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Abstract

Our understanding of how chromosomes structurally organize and dynamically
interact has been revolutionized through the lens of long-chain polymer physics.
Major protein contributors to chromosome structure and dynamics are condensin
and cohesin that stochastically generate loops within and between chains, and
entrap proximal strands of sister chromatids. In this paper, we explore the ability
of transient, protein-mediated, gene-gene crosslinks to induce clusters of genes,
thereby dynamic architecture, within the highly repeated ribosomal DNA that
comprises the nucleolus of budding yeast. We implement three approaches: live
cell microscopy; computational modeling of the full genome during G1 in budding
yeast, exploring four decades of timescales for transient crosslinks between 5kbp
domains (genes) in the nucleolus on Chromosome XII; and, temporal network
models with automated community (cluster) detection algorithms applied to the
full range of 4D modeling datasets. The data analysis tools detect and track gene
clusters, their size, number, persistence time, and their plasticity (deformation).
Of biological significance, our analysis reveals an optimal mean crosslink lifetime
that promotes pairwise and cluster gene interactions through “flexible” clustering.
In this state, large gene clusters self-assemble yet frequently interact (merge and
separate), marked by gene exchanges between clusters, which in turn maximizes
global gene interactions in the nucleolus. This regime stands between two limiting
cases each with far less global gene interactions: with shorter crosslink lifetimes,
"rigid" clustering emerges with clusters that interact infrequently; with longer
crosslink lifetimes, there is a dissolution of clusters. These observations are
compared with imaging experiments on a normal yeast strain and two
condensin-modified mutant cell strains. We apply the same image analysis pipeline
to the experimental and simulated datasets, providing support for the modeling
predictions.

Author Summary
The spatiotemporal organization of the genome plays an important role in cellular
processes involving DNA, but remains poorly understood, especially in the nucleolus,
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which does not facilitate conventional techniques. Polymer chain models have shown
ability in recent years to make accurate predictions of the dynamics of the genome. We
consider a polymer bead-chain model of the full yeast genome during the interphase
portion of the cell cycle, featuring special dynamic crosslinking to model the effects of
structural maintenance proteins in the nucleolus, and investigate how the kinetic
timescale on which the crosslinks bind and unbind affects the resulting dynamics inside
the nucleolus. It was previously known that when this timescale is sufficiently short,
large, stable clusters appear, but when it is long, there is no resulting structure. We
find that there additionally exists a range of timescales for which flexible clusters
appear, in which beads frequently enter and leave clusters. Furthermore, we
demonstrate that these flexible clusters maximize the cross-communication between
beads in the nucleolus. Finally, we apply network temporal community detection
algorithms to identify what beads are in what communities at what times, in a way that
is more robust and objective than conventional visual-based methods.

Introduction
The 4D Nucleome Project [1] proposes the integration of diverse approaches:
increasingly powerful chromosome conformation capture techniques including
high-throughput chromosome conformation capture (Hi-C); statistical and topological
analyses of these massive Hi-C datasets; 3-dimensional (3D) and 4D super-resolution
imaging datasets; and computational modeling approaches, both constrained by and
independent of Hi-C datasets. The project aims to gain mechanistic understanding of
3D structure and dynamics of the genome within the nucleus, and to learn how the
active chromosome architecture facilitates nuclear functions. In this paper, we
contribute to these aims by combining three approaches: (i) live cell microscopy for
experiments studying the effect on gene clustering for normal and condensin-modified
mutant cell strains; (ii) first-principles-based, computational modeling based on the
statistical physics of chromosome polymers coupled with transient gene-gene crosslinks
formed by condensin proteins; and (iii) analysis of the dynamic chromosome
architecture with temporal network community detection algorithms applied to 4D
modeling datasets across four decades of crosslinking timescales.

Our present understanding of basic principles that govern high-order genome
organization can be attributed to incorporation of the physical properties of long-chain
polymers [2–7]. The fluctuations of long-chain polymers, numerically simulated with
Rouse-like bead-spring chain models of chromosomes confined to the nucleus, capture
the tendency of chromosomes to self-associate and occupy territories [8–11] In addition,
these models make predictions with regard to the spatial and dynamic timescales of
inter-chromosomal interactions, a dynamic analog of topologically associated domains.
The convergence of robust physical models with high-throughput biological data reveals
the fractal nature of chromosome organization, namely an apparently self-similar
cascade of loops within loops, or structure within structure, as one examines
chromosomes at higher and higher resolution [12–14].

De novo stochastic bead-spring polymer models of the dynamics and conformation of
“live” chromosomes, plus the action on top of the genome by transient binding
interactions of structural maintenance of chromosome (SMC) proteins, e.g. condensin,
provide complementary information to chromosome conformation capture (3C)
techniques, genome-wide high-throughput (Hi-C) techniques, and restraint-based
modeling [12,15–20]. 3C and Hi-C experiments rely on population averages of gene-gene
proximity on all chromosomes over many thousands of dead cells whose chromosomes
have been permanently crosslinked by formaldehyde; the restraint-based modeling
approach then explores 3D chromosome architecture that optimizes agreement with the
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experimental data on gene-gene frequency and proximity across the genome. Many
powerful inferences have been drawn from both Hi-C and polymer modeling approaches,
using analyses of empirical and synthetic datasets encoding maps related to the pairwise
distances between genes.

A common major limitation for existing polymer models and whole-genome contact
maps in mammalian cells is in mapping two essential regions of the chromosome,
namely the centromere and the nucleolus. The centromere, essential for chromosome
segregation, and the nucleolus, the sub-nuclear domain of ribosomal DNA, are
comprised of megabases of repeated DNA (centromere satellites and nucleolus rDNA).
Furthermore, these regions are not captured in methods used for generating contact
maps. We have used single live cell imaging of the nucleolus in budding yeast coupled
with whole genome polymer modeling to explore the minimal requirements for
sub-compartmentalization. Implementation of protein-mediated cross-linking within the
nucleolus is sufficient to partition this region of the genome from the remaining
chromosomes. Furthermore, stochastic polymer models reveal that the relative
timescales of crosslinking kinetics and fluctuations of the chromosome chains have a
profound influence on nucleolar morphology [21].

In single cells, the positional fluctuations of tagged DNA sequences on specific
chromosomes [22–24] through the lac operator/lac repressor reporter system validate
the bead-spring models. Chromosomes fluctuate as predicted for the conformational
dynamics of idealized Rouse chains [25].

Polymer simulations over the entire genome have revealed the ability of relatively
fast binding and unbinding, and thereby short-lived (fraction of a second) protein
crosslinks to concentrate the rDNA chain sequence in a smaller volume and increase the
simulated fluorescent signal intensity variance when the model datasets were convolved
with a point spread function to create two-dimensional, maximum intensity
projections [21]. Visualizations of the monomers in the simulations revealed that the
fastest kinetics explored, or shortest-lived crosslinks (∼ .09s), generated several clusters
of high polymer density, and overall compaction of the nucleolus. In contrast, much
slower kinetics (decades longer-lived protein crosslinks (∼ 90s) ) tended to homogenize
the fluorescent signal intensity as evidenced in the decrease in simulated fluorescent
signal intensity variance. These model visualizations were consistent with experimental
results on live budding yeast.

There is a growing interest to analyze Hi-C datasets and model chromosome
interactions using network models [26–28], which has opened the door to study
chromosomal datasets using network-based algorithms including community
detection [29–32] and centrality [33,34]. These detection algorithms perform an
unbiased search for robust structures (communities or clusters) at the scale they exist in
an automated manner, quantifying how chromosome conformational changes can
precede changes to transcription factors and gene expression [35,36] and leading to new
approaches for cellular reprogramming [33,37].

