 1 
min; 72°C for 1 min). Following TCR enrichment, 5-50 ng of enriched PCR product was 
fragmented and end-repaired, size selected with SPRIselect beads, PCR amplified with 
sample indexing primers (98°C for 45 sec; 9 cycles of 98°C for 20 sec, 54°C for 30 sec, 
72°C for 20 sec; 72°C for 1 min), and size selected with SPRIselect beads.  
 
Sequencing 
Single-cell RNA libraries were sequenced on an Illumina NextSeq or HiSeq 4000 to a 
minimum sequencing depth of 25,000 reads/cell using the read lengths 26bp Read1, 8bp 
i7 Index, 98bp Read2. Single-cell TCR libraries were sequenced on an Illumina MiSeq or 
HiSeq 4000 to a minimum sequencing depth of 5,000 reads/cell using the read lengths 
150bp Read1, 8bp i7 Index, 150bp Read2. 
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Data Processing of exome libraries 
Whole exome sequencing was preprocessed using a standard GATK approach61. Briefly, 
both tumor and normal samples were aligned to GRCh37 using bwa-mem62 and further 
processed to remove duplicates and recalibrate base quality scores. All processing was 
performed in FireCloud63. 
 
Mutation calling and neoepitope prediction 
Small somatic variants were identified using Mutect264 and further annotated with the 
GATK. Somatic copy number variants were identified using the GATK best practices 
pipeline. HLA typing was performed on the germline whole exome sample using xHLA65. 
Neoepitopes were identified using pVAC-seq17, where a peptide-MHC pair was 
considered a neoepitope if the peptide was found to bind to the MHC allele with less than 
500 nM binding strength and its wildtype cognate bound to the same allele with greater 
than 500 nM binding strength. 
 
Tumor Clonal Composition Analysis 
For the clonal evolution analysis, somatic single-nucleotide variants (SNVs) were 
called using Mutect 1.1.764 and the variant assurance pipeline (VAP)66 for filtering and 
rescuing. The VAP filters for FFPE and other artifacts and also leverages sequencing 
data from related samples to salvage false-negatives that would otherwise occur due 
to limits of the variant caller. When comparing related sample to study clonal evolution, 
it is especially important to identify shared mutations including those are present at low 
frequency in some of the samples. VAFs (variant allele frequencies) were calculated 
for the detected and rescued variants by dividing the number of reads carrying the 
variant by the total number of reads spanning that position. For each case, mutations 
covered by less than 20 reads in any sample were removed, as were mutations where 
the alternate allele was not supported by at least four reads in at least one sample. 
TitanCNA67 was utilized to define local copy number and purity of the tumor samples. 
Observed VAFs were adjusted for local copy number and purity using the CHAT68 
framework in order to generate CCF (cancer cell fraction) estimates for each mutation 
in each sample. Case su002 was excluded from further clonal evolution analysis 
because it had a purity of < 15% (as inferred by TitanCNA) in both the pre-treatment 
and post-treatment samples, reducing the accuracy of imputed CCF values. Next, we 
used PyClone69 to define mutational clusters and assess changes in cluster 
frequencies across treatment. PyClone’s Dirichlet process clustering was carried out 
on the functional mutations identified in each case. For case su006, since fewer 
functional mutations were identified compared to the other cases, all filtered mutations 
(i.e. including synonymous SNVs) that passed the depth of coverage thresholds 
described above were used to define mutational clusters. The pyclone beta binomial 
model was run using default parameters for 10,000 iterations with a burn-in of 1000. 
For visualization of each case, we plotted PyClone clusters comprising at least 1% of 
the total number of utilized mutations. 
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Data Processing of single-cell RNA-seq libraries 
Single-cell RNA-seq reads were aligned to the GRCh38 reference genome and quantified 
using cellranger count (10X Genomics, version 2.1.0). Filtered gene-barcodes matrices 
containing only barcodes with UMI counts passing threshold for cell detection were used 
for further analysis. On average, we obtained reads from 1,862 genes per cell (median: 
1,716) and 6,304 unique transcripts per cell (median: 4,777), which is comparable to prior 
droplet based scRNA-seq studies of human cancers. 
 
Principal component analysis (PCA) and UMAP clustering 
All additional analysis was performed using Seurat (version 2.3.4)18. Cells with less than 
200 genes detected or greater than 10% mitochondrial RNA content were excluded from 
analysis, with 79,046/83,583 cells passing filter (95%).  
 
For clustering of all cell types in BCC TME, raw UMI counts were log normalized and 
variable genes called on each dataset independently based on average expression 
greater than 0.1 and average dispersion greater than 1. Variable T cell receptor and 
immunoglobulin genes were removed from the list of variable genes to prevent clustering 
based on variable V(D)J transcripts. To remove batch effects between samples 
associated with a heat shock gene expression signature, we assigned a heat shock score 
using the AddModuleScore function based on genes annotated with the GO biological 
process ontology term ‘cellular response to heat’. Additionally, we assigned scores for S 
and G2/M cell cycle phase based on previously defined gene sets24 using the 
CellCycleScoring function. Scaled z-scores for each gene were calculated using the 
ScaleData function and regressed against number of UMIs per cell, mitochondrial RNA 
content, S phase score, G2/M phase score and heat shock score. Scaled data was used 
an input into PCA based on variable genes. Clusters were identified using shared nearest 
neighbor (SNN) based clustering based on the first 20 PCs with k = 30 and resolution = 
0.4. The same principal components were used to generate the UMAP projections19,20, 
which were generated with a minimum distance of 1 and 20 neighbors.  
 
For malignant cell and T cell specific clustering in BCC samples, we isolated subsets of 
cells from the complete data set identified as either malignant or T cells based on broad 
clustering. Cells were then re-clustered as described above, with the following 
modifications: For malignant cells, we did not observe cell-cycle associated effects and 
did not regress out cell cycle scores. Variable genes were called on the merged dataset 
based on average expression greater than 0.1 and average dispersion greater than 1.8. 
For UMAP visualization, we used the first 10 PCs, a minimum distance of 0.15 and 15 
neighbors. For T cell clustering, we called variable genes on each dataset independently 
based on average expression greater than 0.15 and average dispersion greater than 3, 
and used the merged variable gene set for PCA. T cell clusters were identified using SNN-
based clustering based on the first 16 PCs with k = 30 and resolution = 0.3. For UMAP 
visualization, we used the same PCs, a minimum distance of 0.05 and 20 neighbors. 
 
T cell clustering of SCC samples was performed as described above with the following 
modifications: Variable genes were called on each dataset independently based on 
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average expression greater than 0.15 and average dispersion greater than 2 and the 
merged variable gene set used for PCA. We observed three small outlier clusters based 
on initial clustering which expressed B cell and macrophage marker genes which were 
removed from further analysis. T cell clusters were identified using SNN-based clustering 
based on the first 16 PCs with k = 30 and resolution = 0.3. For UMAP visualization, we 
used the first 16 PCs, a minimum distance of 0.05 and 20 neighbors. 
 
Cell Cluster Annotation 
Clusters were annotated based on expression of known marker genes, including CD3G, 
CD3D, CD3E, CD2 (T cells), CD8A, GZMA (CD8+ T cells), CD4, FOXP3 (CD4+ T 
cells/Tregs), KLRC1, KLRC3 (NK cells), CD19, CD79A (B cells), SLAMF7, IGKC (Plasma 
cells), FCGR2A, CSF1R (Macrophages), FLT3 (Dendritic cells), CLEC4C (pDCs), 
COL1A2 (Fibroblasts), MCAM, MYLK (Myofibroblasts), FAP, PDPN (CAFs), EPCAM, 
TP63 (Malignant cells), PECAM1, VWF (Endothelial cells), PMEL, MLANA 
(Melanocytes). Clusters were also confirmed by identifying differentially expressed 
marker genes for each cluster and comparing to known cell type marker genes. Finally, 
we downloaded bulk RNA-seq count data from sorted immune cell populations from 
Calderon, et al.21 and compared bulk gene expression to pseudo-bulk expression profiles 
from single cell clusters. UMI counts were summed for all cells in each cluster to generate 
pseudo-bulk profiles. Gene counts from aggregated single-cell and bulk data were then 
normalized and depth corrected using variance stabilizing transformation in DESeq2 
(version 1.18.1). Genes with a coefficient of variation greater than 20% across bulk RNA-
seq datasets were used to calculate the Pearson correlation between bulk datasets and 
pseudo-bulk profiles.  
 
Data Processing of single-cell TCR-seq libraries 
TCR reads were aligned to the GRCh38 reference genome and consensus TCR 
annotation was performed using cellranger vdj (10X Genomics, version 2.1.0). TCR 
libraries were sequenced to a minimum depth of 5,000 reads per cell, with a final average 
of 15,341 reads per cell. On average, 12,335 reads mapped to either the TRA or TRB loci 
in each cell. TCR annotation was performed using the 10X cellranger vdj pipeline as 
described. 85% of annotated T cells were assigned a TCR and only 0.18% of cells not 
annotated as T cells were assigned a TCR. For cells with two confident TCRs, both were 
considered in the analysis. Overall, 5.5% of T cells with TCR reads were assigned two 
productive TRB sequences and 5.7% of T cells with TCR reads were assigned two 
productive TRA sequences and both sequences were assigned to each cell and used for 
clonotype grouping. Only 1.6% of all cells were assigned two TRB sequences and two 
TRA sequences. We detected an average of 1,863 unique clonotypes on average in each 
patient (range 151 – 4,081). Of 27,956 total clonotypes detected, an average of 1.84 cells 
were assigned to each clonotype, 5,291 clonotypes comprised of greater than one cell, 
and clonotype sizes ranging from 1 cell to 564 cells. 
 