Here, we apply temporal community detection algorithms [38] to simulated 4D
datasets over four decades of SMC-binding kinetic timescales, and thereby detect, track
and label transient gene communities (clusters) in the nucleolus. Simultaneously, we
record summary statistics on the sizes and numbers as well as persistence times of
communities, and the frequencies of community interactions leading to gene exchanges.
We likewise record standard bead-bead summary statistics. In doing so, we detect
spatial and temporal organization at the scales they exist, beyond two-point (gene-gene)
spatial proximity statistics. We identify the timescales over which spatial organization
persists, linking the timescales to the cluster identification algorithm. Since clusters can
deform through the flux of genes into and out of clusters, we further are able to identify
crosslink timescales for which spatial clustering persists over extended timescales, and
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whether individual clusters are relatively permanent or experience frequent interactions
and gene exchanges. Perhaps the most striking prediction of our modeling and data
analysis is that specific gene organization tasks (amplified below) are optimized at a
relatively short crosslink timescale, on the order of .19 sec.

With these network tools applied to physics-based 4D nucleome simulated datasets,
we explore the mechanistic basis for the experimentally observed variance in nucleolar
morphology. From a high-resolution sampling of the timescales for crosslinking of 5k
base pair (bp) domains, 4D model simulations of the yeast genome reveal the nucleolus
on Chromosome XII undergoes a stark transition in dynamics and structure, and does
so within a narrow "mean on" crosslink timescale range of .09− 1.6 sec. A highly stable
clustering regime exists with relatively short-lived crosslinks ( .09 sec), with relatively
few cluster interactions and gene exchanges, as reported previously in [21]. At slightly
longer-lived ( .19 sec) timescales, a novel "flexible" cluster behavior is revealed. Gene
clusters continue to self-organize, yet clusters are more mobile, frequently interact, and
exchange genes. Indeed, there is a peak timescale, marked by highly mobile gene clusters,
at which both pairwise and community-scale gene interactions are maximized. As the
binding affinity of crosslinker proteins increases only slightly longer ( 1.6 sec), the
community-scale structure has dissolved, with no identifiable nucleolar sub-substructure.
See Fig. 1.

From a methods perspective, our analysis of the 4D simulated datasets is based on
network modeling and a temporal community-detection algorithm known as multilayer
modularity [38]. From a biological perspective, this tunable dynamic self-organization
reflects a powerful mechanism to coordinate gene regulation and the coalescence of
non-contiguous genes into identifiable clusters (substructures). The transition shown in
Fig. 1 occurs within such a narrow crosslinker timescale regime (.09− 1.6 sec),
suggesting a relatively simple mechanism to control dynamic sub-organization of the
genome; indeed we performed and report experiments below to support this prediction.
Finally, we emphasize the counter-intuitive nature of this mechanism: clustering is most
often associated with segregation, however we observe that the dynamic element of
flexible clusters facilitates an overall increase in global gene interactions in the nucleolus.

Results
Our results are based on analysis of the model of the yeast genome originally presented
in [21]. An overview of the model is provided in the Model subsection in the Materials
and Methods section. We begin by extending results from [21] in context with the
extensions presented in this paper. In addition to simulated 4D datasets as in [21], here
we compare wild-type and SMC protein-altered mutant experimental data to explore
how the SMC-protein crosslinking timescale µ influences behavior of the nucleolus.
In [21], three values of µ ∈ {0.09, 0.9, 90} were studied. In this paper, we logarithmically
sample across the full range of µ values between 0.09 and 90, providing a detailed
investigation of consequences induced by the crosslinking timescale µ. We then
construct simulated microscope images [21] for all 4D simulated datasets and compare
them to experimental images of yeast nucleoli, including wild-type (WT), hmo1∆ and
fob1∆. We show that the mutations hmo1∆ and fob1∆ alter the nucleolus similarly to
changes induced by varying µ in our model.

In [21], 4D imaging of the nucleolus beads provided visual evidence of clusters at the
shortest crosslinking timescale (µ ≈ .09 sec) and a lack of clusters at the longest
timescales (µ ≈ 90 sec). Herein, we simulated across four decades of µ, revealing
transitions in dynamic architecture that were not explored in [21] since we did not have
the tools to automate detection apart from obvious visual images at polar extremes,
robust clusters and no clusters. Depending on the crosslinking timescale µ, the nucleolar

May 21, 2019 4/25

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 23, 2019. ; https://doi.org/10.1101/648196doi: bioRxiv preprint 

https://doi.org/10.1101/648196
http://creativecommons.org/licenses/by/4.0/


beads can aggregate into self-organized clusters, which may or may not change over
time via mergers/divisions of clusters with bead exchanges between clusters. The choice
µ ≈ 1.6 gives rise to plasticity in the dynamic architecture of the nucleolus, whereby
beads aggregate into clusters, yet the clusters frequently come into contact, merge into a
super cluster, then rapidly divide with several exchanges of beads. This process of
frequent cluster interactions optimizes the traditional statistics of the frequency of
pairwise bead-bead interactions within the nucleolus, while furthermore generalizing
pairwise interactions to gene cluster interactions and the frequency of pairs of beads to
share the same cluster. By a fine sampling of the crosslinking timescales, coupled with
the automated dynamic community detection algorithms, we discover the novel
non-monotone behavior in the interaction statistics, at both gene-gene and gene cluster
scales.

Motivated by the need to identify, label, and track clusters over time, we adapt a
method based on network modeling and the temporal community-detection algorithm
known as multilayer modularity [38]. Communities in networks are the analog to
clusters of points. Our methodology not only confirms the striking visual evidence of
robust clustering at µ = .09 in [21], but allows us to track and label whether clusters of
genes exist, cluster interactions (merger and division), their frequency, and gene
exchanges per interaction. If there are no clusters, the algorithm reports that all
clusters are essentially single genes with doublets and triplets that interact and deform.
Our methods therefore reveal dynamic sub-organization features at the scales they exist,
automatically and unbiased, as we scan 4D datasets across 4 decades of crosslinking
timescales. We show our algorithm efficiently identifies robust as well as flexible
communities using a cost function that factors in both physical proximity and temporal
coherence. Finally, we demonstrate that the identification and analysis of time-evolving
communities reveals a larger scale explanation for the non-monotone behavior in
bead-bead interaction statistics versus crosslinking timescales. The explanation lies
precisely in the transition from robust, non-interacting clusters for µ = .09 sec, to
flexible clusters for µ = .19 sec, and then a slow dissolution of clusters as µ increases,
with essentially no clustering by µ = 1.6.

Transient Crosslinking Timescale Influences Nucleolus
Clustering
We first focus in the relatively short crosslink timescale regime, extending the
simulations of [21] at discrete values µ = 0.09, 0.9, 90. These will establish a basic
understanding of how the kinetic timescale µ for crosslinking sensitively affects the
organization of the nucleolus and the dynamics of the architecture. From our refined
simulations across the above four decades, the essence of the story can be told with
results for three selected values µ ∈ {0.09, 0.19, 1.6}. In Fig. 1(A–C), we present
visualizations, i.e., “snapshots,” of the beads’ 3D positions during the simulations. The
nucleolus on Chromosome XII is highlighted in blue and all remaining chromosome arms
are colored gray. In Fig. 1(D–F), we show only the nucleolar beads, which are colored
according to the network community detection analyses that we describe in the following
sections. We also show videos of the time evolution of the beads, along with a simulated
microscope projection, for each timescale in S1 Video, S2 Video, and S3 Video.

Based on Fig. 1(A)–(F) and the videos, we identify three qualitative regimes for
nucleolus clustering:

1. rigid clustering whereby strong, stable clusters arise, e.g., with µ = 0.09.

2. flexible clustering, or cluster plasticity with slightly weaker clustering whereby
communities of genes form and persist, however the clusters frequently interact,
merge, and divide, swapping genes per interaction, e.g., with µ = 0.19.
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Fig 1. Interphase yeast genome (A-C: Full, D-I: Nucleolus) using the polymer
bead-spring model of [21] (see Section: Model) that implements transient
SMC-protein-mediated crosslinking of 5k bp domains within the nucleolus on
Chromosome XII. The top, middle, and bottom rows depict chromosome conformations
for three values of the kinetic timescale parameter µ: (top, µ = 0.09) induces rigid
clusters; (center, µ = 0.19) induces flexible clusters; (bottom, µ = 1.6) induces no
clusters. We identify the timescales with the intra-nucleolar clustering behavior they
induce. (A)–(C) 3D “snapshots” of all 16 yeast chromosomes during interphase. Blue
beads and edges highlight the nucleolus. (D)–(F) Visualization of nucleolar beads (5kbp
chromosome domains) that self-organize into clusters. The beads’ positions are identical
to those in (A)–(C) and their colors indicate their cluster labels, identified using Louvain
modularity optimization [39] as described in Methods Section: Cluster Identification via
Network Community Detection. (G)–(I) Heatmaps of the pairwise distances between
beads in the nucleolus from one snapshot of the 4D time series, which provide an
analogue of Hi-C bead-bead proximity data (see Methods Section: Pairwise-Distance
Maps for High-Throughput Chromosome Conformation Capture (Hi-C)). Note that it is
difficult to predict the absence/presence of clusters from heat maps.