GLIPH Analysis 
To identify TCR specificity groups, GLIPH analysis was carried out as described 
previously44. GLIPH clusters TCRs based on two similarity indexes: 1) global similarity, 
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meaning that CDR3 sequences differ by up to one amino acid, and 2) local similarity, 
meaning that two TCRs contain a common CDR3 motif of 2, 3, or 4 amino acids (enriched 
over random sub-sampling of unselected repertoires). We performed GLIPH with the 
following modifications: 1) for clusters based on global similarity, CDR3b fragments within 
the same cluster are required to be at most one amino acid different, and this difference 
must be at the same amino acid location in all fragments within the cluster, and 2) for 
clusters based on local motifs, the starting positions of motifs of the same cluster within 
CDR3b fragments must be within 3 amino acids to be considered. 
 
Single-cell CNV detection 
Single-cell CNVs were detected using HoneyBADGER22. Log-transformed UMI counts 
were used as input, after removing genes with mean expression lower than 0.1 
normalized counts (7,189 genes passing filter, 75-753 genes per chromosome). Non-
immune, non-malignant cells were used as a normal reference, including fibroblasts, 
endothelial cells and melanocytes (n = 2,122). CNVs were detected based on the average 
gene expression in sliding windows across each chromosome (n = 101 genes/window) 
relative to average expression in normal reference cells. CNV profiles of malignant and 
reference cells were visualized with z-score limits of -0.6 and 0.6.  
 
Generation and Data Processing of bulk RNA-seq libraries 
For bulk CD4+ T cell subset RNA-seq, cDNA library construction was performed using the 
SMART-Seq v4 Ultra Low Input RNA Kit (Clontech) with 2 ng of input RNA. Sequencing 
libraries were prepared using the Nextera XT DNA Library Prep Kit (Illumina), quantitated 
using the Qubit dsDNA HS Kit (Thermo Fisher Scientific), and pooled in equimolar ratios. 
Final pooled libraries were sequenced on an Illumina HiSeq 2500 with paired-end 50-bp 
read lengths. Paired end RNA-seq libraries from basal cell carcinoma tumors (Atwood et 
al., 201530), cutaneous squamous cell carcinoma tumors (Hoang, et al., 201731) and T 
cell subsets (Simoni, et al. 201813 and this study) were aligned to the GRCh38 reference 
genome using STAR (version 2.6.1a) following adapter trimming by cutadapt (version 
1.17). Uniquely-mapped reads were counted using featureCounts (version 1.6.2) using 
Ensembl GRCh38 GTF transcript annotations. Differential expression analysis was 
performed using DESeq2 to identify cell-type specific expression programs (version 
1.18.1).  
 
Gene expression signature scoring 
Individual cells were scored for bulk RNA-seq expression programs derived from bulk 
RNA-seq data as follows. Raw UMI counts were used as input into the AUCell package 
to score each cell for gene set enrichment based on AUC scores to correct for gene 
dropout and library size differences70. After building a gene expression ranking for each 
cell, the gene set enrichment was calculated for each cell using the area under the 
recovery curve using default parameters.  
 
Activation and exhaustion signatures were derived by identifying variable genes across 
all CD8+ T cells using the FindVariableGenes function in Seurat with an average 
expression cutoff of 0.05 and dispersion cutoff of 0.5. The Pearson correlation between 
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reference genes IFNG (activation signature) and HAVCR2 (exhaustion signature) and all 
variable genes across all CD8+ T cells was computed using scaled expression values. 
Exhaustion and activation signature genes were comprised of the top 50 genes with the 
highest correlation with reference genes IFNG and HAVCR2. The TCF7+/stem-like 
signature was obtained from processed data from Im et al., 201645. Individual cells were 
scored for enrichment of gene signatures using the function AddModuleScore in Seurat. 
Cell cycle scoring was performed as previously described24. Briefly, cells were scored for 
enrichment of cell cycle associated genes using the CellCycleScoring function in Seurat.  
 
Diffusion map and pseudotime analysis 
Single cells from BCC samples assigned to CD8+ T cell clusters were used for diffusion 
map and pseudotime analysis. Differentially expressed genes were used to recalculate 
principal components. Data was then exported to Scanpy (version 1.2.2)71 for diffusion 
map and pseudotime analysis. Data was preprocessed by computing a neighborhood 
graph using 40 neighbors, the first 20 PCs. The first three components of the diffusion 
map were then computed. A randomly selected naïve T cell was used as the root cell for 
diffusion psuedotime computation using the first 3 diffusion components and a minimum 
group size of 10. 
 