3. non-clustering with a lack of robust communities in which the beads act as lone
units, pairs or triplets, e.g., with µ = 1.6.

We will continue to use this terminology when referring to these three clustering
regimes. We note that [21] discovered the two extreme regimes: robust clusters for
µ = 0.09, and the lack of clusters for µ = 90. As they did not finely sample the decades
of timescales in between, they did not discover that the transition from robust to no
clustering is in fact non-monotone with respect to gene-gene interactions, nor that the
transition is essentially complete already at µ = 1.6, and that the most biologically
interesting and relevant regime occurs at µ = 0.19. Furthermore, without automated
structure detection algorithms, they would not have been able to detect and
dynamically track clusters of genes and their interactions that explain the peak in
gene-gene interactions at µ = 0.19. This transition behavior and the optimal properties
that arise will be the focus of several sections to follow.

In Fig. 1(G)–(I), we show heatmaps of the bead-bead distances associated with the
bead positions of the snapshots in (D)–(F), identical to those in (A)–(C); construction
of heatmaps is described in the Methods Section: Pairwise-Distance Maps for
High-Throughput Chromosome Conformation Capture (Hi-C). Heatmaps are widely
used in Hi-C to depict population averages of pairwise gene-gene proximity data
[16,40–44] and in simulated data from polymer bead-spring models, both from 3D
snapshots and time averages [9, 11,21]. Comparing the second and third columns of
Fig. 1, we note the difficulty (false negatives and false positives) in detecting the
presence of structure and sub-organization in column 2 from visual examination of
heatmaps in column 3.

As shown in [21], the time average of 4D simulated datasets, even in the strong
clustering regime, wipes out the sub-structure of snapshots when averaging over the
entire G1 phase. An alternative approach has been to use polymer modeling to generate
chromosome conformations, and to select those conformations that best match Hi-C
data, so-called restraint-based polymer modeling [1]. Simultaneously, there have been
efforts to develop methodologies to identify gene clusters in a rigorous and automated
way from Hi-C data [26–28]. Our conclusion is that there is a need for a more reliable
and objective method to study the clustering of chromosome domains in the nucleolus,
especially spatio-temporal methods that take into account how bead positions and
sub-organization change with time, weighing both spatial proximity and temporal
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Fig 2. Experimental images of the nucleolus. Algorithmic thresholding of CDC14-GFP
reveals alterations in nucleolar area and variance of signal intensity. (A) Top row
depicts images of maximum intensity projection of WT, fob1∆, and hmo1∆ yeast cells
containing CDC14-GFP to label the nucleolus. Scale bar is 1 µm. The middle row are
images of the binary mask generated by thresholding the projections using Otsu’s
method. The bottom row are images of the projections where the intensities of pixels
below the threshold were set to zero. See Methods Section: Image Acquisition and
Baseline Processing for more detail. (B) Bar chart of the nucleolar signal are calculated
by the area of the binary mask. (C) Bar chart of the standard deviation of normalized
nucleolar signal. In panels (B) and (C), the non-significant changes are labeled ‘NS’ (see
text), the bars represent an average value across n cells, and error bars indicate
standard error.

coherence in the detection method. In the following sections, we present a scalable and
automated technique to identify and track the dynamics of clusters. First, however, we
will present new experiments that provide empirical evidence for clustering in the
nucleolus.

Evidence of Nucleolus Clustering in Experimental and
Simulated Microscopy Images
We conducted experiments to compare our simulations to empirical measurements
obtained from live cell microscopy, extending the results previously reported in [21].
Here, we study three yeast strains: wild-type (WT), fob1 and hmo1. Importantly, fob1∆
and hmo1∆ are mutations that lack key proteins reported to crosslink or loop segments
of rDNA within the nucleolus. Fob1∆ is required for maintenance of the rDNA copy
number and regulates the association of condensin with rDNA repeats [45,46]. The
replication fork barrier within the rDNA is a binding site for Fob1∆ that, together with
several other components (Tof1, Csm1 and Lrs4), are responsible for the concentration
of condensin within the nucleolus [45]. Strain hmo1 is an abundant high mobility group
protein that localizes to the nucleolus and has been proposed to share functions with
UBF1, which is involved in rDNA transcriptional regulation within the nucleolus [47,48].
Fob1 and Hmo1 are non-essential genes and were deleted from the genome to allow us
to study their effect on nucleolus morphology due to functional modifications of
crosslinking. See Methods Section: Yeast Strains for Experiment for further details.

In Fig. 2, we present images and analyses of nucleoli of these strains using
fluorescent, live-cell microscopy. To visualize nucleoli, we fused Cdc14 protein
phosphatase to green fluorescent protein (GFP) [21]. Nucleolar protein fusions occupy a
distinct region of the nucleus that is adjacent to the nuclear envelope and (typically)
opposed to the spindle pole body. We describe the image acquisition and processing
steps in Methods Section: Image Acquisition and Baseline Processing, and we highlight
a few details here. Following image acquisition, we construct maximum intensity
projections (MIP) centered on the nucleolus. See top row of Fig. 2(A). Due to potential
variation in CDC14-GFP protein copy number and nucleolar/rDNA size from cell to
cell, we normalized the nucleolar CDC14-GFP signal after excluding all intensity values
below a intensity threshold. To this end, we first selected a threshold using Otsu’s
method [49], which we implemented using the MATLAB function multithresh. One can
interpret the threshold as a binary mask, as shown in the second row of Fig. 2(A). After
applying the mask, we normalized the nucleolar signal by subtracting all intensities by
the minimum value and then dividing them by the new maximum intensity that is
obtained after subtraction. The third row of Fig. 2(A) depicts normalized images.
Mutations of Hmo1 and Fob1 were found to alter the area and signal intensity of
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Fig 3. Simulated microscope images for polymer bead-spring model with transient
crosslinking and varying kinetic timescale µ. Varying µ alters the area and variance of
the intensity for the nucleolar signal, which models the affect of the fob1∆ and hmo1∆
mutations. (A) Timelapse montage of simulated microscope images for µ ∈ {0.09, 0.9, 0}
(seconds). Scale bar is µm. (B) Area of nucleolus signal (µm2) as a function of
µ ∈ [10−1, 102]. Areas were calculated by measuring the area of the binary mask
generated by applying Otsu’s threshold to each image. (C) Standard deviation of the
(non-normalized) nucleolus signal versus µ. (D) Standard deviation of the normalized
nucleolus signals versus µ; these we normalized identically to the normalization of the
experimental microscope images. In panels (B)-(D), error bars indicate standard errors
observed using 22 time points for each value of µ.

Fig 4. Comparison of experimental and simulated microscope images. Varying µ in the
polymer bead-spring model captures the effect on nucleolus clustering incurred by the
crosslink-altering mutations. (A) Maximum intensity projections of CDC14-GFP in
WT, fob1∆, and hmo1∆ cells with identified clusters marked by green circles. The
lower row depicts the same images as the top row, except the circles are removed.
(Images are the same as Fig. 2(A).) (B) Same information as panel (A), except the
results depict simulated images based on 4D simulation data for three values of µ. Scale
bars in (A) and (B) are 1 µm. (C) Bar chart showing the number of clusters for each
strain. The bars and error bars indicate the average and standard error across n cells,
where n = 84, 70, and 77 for WT, fob1∆, and hmo1∆, respectively. Significance was
assessed via a Student’s two-tailed T-test: p = 0.3 for WT versus fob1∆ and p = 0.04
for WT versus hmo1∆. (D) Average number of clusters for simulated images as a
function of µ. The averages and standard errors (see error bars) were calculated using
22 time points for each µ.

nucleoli labeled with CDC14-GFP across a range of intensity thresholds, which we
surmise is due to alterations in the architecture of, i.e., clustering within, the nucleolus.

In Fig. 2(B)-(C), we provide results for an analysis of nucleolar morphology: (B) the
area of nucleolar signal; and (C) the standard deviation of the normalized signal. This
analysis was implemented using the numerical algorithms presented in [21], which we
further describe in Methods Section: Image Analysis.

As shown in Fig. 2(B), null mutations of hmo1∆ significantly altered the area of the
nucleolar signal, whereas null mutations of fob1∆ did not. This was assessed by a
Student’s two-tailed T-test, which yielded p = 3× 10−8 for the former and p = 0.07 for
the latter. As shown in Fig. 2(C), the standard deviations of the normalized images
were significantly lowered for the fob1∆ null mutation, but this did not occur for the
hmo1∆ null mutation p = 0.01 versus p = 0.2). The non-significant changes are labeled
‘NS’ in the figure. The error bars indicate standard errors across n cells, where n = 84,
70 and 77 for the WT, fob1∆ and hmo1∆ strains, respectively.

We note that [21] also studied the area and variance of the nucleolus using
experimental and simulated images. They found, for example, that the distribution of
areas occupied by the nucleolus displays a lognormal distribution for WT cells in G1.
Also, recall that we implemented thresholding based on Otsu’s method; in contrast, [21]
explored a range of threshold values and found qualitatively similar results to be
consistent across a range of threshold values. They did not, however, explore the area
and variance for simulated images for a wide range of µ, which is the focus of our next
experiment.

To explore whether varying the kinetic timescale µ for our simulations yields similar
changes as those arising under the fob1∆ and hmo1∆ mutations, we applied the
microscope simulator of [21] to our 4D simulated data and analyzed the images using
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the same image analyses as described in Fig. 2. First, we converted our 4D simulated
data into a timelapse sequence with 22 time points, i.e., snapshots. Each nucleolus bead
was convolved with a point spread function and a maximum intensity projection was
created for each timepoint. We depict 11 such images in Fig. 3(A). In panel (B), we plot
the area of the nucleolar signal (computed using Otsu’s threshold) versus µ. Note that
the nucleolus area increases as µ increases. In panel (C), we plot the standard deviation
of nucleolar signal versus µ, which has the opposite trend. In Fig. 3(D), we plot the
standard deviation of images obtained after a normalization step that is identical to
that implemented for the experimental images (see discussion for Fig. 2. Interestingly,
the dependence on µ of the signal’s standard deviation drastically changes depending on
whether or not it is normalized. Given that normalization is required to control for
cell-to-cell differences in CDC14-GFP and in nucleolar/rDNA size, we sought develop a
metric to measure clustering in the CDC14-GFP signal that was independent of the
absolute values of the intensities.

Our final experiment studies cluster formation in the nucleolus and compares
clustering observed in the experimental and simulated microscopy images. We
developed a cluster detection algorithm written with MATLAB (see Methods Section:
Image Analysis) and applied it to both the experimental and simulated images. We
have made the code available at [50]. In Fig. 3(A), we depict images of maximum
intensity projections for WT, fob1∆ and hmo1∆ strains with (top row) and without
(bottom row) visualizations of detected clusters, which are represented by green circles.
In panel (B), we depict identical information as in panel (A) except we show simulated
images for three values of µ. In Fig. 3(C) and (D), we show the number of clusters for
the experimental and simulated images, respectively. For the experimental images, we
give results for WT, fob1∆ and hmo1∆, whereas for the simulated images we present
results for µ ∈ [.09, 90]. We observe that the number of clusters was significantly
decreased in the hmo1∆ null mutation, but not the fob1∆ null mutation (p = 0.04 for
hmo1∆ versus p = 0.3 for fob1∆). We also observe that increasing µ yielded a general
trend in which there were fewer clusters. Taken together, these data suggest that gene
clustering can directly impact the size and shape of the nucleolus.

Histograms of 2-Point Pairwise Distances between Nucleolar
Beads
A simple and previously used method for analyzing distances between beads is to create
a histogram of all bead-bead pairwise distances. As explored in [21], this two-point
statistic can provide evidence of clustering and can be used to query simple properties
such as whether or not the clusters change over time. In this section, we repeat this
analysis on our data and extend it by showing what effects averaging over time and
averaging over populations has on the results. We show that averaging one cell over
time prevents observing the flexible clustering through pairwise distances, and averaging
over populations prevents observing any sort of clustering. We provide further details
on the computation of these distances in Methods Section: Pairwise-Distance Maps for
High-Throughput Chromosome Conformation Capture (Hi-C).

In Fig. 5(A), we plot the distribution of all pairwise distances {d(t)ij } at a single time
t for three kinetic timescales, given by the same values µ = 0.09, 0.19, 1.6 as shown in
Fig. 1. For µ = 0.09, the pairwise distance distribution is clearly a multimodal
distribution [21]. The peak near d ≈ 50 represents a large number of very short pairwise
distances between beads in the same cluster. For slightly larger d, the density drops to
zeros, indicating a separation distance between clusters. Interestingly, we observe two
more peaks near d ≈ 300 and d ≈ 600. The clarity of these peaks suggests that the
clusters themselves are regularly spaced from one another, reminiscent of a lattice
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structure. This shows the three layers of the multiscale structure of the nucleolus for
µ = 0.09: its existence as a dense, secluded section of the nucleus, the self-organization
of intra-nucleolar clusters, and the individual beads within each cluster. For µ = 0.19,
one can also observe in Fig. 5(A) three peaks in the empirical probability density for
bead-bead distances, but these peaks are much less pronounced. This shows a gradual
transition in the degree of clustering as we increase µ. There is also a smaller gap
between peaks. Together, these observations recapitulate our observations in Fig. 1(E),
wherein the clusters can be observed to be less compact. Finally, for µ = 1.6, there is no
multimodal structure in the bead-bead distance plot. This is consistent with our
expectation that there is no clustering structure present for this range of µ.

Fig 5. (A) Instantaneous distances, (B) time-average distances, and (C)
population-averaged distances. In each panel, we show results for the three kinetic
regimes illustrated in Fig. 1: µ = 0.09, µ = 0.19), and µ = 1.6. As reported in [21],
multimodal histograms are a “signal” for the presence of clusters. This signal is
strongest for µ = 0.09, is nonexistent for µ = 1.6, and we observe a new regime for
µ = 0.19 (flexible clustering or cluster plasticity), whereby ‘soft’ clusters form but
deform over time through cluster interactions. The vertical dashed lines in (D)-(F)
indicate a good distance threshold to construct gene-interaction networks; beads that
are closer than d∗ = 100nm are likely to belong to the same cluster.

The rigid and flexible clustering cases differ not only in how strong the clustering is
at any given time, but also in how stable the structure is in time. We investigate this by
considering how averaging pairwise-distances either across across time (Fig. 5(B)) or
over multiple simulations (Fig. 5(C)) influences pairwise-distance probability densities.

In Fig. 5(B), we plot the empirical probability densities for pairwise distances
averaged across our 20 minute simulations. Note for µ = 0.19 that the density is no
longer multimodal, implying that aggregating the data across a large time range inhibits
the detection of flexible clusters, which by definition change with time. Note that the
rigid clusters, which are very stable across time, remain discernable as the pairwise
probability density remains multimodal. Unsurprisingly, the slow crosslinking appears
qualitatively very similar in the long time average, as there was no apparent structure in
the first place.

In Fig. 5(C), we plot the empirical probability densities for pairwise distances at a
single time but averaged across 10 simulations with different random initial conditions.
Note for all µ that there is no longer any multimodal structure for these densities,
highlighting that averaging across heterogeneous cell populations obscures the detection
of clusters.