Sources for bulk RNA sequencing data 
Reference bulk RNA-seq from sorted immune populations were obtained from GEO 
(GSE118165). Reference bulk RNA-seq data from CD8+ T cells were obtained from GEO 
(GSE113590). Reference bulk RNA-seq data from basal cell carcinomas were obtained 
from GEO (GSE58377). Reference bulk RNA-seq data from squamous cell carcinomas 
were obtained from the ArrayExpress database (E-MTAB-5678). 
 
Data Availability 
All ensemble and single-cell RNA sequencing data have been deposited in the Gene 
Expression Omnibus (GEO) under accession GSE123814. Exome sequencing data has 
been deposited in the Sequence Read Archive (SRA) under accession PRJNA533341.  
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Figure Legends  
 
Figure 1. Characterization of the BCC TME pre- and post-PD-1 blockade by single-
cell RNA-seq. (a) Workflow for sample processing and scRNA-seq analysis of advanced 
BCC samples collected pre- and post-PD-1 blockade. (b) Immunohistochemistry staining 
for CD3+ cells in representative BCC tumors before and after PD-1 blockade. Tumor 
boundaries denoted with dashed lines. All scale bars represent 100 µm. (c) Bar plot of 
neoepitope burden pre- and post-treatment based on exome sequencing. Variants were 
classified as predicted neoepitopes if the peptide was found to bind to the MHC allele with 
less than 500 nM binding strength and its wildtype cognate bound to the same allele with 
greater than 500 nM binding strength. (d) UMAP of all tumor-resident cells pre- and post-
therapy for all 11 BCC patients. Clusters denoted by color were identified by shared 
nearest neighbor (SNN) clustering and labeled with inferred cell types. CAFs: cancer-
associated fibroblasts, DCs: dendritic cells, pDCs: plasmacytoid dendritic cells. (e) UMAP 
of tumor-resident cells colored by patient identity (top left), FACS sort markers (top right), 
anti-PD1 treatment status (bottom left), and TCR detection (bottom right). f) Inferred CNV 
profiles based on scRNA-seq data. Non-immune, non-malignant cells (fibroblasts and 
endothelial cells, n = 2,122) were used as normal reference for malignant cell CNV 
inference (n = 3,548). (g) Representative examples of hematoxylin and eosin (H&E) 
staining of different BCC subtypes. All scale bars represent 100 µm. (h) UMAP of 
malignant cells colored by patient (left) and clinical subtype (right). (i) UMAP of malignant 
cells colored by enrichment of basal and squamous cell carcinoma gene signatures (from 
Atwood et al., 2015 and Hoang et al., 2017) (top). Malignant cells ordered based on the 
difference between basal and squamous signatures (bottom). The clinical diagnosis 
associated with each cell and expression of signature associated genes are indicated 
below. 
 
Figure 2. Exhausted CD8+ T cells are clonally expanded and express markers of 
tumor-specificity. (a) UMAP of tumor-infiltrating T cells present in BCC samples pre- 
and post-PD-1 blockade. Clusters denoted by color labeled with inferred cell types (left). 
UMAP of T cells are also colored by patient (top right) and anti-PD-1 treatment status 
(bottom right). (b) Heatmap of differentially expressed genes (rows) between cells 
belonging to different T cells subsets (columns). Specific genes associated with different 
T cell clusters are highlighted. Top bars indicate the number of cells in each cluster, 
enrichment of clusters pre- and post-therapy, and number of patients in each cluster.  (c) 
Diffusion map of naïve, memory, activated and exhausted CD8+ T cells using the first two 
diffusion components (left). Cells colored based on cluster identities from Fig. 2a. Cells 
are also colored by diffusion pseudotime and treatment status (top right). Expression of 
selected core activation and exhaustion genes is shown along diffusion components 1 
and 2 (bottom right). (d) Co-expression analysis of differentially expressed genes 
between activated, exhausted and activated/exhausted CD8+ T cells. Inset indicates a 
core exhaustion module identified by hierarchical clustering, with canonical exhaustion 
genes highlighted. (e) Diffusion map of CD8+ T cell subsets colored by clone size (left) 
and boxplot of Gini indices for each CD8+ T cell cluster (right) calculated for each patient, 
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showing significant clonal expansion within exhausted CD8+ T cells (paired t-test, two-
tailed, **p < 0.01). (f) Activation score (based on expression of top 50 genes most 
correlated with IFNG expression) versus exhaustion score (based on expression of top 
50 genes most correlated with HAVCR2 expression) for all CD8+ T cells, colored by 
expression levels of individual genes. (g) Activation score versus exhaustion score for 
TCR clones based on average activation and exhaustion scores of individual cells 
belonging to that clone, colored by the most frequent assigned phenotype for cells 
belonging to that clone, and size based on clone size (top right) or cell cycle score (bottom 
right).  
 