Flexible Clustering Regime Maximizes Bead Mixing
Next, we study how the kinetic time scale µ (i.e., and thus the presence of clusters)
affects the properties of pairwise gene interactions. A pair of beads is said to be
interacting if they are in very close proximity and the distance between them drops
below d∗. As discussed in Fig. 5, we choose d∗ = 100nm unless otherwise noted. In the
following experiment, we show that increasing µ not only inhibits the formation of
clusters, but that there exists a particular range of µ that optimizes gene mixing, or the
overall interaction frequency of all pairs of genes. These experiments illustrate how
clustering — which inherently describes multi-way relationships — can be studied
through pairwise distances — which inherently describe two-way relationships —, and
how there remain important open problems related to the time series signal processing
of 4D chromosome conformation datasets.

We study the following summary statistics for gene mixing:
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Fig 6. Mixing statistics for gene interactions: (A) mixing fraction; (B) mean
interaction number; (C) mean waiting time; and (D) mean interaction duration, which
we plot as versus µ. The shaded regions indicate the regime of flexible clustering,
µ ∈ (0.19, 1). The arrows in panels (A) and (C) highlight that the interaction fraction
and mean waiting time are both optimized for this range of µ. In contrast, this regime
is associated with sharp transitions for the mean interaction number and duration,
which both monotonically decrease with µ.

(A) The interaction fraction indicates the fraction of possible unique bead pairs that
interact at least once during an interphase simulation.

(B) The mean interaction number indicates the number of simultaneous interactions
(i.e., beads within distance d∗) for a nucleolus bead, averaged across time and
across beads.

(C) The mean waiting time indicates for any two beads, selected at random, the
average time that passes between their i-th and (i+ 1)-th interactions.

(D) The mean interaction duration indicates the amount of time beads enter and
reside within the interaction distance.

In Fig. 6(A–D), we plot these summary statistics across a wide range of µ. We
identify three regimes that optimize different attributes. µ ≈ 0.1 yields a self-organized
structure that maximizes the number and the duration of gene-gene interactions (see
panels (B) and (D)). Recall from Video 1 that µ = 0.09 yields many large clusters that
are stable (i.e., do not change) over time. This is reflected in a high number of
interactions with beads in the same cluster and low number of interactions with beads
not in the same cluster.

With 0.15 / µ / 1, we see flexible clustering behavior from Video 2. Notably, we
find here that this flexible clustering has interesting properties beyond simply being a
weaker version of the strong clustering from the rigid clustering regime. Namely,
Fig. 6(A) shows that these µ values maximize the fraction of pairs of beads that interact
at least once over the simulation, and Fig. 6(C) shows that these values minimize the
waiting times between subsequent interactions. Thus, we can say that flexible clustering
promotes the number of both simultaneous and overall distinct pairwise gene interactions
in the nucleolus. This behavior arises from a balance between the number of
intra-cluster gene-gen interactions, which is still elevated due to the moderate clustering
as shown in (B), and the ability for genes to frequently switch between clusters during
cluster interactions, as indicated by the reduced waiting time in (C). SMC proteins with
such crosslinking timescales will thereby promote collective interactions among all active
genes. These circumstances could accelerate a homology search, for example, to
facilitate DNA repair, if the sister chromosomes were suddenly activated by a family of
SMC proteins whose binding affinity was near this "sweet spot".

Finally, µ ' 1.5 is associated with a non-clustering regime, as shown in Video 3. The
lack of clustering is reflected by a low number of gene-gene interactions, and the freely
diffusing nature of the beads is reflected by short interaction duration and high
interaction fraction.

Identifying Cluster Membership with Network Community
Detection Algorithms
Having found that flexible clustering maximizes interesting properties of gene
interaction, we seek to develop tools to identify and label the spatiotemporal clusters.
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In the rigid clustering regime, the clusters are so well-defined that any reasonable
algorithm will detect them, but this is not the case for the flexible clustering. To detect
and track flexible clustering, we utilize both spatial and temporal information to
identify and track clusters.

While we have access to 4D bead position time series data, we begin by transforming
this into a multilayer network problem as described in Methods Section:
Gene-Interaction Networks from Pairwise-Distance Data. This is motivated by the fact
that the most similar data available in biology, the Hi-C dataset, does not measure true
distances between genome regions, but rather a notion of similarity based on average
proximity [12]. The result of this transformation is a time sequence of weighted,
undirected networks whose edge weights represent how near two beads tend to be to
each other at that point in time. We refer to this sequence of networks as a temporal
temporal network.

Given a gene interaction network, we identify communities using the multilayer
modularity [38], which we numerically solve using the Louvain algorithm [51]. The
algorithm, which we describe in Methods Section: Spatiotemporal Gene Clusters
Revealed by Community Detection in Temporal Networks, automatically computes the
communities at all time instances simultaneously, and the rate at which communities
remain constant over time or are allowed to change can be tuned with parameters.
Specifically, the multilayer modularity involves the selection of two parameters γ and ω,
which are “tuning knobs” to control the clusters’ size and temporal coherence,
respectively.

In S4 Video, S5 Video, and S6 Video, we present equivalent videos to S1 Video, S2
Video, and S3 Video, respectively, except in the new videos we color the beads
according to the community labels that we detect. These new videos provided
qualitative evidence supporting the ability of our algorithm to find clusters that have
appropriate spatial and temporal scales. Looking at the rigid clustering in S4 Video, we
see the coloring strongly agrees with our visual perception in the clusters. A similar but
less decisive conclusion can be made from observing S5 Video.

These videos indicate good agreement between visual perception of clusters and the
clusters that are detected by the multilayer modularity algorithm - when beads visually
appear to be clumped together, they tend to also be the same color in the videos, which
reaffirms the validity of our choice of clustering algorithm. However, especially when
looking at S6 Video depicting the non-clustering regime with slow crosslinking, we
identify a key and common issue with clustering algorithms - they typically identify the
“best” clusters, even when no clusters actually exist.

Gene Mixing at the Community Level Further Supports
Flexible Clustering as the Mechanism for Optimality
In this section, we provide further evidence that flexible clustering is the mechanism
that is responsible for the optimality observed in Fig. 6. To this end, we will revisit and
modify our definitions for gene interactions and gene mixing, which were defined at the
“bead level” (i.e., for pairs of beads). We now define similar, but slightly different,
concepts that are defined at the “community-level” in that they reflect only
community-membership information and do not require the precise bead locations. We
say that two beads are “communicating” if they are in the same community. That is, all
beads in the same cluster are communicating with each other, and beads in different
clusters are not communicating. With this modified definition in hand, we define
summary statistics for gene mixing at the community level that are analogous to the
2-point summary statistics for pairwise gene interactions that we previously defined in
Section: Flexible Clustering Regime Maximizes Bead Mixing. Analogous to gene mixing
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at the bead level, we now define “cross communication” at the community level.

(A) The communicating fraction indicates the fraction of bead pairs that are in the
same community at least once during a simulation.

(B) The average beads per community indicates, for a nucleolus bead, the average
number of beads in the same community at the same time, averaged across time
and across beads.

(C) The mean waiting time indicates for any two beads, selected at random, the
average time that passes between when they are no longer in the same community
and when they are next in the same community.

(D) The mean interaction duration indicates the amount of time between beads when
they are first in the same community and when they are no longer in the same
community.

Fig 7. Cross communication describes the dynamics of community memberships of
beads through community-level mixing. We study cross-communication for a large
range of µ by plotting four summary statistics: (A) communicating fraction; (B) mean
interaction number; (C) mean waiting time; and (D) mean interaction duration (see
text). The shaded regions indicate the regime of flexible clustering, µ ∈ (0.19, 1), and
the arrows in panels (A) and (C) highlight that the interaction fraction and mean
waiting time are both optimized for this range of µ. These results are qualitatively
identical to the results in Fig. 6 for gene mixing, illustrating that cluster formation and
the exchanges of beads between clusters determines the timescale of mixing.

In Fig. 7, we present summary statistics for cross communication that are analogous
to our results in Fig. 6 for pairwise gene interactions. Note that the results in Fig. 7 are
qualitatively identical to those in Fig. 6, supporting our hypothesis that gene-level
mixing is determined by community-level cross communication. That is, the formation
of gene clusters and exchanges of genes between them governs the timescale at which
nucleolar domains come in close proximity of one another.