Figure 3. Clonal dynamics and phenotype transitions of tumor-infiltrating T cells. 
(a) UMAP of tumor-infiltrating T cells colored by selected TCR clones (left). UMAP of T 
cells colored by TCRb clones belonging to the same TCR specificity group (right). (b) 
Phenotypes of single cells belonging to the same TCR clone or TCR specificity group. 
Shown are the top five most abundant clones (top and middle) larger than 10 cells for 
each patient. Each bar is colored by individual phenotypes of single cells within the clone. 
The bottom plots show phenotypes of distinct TCR clones within a TCR specificity group. 
Both analyses show substantial phenotypic similarity among single cells belonging to a 
clone or group. (c) Distribution of the proportion of cells within each clone, or TCRb clones 
within each TCR specificity group (>=3 cells), that share a common cluster identity, 
separated by treatment timepoint, compared to randomly selected and size matched 
groups of T cells from the same sample (left, unpaired t-test, two-tailed, ****p<0.0001, 
***p<0.001, **p<0.01). Distribution of cell-cell correlations between cells that belong to 
the same TCR clone or cells within the same TCR specificity group but different 
clonotypes, separated by treatment timepoint and compared to randomly selected and 
size matched groups of T cells from the same sample (bottom, unpaired t-test, two-tailed, 
****p<0.0001). Cell-cell correlations were calculated using log-transformed expression of 
differentially expressed genes. (d) Heatmap showing the fraction of clonotypes belonging 
to a primary phenotype cluster (rows) that are shared with other secondary phenotype 
clusters (columns). (e) Heatmap of all observed phenotype transitions for matched clones 
during PD-1 blockade for clones with at least 3 cells for each timepoint. (f) TCF7+/stem-
like score (from Im et al45) versus exhaustion score for all CD8+ T cells, colored by 
expression of selected genes (left). TCF7+/stem-like score versus exhaustion score for 
exhausted cells and cells of other phenotypes belonging to primarily exhausted clones, 
colored by phenotype (top right). Violin plot of TCF7+/stem-like score for memory and 
exhausted cells separated by change in clone abundance following treatment (bottom 
right). Clones were defined as expanded or contracted if they significantly changed in 
abundance by a Fisher exact test, and persistent if they did not significantly change in 
abundance and at least one cell detected at each timepoint. (g) Pie charts showing clone 
size and distribution of phenotypes across timepoints for matched clones pre- and post-
therapy. Clones were only considered if they demonstrated an exhausted phenotype pre-
therapy and increased in abundance post-therapy. The plot shows clones separated by 
the presence of a high TCF7+ signature prior to treatment. (h) Pie chart of all clones with 
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an exhausted phenotype post-treatment. Shading indicates whether a TCF7+ cell of the 
same clonotype was present pre-therapy. 
 
Figure 4. Clonal replacement of CD8+CD39+ T cells following PD-1 blockade. (a) 
Scatterplots comparing TCRb clone frequencies pre- and post-treatment measured by 
single-cell RNA+TCR-seq for all BCC patients (n =11 patients). Clones that were 
significantly expanded or contracted post-treatment based on a Fisher exact test are 
highlighted on the left. Clones where the majority of cells exhibit an exhausted CD8+ 
phenotype (middle, red) or a memory CD8+ phenotype (right, blue) are also highlighted. 
(b) Boxplot of the fraction of novel clones detected by scRNA+TCR-seq within each 
cluster following treatment (unpaired t-test, two-tailed, *p<0.05). Clones with only one cell 
detected in total and cells from su003 with no clonotype overlap between timepoints were 
excluded. (c) Lorenz curve of TCRb clone frequencies based on scRNA+TCR-seq for 
exhausted CD8+ T cell clones (left) and memory CD8+ T cell clones (middle) greater than 
or equal to 5 cells, colored by presence of each clone prior to treatment. Proportion of 
novel clones in each phenotype quantified on the right. (d) Fraction of exhausted cells out 
of total T cells detected by single cell RNA+TCR-seq for each patient, separated by 
treatment status. Cells belonging to novel clones detected post-treatment are highlighted. 
(e) Scatterplots comparing TCRb clone frequencies pre- and post-treatment measured 
by bulk TCR-seq (n = 8 patients). Clones that were significantly expanded or contracted 
post-treatment based on a binomial test are highlighted on the left, with expanded clones 
further separated based on their detection pre-treatment. Clones where the majority of 
cells share an exhausted CD8+ phenotype based on scRNA-seq (middle, red) or a 
memory CD8+ phenotype (right, blue) are also highlighted. (f) Bar plot of fraction of clones 
with significant expansion post-treatment based on bulk TCR-seq, separated by 
phenotype and colored by replacement status. (g) Overlap between TCRb clones in 
peripheral blood and tumor infiltrating T cells detected by bulk TCR-seq (n = 5 patients, 
left). Fraction of TIL clones detected in peripheral blood, separated by sample (top right). 
Fraction of novel exhausted TIL clones detected in PBMCs, separated by treatment status 
(bottom right). (h) Violin plot of clone enrichment (tumor frequency / PBMC frequency) 
detected by bulk TCR-seq, separated by phenotype and treatment status (n = 5 patients, 
unpaired t-test, one-tailed, ****p<0.0001, ***p<0.001, **p<0.01, *p<0.05). (i) 
Characteristics of squamous cell carcinoma (SCC) samples treated with anti-PD-1 (left) 
and UMAP of tumor-infiltrating T cells present in SCC samples pre- and post-PD-1 
blockade (right). Clusters denoted by color are labeled with inferred cell types. (j) Fraction 
of exhausted cells out of total T cells detected by single-cell RNA+TCR-seq for each 
patient, separated by treatment status. Novel clones detected post-treatment are 
highlighted (bottom left). Sample su010-S derived from an SCC lesion from patient su010 
who presented with both BCC and SCC lesions. (k) Bar plot of fraction of clones with 
significant expansion based on bulk TCR sequencing post-treatment, separated by 
phenotype and colored by replacement status (bottom right). 
 