Temporal Stability of Clusters
Using temporal community detection, we are now finally able to quantitatively support
our first observations made in Section: Transient Crosslinking Timescale Influences
Nucleolus Clustering that there are three distinct clustering regimes: rigid clustering;
flexible clustering; and no clustering. We support these observations by studying the
properties of the detected clusters.

In Fig. 8(A)–(C), we plot the average lifetime of clusters as a function of their
average size (averaged over time). Panels (A)–(C) indicate the three clustering regimes
with µ ∈ {0.09, 0.19, 1.6}, respectively.

For the rigid clustering regime, in Fig. 8(A), we see that most of the clusters are
large, with an average size of 10 or more beads, and also have a long lifetime of over 100
seconds. This is consistent with our prior observations (e.g. Video 1) that showed large
clusters that appeared very stable in time. We also see that the large clusters survive
for much longer than the small clusters.

For the flexible clustering regime, in Fig. 8(B), we can see the same general trend
that larger clusters tend to have a longer lifetime than smaller clusters, but there is a
much wider spread of cluster sizes, with only a moderate number of large clusters.
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Fig 8. The birth and death of gene clusters identified using modularity-based
community detection in temporal networks [38]. Panels (A), (B) and (C) depict the
lifetime (i.e., duration) of each gene cluster versus the average cluster size for µ = 0.09,
0.19, and 1.6, respectively. The points’ colors have been chosen to highlight the density
of points (with red indicating where there are many points close to one another).
(D)–(F): The persistence (i.e., temporal coherence) of clusters is indicated by the
probability that a randomly selected bead remains in the same clusters in the next time
window, again plotted versus the average number of beads in that clusters. Results
reflect d∗ = 325, γ = 10, ω = 1.

For the non-clustering regime, there appears to be little relationship between cluster
size and stability beyond an average size of approximately 3 beads. The clusters also
tend to be much smaller, with almost no clusters with an average size over 10 beads.

In Fig. 8(D)–(E), we plot the probability that a bead remains in the same
community upon the next timestep, again as a function of cluster size. Panels (D)–(E)
indicate results for µ ∈ {0.09, 0.19, 1.6}, respectively. In agreement with panels (A)–(C),
one can observe that larger clusters are more stable. Note also that the communities
exhibit more plasticity for µ = 0.19 than for µ = 0.09 since beads have a higher average
probability for changing the community to which they belong.

Discussion
The dynamic self-organization of the eukaryote genome is fundamental to the
understanding of life at the cellular level. The last quarter century has witnessed
remarkable technological advances that provide massive datasets of both the spatial
conformation of chromosomal DNA from cell populations (3C and Hi-C generalizations)
and the dynamic motion of domains in living cells (GFP tagging and tracking of specific
DNA sequences), from the yeast to the human genome. Data mining of this massive
data has likewise witnessed remarkable advances in understanding the hierarchical
packaging mechanisms of DNA that act on top of the genome, e.g., histones and
structural maintenance of chromosome (SMC) proteins, the topology of individual
chromosome fibers, their topologically associated domains, and the territories they
occupy in the nucleus. The third wave of advances has come from 4D modeling of
chromosomes based on stochastic models of entropic, confined polymers, and the
coupling of SMC proteins that either bind and crosslink genes on chromosomes or
generate loops on individual chromosomes. As these three approaches continue to
mature and inform one another, at an ever-increasing pace, insights into the structure
and dynamics of the genome continue to deepen.

The motivation for this paper lies in the information that can be inferred from these
massive datasets, from Hi-C, live cell imaging experiments, and polymer physics
modeling. In previous studies, cf. [21] and references therein, we showed that
heterogeneity in experimental images derive from substructures that are formed within
the nucleolus. We decided to use the array of tools from network community detection
analysis, modeling, and associated fast algorithms, to automate the search for dynamic
architectures in the 4D datasets generated by polymer modeling. We note a similar
network analysis approach has been applied to Hi-C datasets [26–28], whereas our
datasets have the added feature of highly resolved temporal information. Our aim was
to infer organization beyond 2-point, time-averaged or population-averaged, gene-gene
proximity statistics and heat maps generated from the statistics, and to remove the bias
of an individual’s visual determination of structure. To do so, we used the advances in
network-based models, their temporal generalization, data analysis, and algorithms, and
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applied this arsenal of tools to 4D datasets across four decades of crosslinking timescales
to: (i) robustly identify clusters, or communities, of genes (5k bp domains, or beads, in
our model), i.e., to directly detect gene sub-organization at the scale it exists rather
than attempt to seek larger scale organization from gene-gene statistics and heat maps;
(ii) determine the size distribution (number of genes) in such sub-structures; (iii)
determine the persistence times of communities; and, (iv) determine the interaction
frequency of communities and corresponding gene exchanges, which are the drivers of
gene-gene interaction statistics. In this way, network algorithms automate gene
community detection and persistence, with robustness built in by enforcing insensitivity
to algorithm tuning parameters.

We elected to build and implement these network tools on the 4D datasets generated
in house, from simulations of our recent polymer modeling of interphase budding
yeast [21]. In this model, a pool of SMC proteins transiently and indiscriminantly
crosslink 5k bp domains within the nucleolus on Chromosome XII. The kinetics of the
cross-linking anchors relative to the substrate is a major driver of sub-nuclear
organization. If the crosslinkers bind and release more rapidly than the chains can
relocate, the non-intuitive consequence is that the chains explore less space. When
dense clusters of crosslinker/binding sites arise, they persist for extended time periods
when the crosslinking kinetics is sufficiently fast.

We previously showed in [21] that very short-lived (µ = 0.09sec) binding kinetics
provided closer agreement with experimental results (highest degree of compaction of
the nucleolus into a crescent shape against the nuclear wall). It was also shown via
visualization of the simulated 4D datasets that this timescale induces a decomposition
of the nucleolus into a large number of clusters each consisting of many 5k bp domains,
and these clusters were persistent over time. On the other hand, with long-lived
crosslinks (µ = 90sec) the clusters disappeared. These results reveal that the timescales
of the crosslinkers relative to entropic fluctuations of the chromosome polymer chains
are a fundamental contributor to genome organization.

For the present paper, the sample set of binding kinetics in [21] was expanded to 4D
datasets of interphase, sampling over four decades of crosslinking duration timescales.
We applied standard, distance-based, 2-point statistical metrics and visualization tools,
and then analyzed the full range of 4D datasets with the fast, automated network
models and tools. The network algorithms search for and detect time-varying
communities (clusters, sub-structures) at the scales they exist, not at a prescribed scale
of two or more genes; the spatial and temporal scales are identified with the criteria
that they are robust to the algorithm parameters. We then use this information to label
and color-code communities, using community-level description to understand the
persistence and interactions (merger and division marked by gene exchanges) between
communities.

With the above community-scale information and statistics, we generalize standard
gene-gene interaction statistics across the four decades of bond duration timescale. As a
generalization of waiting times for 2 distant genes beads to come within a specific
distance of one another, we calculate waiting times for genes in the same community to
leave and then re-enter another common community, and calculate the fraction of all
genes that were in the same community at least once during interphase, which we call
the community cross-communication fraction.

From these analyses, we discovered a novel dynamic self-organization regime,
wherein the rigid, persistent communities at relatively short-lived crosslink timescales
(µ = .09sec) transition at slightly longer-lived crosslink timescales (µ = 0.19sec) to more
mobile (literally, the clusters diffuse faster) communities that interact far more
frequently, each interaction corresponding to merger, subsequent division, and an
exchange of genes. We refer to this regime as flexible community structure with
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enhanced cross-communication. Furthermore, we discovered non-monotonicity in the
dynamic self-organization behavior: the community cross-communication fraction is
maximized, coincident with a minimum waiting time between genes departing and
returning to common communities, with a crosslink timescale of µ = 0.19sec. Both
properties fall off, albeit in different ways, for shorter and longer timescales.