Supplementary Figure 1. Mutational landscape of BCC tumors following PD-1 
blockade, Related to Figure 1. (a) Summary of mutation burden, potential driver 
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mutations, and mutation frequencies detected in WES data. Potential driver mutations 
were selected based on frequently mutated genes in BCC identified by Bonilla, et al.16. 
(b) Bar plots of nonsynonymous mutation burden pre- and post-treatment detected by 
exome sequencing (top) and predicted neoepitope burden using only the predicted 
binding strength of the mutant peptide, for peptides with <500 nM binding strength (left), 
or <50 nM binding strength (right). (c) Changes in clonal mutation composition detected 
in exome sequencing data following treatment, with persistent mutation clusters in grey, 
mutation clusters decreasing in cellular prevalence following treatment in blue or green, 
and mutation clusters increasing in cellular prevalence following treatment in red. For 
clonal composition analysis, variant allele information from matched pre- and post-
treatment tumor samples was leveraged to rescue shared low-frequency variants that did 
not pass standard variant filtering (details in Methods). Bar plots of the ratio of predicted 
neoepitopes to nonsynomymous mutations in each mutation cluster (right). Predicted 
neoepitopes were based on binding strength of <500 nM binding strength for the mutant 
peptide and >500 nM binding strength of the corresponding WT peptide (as in Fig. 1c). 
(d) Representative flow cytometry staining of dissociated BCC cells. Cells were stained 
for expression of the indicated markers, and two-color histograms are shown for cells pre-
gated as indicated by the arrows and above each diagram. Numbers represent the 
percentage of cells within the indicated gate. Bottom panels demonstrate cell size 
differences between malignant and stromal cells, immune cells (non-T cells), and T cells. 
 
Supplementary Figure 2. Characterization of cell types present in BCC TME, 
Related to Figure 1. (a) Heatmap of differentially expressed genes (rows) between cells 
belonging to each cell type cluster (columns). All malignant cells were treated as one 
cluster. (b) Correlation between immune cell type clusters identified in BCC TME and 
sorted bulk population from Calderon, et al.21. UMI counts were summed for each BCC 
cluster to create pseudo-bulk gene expression profiles and Pearson correlation calculated 
between each bulk population based on variable genes from bulk profiles. (c) UMAP of 
all BCC TME cells colored by cell type-specific markers. (d) Bar plots indicating relative 
proportions of sort markers detected in each cluster (excluding cells that were not sorted 
on any markers), relative proportions of cells for which a TCR sequence was detected in 
each cluster, relative proportions of each non-malignant cell type detected per patient, 
relative proportions of cells from each patient detected in each cluster, and relative 
proportions of pre- and post-treatment cells detected in each cluster. 
 
Supplementary Figure 3. Copy number alterations and gene expression of 
individual BCC tumors, Related to Figure 1. (a) Inferred CNV profiles separated by 
patient based on scRNA-seq (scCNV) and WES. Dashed line indicates a potential 
subclone identified by scCNV highlighted for su005. For all patients, pre and post-
treatment tumor cells were analyzed together and exhibited similar CNV profiles, with the 
exception of su006.  For su006, differences between timepoints were apparent in CNV 
profiles obtained from both scRNA-seq as well as exome, analogous to the changes in 
mutation composition identified in Supplementary Figure 1a. (b) Heatmap of differentially 
expressed genes (rows) across malignant BCC cells aggregated by patient (columns). 
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Cutoffs for differential expression were less than 0.01 adjusted p value (Bonferroni 
corrected), greater than 0.3 average log fold change and greater than 0.3 difference in 
fraction of positive cells. Core BCC genes that are differentially expressed between all 
malignant cells and other TME cells are shown in top cluster. Genes differentially 
expressed between patients are shown in the bottom clusters. Specific genes associated 
with cancer-associated pathways are highlighted.  
 
Supplementary Figure 4. Characterization of T cell subtypes present in BCC TME, 
Related to Figure 2. (a) Enrichment of bulk T cell subtype signatures for each T cell 
cluster identified in the BCC TME. T cell subtype signatures were derived from bulk 
datasets (from this study and Simoni, et al.13) and single T cells from BCC dataset were 
scored for signature enrichment. Heatmaps represents the z-scored average signature 
enrichment for each cluster. (b) Heatmap of Pearson correlation between T cell clusters 
based on first 20 PCs used for clustering. (c) UMAP of all T cells colored by subtype-
specific markers. Blue indicates high expression and grey indicates low expression. (d) 
UMAP of all T cells separated by patient and colored by anti-PD-1 treatment status. 
 
Supplementary Figure 5. Characterization of activation/exhaustion trajectories 
using diffusion maps, Related to Figure 2. (a) Violin plots of cell coordinates in diffusion 
components 1 and 2 separated by cluster identity (left, middle). Violin plot of pseudotime 
values separated by cluster identity (right). (b) Heatmap of expression of top correlated 
genes with diffusion components 1 and 2 (rows) across cells belonging to each cell type 
cluster (columns). 
 
Supplementary Figure 6. Increase in Tfh cell clonality following PD-1 blockade 
accompanied by B cell expansion, Related to Figure 3. (a) Boxplot of Gini indices for 
each CD4+ T cell cluster separated by timepoint, showing clonal expansion within Tfh 
cells following treatment. Each point represents a patient with more than 10 cells 
belonging to a cluster at that timepoint, with the point size proportional to the number of 
cells. (b) UMAP of all cells detected for patient su001 colored by treatment timepoint (left) 
and relative proportions of each immune cell type (right), showing expansion of B cells 
post-treatment. (c) UMAP of T cells detected for patient su001 colored by treatment 
timepoint (left) and relative proportions of CD4+ phenotype (right), showing expansion of 
Tfh cells post-treatment. (d) Bar plot of percent AICDA positive B cells, separated by 
patient. (e) H&E staining of BCC samples from patient su001 post-treatment 
demonstrating islands of BCC in sclerotic stroma with a peripheral cuff of dense lymphoid 
tissue. Scale bar for top image represents 400 µm and scale bar for bottom image 
represents 100 µm. 
 
Supplementary Figure 7. Correlations between T cell clones or TCR specificity 
groups and scRNA-seq phenotype, Related to Figure 3. (a) Distributions of the 
proportion of cells within each clone (>=3 cells) that share a common cluster identity, 
separated by patient (for patients with >3 clones with >= 3 cells), compared to randomly 
selected and size matched groups of T cells (unpaired t-test, two-tailed, ****p<0.0001, 
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***p<0.001). (b) Distribution of the proportion of CD4+ cells (left) and CD8+ cells (right) 
within each clone or TCRb clones within each TCR specificity group (>=3 cells) that share 
a common cluster identity, separated by treatment timepoint, compared to randomly 
selected and size matched groups of T cells from the same sample (left, unpaired t-test, 
two-tailed, ****p<0.0001, ***p<0.001, **p<0.01, *p<0.05). (c) Bar plot of T cell cluster 
assignments for all clones with greater than 10 cells, separated by patient and treatment 
status. (d)  Bar plot of T cell cluster assignments for the largest 15 TCR specificity groups, 
separated by TCRb clone. Conserved motifs between TCRb clones identified by GLIPH 
highlighted in red. Representative TCRb sequences shown for TCR specificity groups 
with more than four unique clonotypes. (e) Heatmap of the fraction of TCR specificity 
groups with clones belonging to a given primary phenotype (rows) that also contain clones 
belonging to a secondary phenotype (columns). 
 
Supplementary Figure 8. Details of clone transitions, Related to Figure 3. (a) 
Heatmap of TCRb clonotype overlap between all samples, indicating correct pairing of 
samples and a significant number of overlapping clones between timepoint within 
individual patients.  (b) Bar plot of T cell cluster assignments for matched TCRb clones 
between timepoints for top 60 clones with at least 3 cells per timepoint. Related to Figure 
3e. 
 