We emphasize that these network tools and fast algorithms are amenable to any 4D
dataset from polymer models. While we restricted the analysis in this study to the
nucleolus during G1 of budding yeast where SMC proteins are allowed to transiently
crosslink 5k bp domains, the same analyses can be applied to data with tandem SMC
crosslinking and loop generation, for any cell type and for any phase of the cell cycle.
Moreover, given the growing interest in network-based analyses for Hi-C data, network
modeling is well-positioned to provide a fruitful direction for data assimilation efforts
aimed at connecting simulated and empirical 4D chromosome conformation data. An
important challenge facing this pursuit is the development of improved data
pre-processing and community-detection methodology for temporal and multimodal
network datasets [52,53].

Materials and Methods

Model
Chromatin dynamics within confined yeast nuclei has been widely modeled using Rouse
polymer bead-spring chains; see earlier citations. We employ the identical model and
code in [21], resolving the entire yeast genome into 2803 total beads, each of which
represents approximately 5k base pairs (bp). As such, each bead is interpreted as a
chromosome domain or a tension blob, as explained in the polymer physics literature.
The beads are arranged on 32 chromosome arms having lengths that reflect their
experimentally identified lengths. Each arm is tethered at both ends to the nuclear wall:
all emanating from the centromere at one end, with the other end tethered to one of six
telomeres. Along each arm, there are entropic, nonlinear springs (the wormlike chain
model is used here) that connect neighboring beads. The beads also experience
Brownian, entropic, repulsive and hydrodynamic drag forces, and are physically
confined to the nucleus. We simulate approximately 20 minutes of G1 during interphase,
and each simulation is initialized with 32 chromosome arms tethered at the centromere
and one of six telomeres on the nuclear wall, otherwise randomly located within the
nucleus (idealized as a spherical domain).

We model the effect of SMC proteins by transiently crosslinking pairs of
non-neighboring beads in the nucleolus, represented by a contiguous chain of 361 beads
on chromosome XII. (We note in passing that [21] also studied, experimentally and
computationally, when the nucleolus is split onto separate chromosome arms, showing
this to have a negligible affect on the clustering and interaction results.) A transient
crosslink is modeled by a pair of stochastic events — a binding and unbinding of two
non-adjacent nucleolar beads — and the timescale of these events is tuned by a single
parameter µ (measured in seconds). We defer to [21] for the details, but elaborate here
on the role of µ. To implement crosslinks, all nucleolar beads are assigned a state of
“active” or “inactive,” and crosslinks are allowed only between active beads. Each bead’s
state fluctuates stochastically as follows: an active bead becomes inactive after a
duration that is a random number drawn the normal distribution N(µ, (µ/5)2); and an
inactive bead becomes active after a duration drawn from N(µ/9, (µ/45)2). If two
nucleolar beads are both active and the distance between them is less than d̃ = 90 nm,
then a crosslink is formed between them (i.e., they bind). Each bead may be involved in
at most one crosslink at a time, decided on the basis of pairwise proximity among all
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active beads at each timestep. If either bead becomes inactive, then the crosslink is
broken (i.e., they unbind). Hence, crosslinks are established and broken stochastically in
the nucleolus, and the single parameter µ dictates the kinetic timescales for crosslinking.
See [21] for additional model details.

Pairwise-Distance Maps for High-Throughput Chromosome
Conformation Capture (Hi-C)
Each simulation of the Rouse-like polymer model yields time-series data {xi(t)} ∈ R3

that defines the 3D location of each bead i ∈ {1, . . . , N} at each discrete time step
t = 0, 1, . . . . We establish a connection between our simulated data and the
state-of-the-art in chromosome imaging—namely, high-throughput conformation capture
(Hi-C) — by constructing and analyzing pairwise-distance maps. Hi-C “images” the
conformation of chromosomes using a combination of proximity-based ligation and
massively parallel sequencing, which yields a map that is correlated with the pairwise
distances between gene segments. While the actual pairwise distances between gene
segments cannot be directly measured, Hi-C implements spatially constrained ligation
followed by a locus-specific polymerase chain reaction to obtain pairwise count maps
that are correlated with spatial proximity: the count between two gene segments
monotonically decreases as the physical 3-dimensional distance between them increases.

To provide an analogue to Hi-C imaging, we construct pairwise-distance maps for
our simulated data {xi(t)}. Let

F : {xi}i=Ni=1 7→ RN×N (1)

define a map (used here in the mathematical sense) from a set of N points {xi} ∈ R3 to
a matrix such that each entry (i, j) in the matrix gives the distance between point i and
point j. Whereas Hi-C imaging aims to study the positioning of chromosomes using
noisy measurements that are inversely correlated with pairwise distances, for our
simulations we have access to the complete information about the chromosome
positioning. We therefore define and study several variations for pairwise distance maps,
which will allow us to also study artifacts that can arise under different preprocessing
techniques, such as averaging the time series data across time windows and/or averaging
across multiple simulations with different initial conditions. We define the following
pairwise distance maps:

• An instantaneous pairwise distance map X(t) = F ({xi(t)}) encodes pairwise
distances between beads (i.e., chromosome domains) at a particular timestep t.

• A time-averaged pairwise distance map Y (τ) = 1
|τ |
∑
t∈τ X(t) encodes the

pairwise distance between beads averaged across a set of timesteps τ .

• A population-averaged pairwise distance map Z(t) = 〈X(t)〉p encodes the pairwise
distance at timestep t between beads, which are averaged across several
simulations that have different initial conditions (which are chosen uniformly at
random).

These pairwise distance maps represent the data that is sought after, but cannot be
directly measured, by Hi-C imaging. Moreover, by defining several distance maps we are
able to study “averaging” artifacts that can arise due to various limitations of Hi-C
imaging. For example, Hi-C imaging obtains measurements that are typically averaged
across a large heterogeneous distribution of cells that are subjected to nonidentical
conditions and exist at nonidentical states in their cell cycles.
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Microscope Image Acquisition, Processing and Analysis
Yeast Strains for Experiment

The budding yeast strains used in this study were obtained by transforming the yeast
strain EMS219 (Mat alpha, his5 leu2-3,212 ura3-50 CAN1 asp5 gal2 (form I1
rDNA::leu2 URA3+)) with CDC14-GFP:KANR, to label the nucleolus, and
SPC29-RFP:HYGR, to label the spindle pole body, to generate the yeast strain
DCY1021.1. DCY1021.1 was transformed to knock out FOB1 and HMO1 to generates
DCY1055.1 and DCY1056.1 respectively.

Image Acquisition and Baseline Processing

Fluorescent image stacks of unbudded yeast cells were acquired using a Eclipse Ti
wide-field inverted microscope (Nikon) with a 100× Apo TIRF 1.49 NA objective
(Nikon) and Clara charge-coupled device camera (Andor) using Nikon NIS Elements
imaging software (Nikon). Each image stack contained 7 Z-planes with 200 nm step-size.

Image stacks of experimental images were cropped to 7 Z-plane image stacks of
single cells using ImageJ and saved as TIFF files. The cropped Z-stacks were read into
MATLAB 2018b (MathWorks), converted into maximum intensity projections, and the
projections of hmo1∆ and fob1∆ were cropped to 55× 55 pixels, to match the
dimensions of WT projections, using MATLAB function padarray with replicate
option specified to extend outer edge of pixel values to ensure the center of all cropped
images was the brightest pixel. The intensity values all projections were normalized by
subtracting all intensity values by the minimum value and then dividing the resulting
values by the maximum intensity value after subtraction. The normalized intensity
values were stored with double point precision, preventing any loss in dynamic range.

Image Analysis

The areas of nucleolar signals were determined by setting all values below threshold,
calculated using multithresh function, to NaN and then summing number of values
that were not NaNs. That pixel count was converted to µm2 by multiplying the sums
by 0.06482, the area of each pixel in µm2.

To calculate the standard deviation of the intensities of the nucleolar signal, the
non-NaN values remaining after thresholding were re-normalized using the same method
described above, and the standard deviation of those values was measured.

To count clusters within the nucleolar signal, the normalized images were
deconvolved with 5× 5 Gaussian structural element, using deconvblind function, and
underwent two rounds of background subtraction by setting all intensity values below
threshold value, calculated using default multithresh function, to NaN and then all
NaN values to 0. Clusters were identified using the imregionalmax function and
counted using bwconncomp function.