Supplementary Figure 9. Clonal expansion in tumor and peripheral blood detected 
by bulk TCR sequencing, Related to Figure 4. (a) Scatterplots comparing TCRb clone 
frequencies pre- and post-treatment measured by single-cell RNA+TCR-seq, separated 
by patient. Clones where the majority of cells share an exhausted CD8+ phenotype (red) 
or a memory CD8+ phenotype (blue) are highlighted. Patient su003 without no clonotype 
overlap between timepoints excluded. (b) Boxplot of the fraction of novel TCR specificity 
groups within each cluster following treatment for TCR specificity groups containing at 
least two distinct TCRb sequences and at least 3 cells. (c) Bar plot of fraction of clones 
with significant expansion post-treatment based on bulk TCR-seq, separated by patient 
and phenotype and colored by replacement status. (d) Scatterplots comparing TCRb 
clone frequencies between timepoints measured by bulk TCR-seq for sequential 
timepoints in patient su001, with clones where the majority of cells share an exhausted 
CD8+ phenotype (red) or a memory CD8+ phenotype (blue) highlighted. Novel clones 
emerging between timepoints are highlighted in dark red and are detected only in pre- 
and post-treatment comparisons, but not in comparisons between pre-treatment 
timepoints, suggesting that replacement is primarily a result of PD-1 blockade rather than 
time between sampling.  
 
Supplementary Figure 10. TCR overlap between peripheral blood and tumor 
detected by bulk TCR sequencing, Related to Figure 4. (a) Pie chart of percentage of 
TCRb clones detected in peripheral blood that were also detected by scRNA-seq, 
expanded to show distribution of phenotypes in tumor, as well as fraction of exhausted 
clones detected in peripheral blood, colored by replacement status in tumor. (b) Bar plot 
of percentage peripheral T cells matching tumor-infiltrating TCRb clones with exhausted 
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phenotypes post-treatment as detected by scRNA-seq. (c) Violin plot of TCR specificity 
group enrichment (tumor frequency / PBMC frequency) detected by bulk TCR-seq, 
separated by phenotype and treatment status (unpaired t-test, one-tailed, ****p<0.0001, 
***p<0.001, **p<0.01, *p<0.05). 
 
Supplementary Figure 11. Clonal replacement analysis in SCC TILs following PD-1 
blockade, Related to Figure 4. (a) UMAP of tumor-infiltrating T cells present in SCC 
samples pre- and post-PD-1 blockade colored by patient (top right) and anti-PD-1 
treatment status (bottom right). (b) Heatmap of correlation between averaged RNA 
expression between BCC and SCC T cell clusters. (c) Boxplot of Gini indices for each 
CD8+ T cell cluster calculated for each patient. (d) Abundance of the top 12 exhausted 
clones in sample su010-S compared to the abundance of the same clones in sorted CD8+ 
CD39+ T cells, colored by assigned phenotype. (e) Distribution of the proportion of cells 
within each clone or TCRb clones within each TCR specificity group (>=3 cells) that share 
a common cluster identity, separated by treatment timepoint, compared to randomly 
selected and size matched groups of T cells from the same sample (left, unpaired t-test, 
two-tailed, ****p<0.0001, **p<0.01, *p<0.05). (f) Heatmap of the fraction of clonotypes 
belonging to a given primary phenotype cluster (rows) that are shared with other 
secondary phenotype clusters (columns). (g) Heatmap of all observed phenotype 
transitions for matched clones during PD-1 blockade for clones with at least 3 cells for 
each timepoint. (h) TCF7+/stem-like score (from Im et al45) versus exhaustion score for 
all CD8+ T cells, colored by gene expression (left). TCF7+/stem-like score versus 
exhaustion score for exhausted cells and cells of other phenotypes belonging to primarily 
exhausted clones, colored by phenotype (top right). Violin plot of TCF7+/stem-like score 
for exhausted cells and cells of other phenotypes belonging to primarily exhausted clones, 
demonstrating that the highest TCF7+/stem-like score is observed in cells with an 
exhausted phenotype (bottom right). (i) Violin plot of TCF7+/stem-like score for memory 
and exhausted cells separated by change in clone abundance following treatment (left). 
(j) Scatterplots comparing TCRb clone frequencies pre- and post-treatment measured by 
single-cell TCR sequencing for all BCC patients. Clones that were significantly expanded 
or contracted post-treatment based on a Fisher exact test are highlighted on the left. 
Clones where the majority of cells share an exhausted CD8+ phenotype (middle, red) or 
a memory CD8+ phenotype (right, blue) are also highlighted. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 24, 2019. ; https://doi.org/10.1101/648899doi: bioRxiv preprint 

https://doi.org/10.1101/648899


  
	

	

Figure 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 24, 2019. ; https://doi.org/10.1101/648899doi: bioRxiv preprint 

https://doi.org/10.1101/648899


  
	

	

Figure 2 

 
 
 
 
 
 
 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 24, 2019. ; https://doi.org/10.1101/648899doi: bioRxiv preprint 

https://doi.org/10.1101/648899


  
	

	

Figure 3 

 
 
 
 
 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 24, 2019. ; https://doi.org/10.1101/648899doi: bioRxiv preprint 

https://doi.org/10.1101/648899


  
	

	

Figure 4 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 24, 2019. ; https://doi.org/10.1101/648899doi: bioRxiv preprint 

https://doi.org/10.1101/648899