The simulated images generated from our simulations were analyzed as described
above with the additional step of measuring the standard deviation of the each
simulated maximum intensity projection. All WT images were analyzed using the script
wtExpIm.m. All hmo1∆ and fob1∆ images were analyzed using the script cropExpIm.m.
All simulated images were analyzed using the script clusterCountLoop.m.

All MATLAB scripts have been made available at [50].
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Cluster Identification via Network Community Detection
Gene-Interaction Networks from Pairwise-Distance Data

Given a pairwise distance map X ∈ RN×N in which each entry Xij gives the (possibly
averaged) Euclidean distance between beads i and j as described in Pairwise-Distance
Maps for High-Throughput Chromosome Conformation Capture (Hi-C), we construct a
network model in which there are weighted edges (i.e., interactions) only between beads
that are in close proximity to each other and for which each edge weight Aij ≥ 0
decreases monotonically with distance Xij . We propose a model with two parameters,
d∗ and s, which represent a distance threshold and a decay rate, respectively. In
particular, we define a network adjacency matrix A having entries

Aij =

{
e−sXij , Xij < d∗

0, Xij ≥ d∗.
(2)

Note that there exists an undirected edge between i and j (i.e., Aij > 0) only when
Xij < d∗, and s controls the rate in which the edge weight Aij decreases with increasing
distance Xij . Eq (2) defines a map between a distance matrix and an affinity matrix
that encodes a network. Note that for any such adjacency matrix A, we can
equivalently define the network using the graph-theoretic formulation G(V ,E ). Here
V = {1, . . . , N} denotes the set of nodes (i.e., the beads in the chromosome model) and
E = {(i, j, Aij) : Aij > 0} denotes the set of weighted edges (i.e., a set encoding which
beads are interacting as well as their interaction strengths).

In Pairwise-Distance Maps for High-Throughput Chromosome Conformation
Capture (Hi-C) we defined several versions of pairwise distance maps—instantaneous,
time-averaged, and population-averaged maps—and a network model can be
constructed for any of these maps:

• An instantaneous interaction network refers to a network associated with an
instantaneous pairwise distance map X(t).

• A time-averaged interaction network refers to a network associated with a
time-averaged pairwise distance map Y (τ). We point out that due to the
nonlinearity of Eq (2), a network associated with a time-averaged distance map
can in general differ from a temporal average of instantaneous interaction
networks, averaged across the same time interval.

• A population-averaged interaction network refers to a network associated with an
population-averaged distance map 〈Z(t)〉p.

In addition to the above network models, we are particularly interested in
constructing and studying temporal interaction networks, which we define as a sequence
of time-averaged interaction networks. In particular, given a sequence of timesteps
t ∈ {0, 1, 2, . . . , T}, we partition time into a sequence of time windows
τ(s) = {(s− 1)∆ + 1, . . . , s∆} for s = 1, 2, . . . of width ∆. We then define a sequence of
time-averaged networks {G(s)} for s = 1, 2, . . . associated with these distance maps,
which are time-averaged across the nonoverlapping time windows {τ(s)}. In practice,
we choose the time window width ∆ to be similar to—but slightly larger than— µ.
Matching the time-scales of µ and ∆ allows the temporal interaction networks to
efficiently capture the dynamics of interactions. Specifically, if ∆ is too short then the
temporal network will be identical across many time steps, which is not an efficient use
of computer memory. Moreover, if ∆ is too large, then the temporal network data will
be too coarse to identify interaction dynamics occurring at a faster time scale.

Note that this network-construction method involves two parameters: the distance
cutoff distance d∗ and time-window size ∆. Because the edge weights exponentially
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decrease with distance, the community detection algorithms we study are insensitive to
the choice for d∗, provided that d∗ is sufficiently large so that the network is connected.
Our choice d∗ = 325 in Section: Temporal Stability of Clusters ensures there is an edge
between all beads in the same cluster (recall Fig. 6 in the main text) and was found to
yield qualitatively similar results for other choices of d∗. We also chose ∆ = 10 to
aggregate the time-varying bead-location data (which was saved every 0.1 second) into
1-second intervals. We studied 1000 such time windows to produce Fig. 8.

Spatiotemporal Gene Clusters Revealed by Community Detection in
Temporal Networks

We analyze spatiotemporal clustering of chromosomes using community detection
methodology for temporal interaction networks, particularly an approach based on
multilayer-modularity optimization. We study the multilayer modularity measure [38]

Q =
1

2µ

∑
i,j,s,r

[(
Asij − γ

ksi k
s
j

2ms

)
δ(s, r) + ωδ(i, j)Csr

]
δ(cis, cjr), (3)

where Asij denotes the adjacency matrix for network layer s (i.e., that associated with
time window τs), γ is again a tunable “resolution parameter,” ksi =

∑
j A

s
ij is the

weighted node degree for node i in layer s, 2ms =
∑
ij A

s
ij is twice the total number of

edges in layer s, δ(m,n) is again a Dirac delta function, Csr = δ(s, r − 1) + δ(s, r + 1)
defines the coupling between consecutive (time) layers and Csr = 1 if only if r = s± 1
(otherwise Csr = 0), and {cis} are the integer indices that indicate the community for
each node i in each layer s. If one wished to analyze a just a single network (e.g., a
time-averaged or population-averaged network), then one can simply set Csr = 0 so that
the second term in the square brackets is discarded.

Note that multilayer modularity involves two parameters γ and ω, which are “tuning
knobs” to identify clusters in which their size and temporal coherence are appropriate.
In practice, we explore a wide range of parameter values γ ∈ [γmin, γmax] and
ω ∈ [ωmin, ωmax] to study the multiscale organization of clusters. This approach
efficiently explores clustering phenomena at multiple spatial and temporal scales,
identifying at which scales clustering is most prevalent and at which scales clustering is
nonexistent. To identify appropriate values for γ and ω, we used a variety of techniques
including the CHAMP algorithm [54] (which utilizes fast algorithms that detect convex
hulls in the (γ, ω) parameter space) and comparisons to other community-detection
algorithms including the study of connected-components.

Competing Interests
The authors declare no competing interests.

References
1. Dekker J, Belmont AS, Guttman M, Leshyk VO, Lis JT, Lomvardas S, et al. The

4D nucleome project. Nature. 2017;549(7671):219.

2. Marko JF, Siggia ED. Fluctuations and supercoiling of DNA. Science.
1994;265(5171):506–508.

3. Marko J, Siggia E. Statistical mechanics of supercoiled DNA. Physical Review E.
1995;52(3):2912.

May 21, 2019 20/25

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 23, 2019. ; https://doi.org/10.1101/648196doi: bioRxiv preprint 

https://doi.org/10.1101/648196
http://creativecommons.org/licenses/by/4.0/


4. Wong H, Marie-Nelly H, Herbert S, Carrivain P, Blanc H, Koszul R, et al. A
predictive computational model of the dynamic 3D interphase yeast nucleus.
Current Biology. 2012;22(20):1881–1890.

5. Wong H, Arbona JM, Zimmer C. How to build a yeast nucleus. Nucleus.
2013;4(5):361–366.

6. Vasquez PA, Bloom K. Polymer models of interphase chromosomes. Nucleus.
2014;5(5):376–390.

7. Wang R, Mozziconacci J, Bancaud A, Gadal O. Principles of chromatin
organization in yeast: relevance of polymer models to describe nuclear
organization and dynamics. Current opinion in cell biology. 2015;34:54–60.

8. Tjong H, Gong K, Chen L, Alber F. Physical tethering and volume exclusion
determine higher-order genome organization in budding yeast. Genome research.
2012;22(7):1295–1305.

9. Verdaasdonk JS, Vasquez PA, Barry RM, Barry T, Goodwin S, Forest MG, et al.
Centromere tethering confines chromosome domains. Molecular Cell.
2013;52(6):819–831.

10. Ea V, Baudement MO, Lesne A, Forné T. Contribution of topological domains
and loop formation to 3D chromatin organization. Genes. 2015;6(3):734–750.

11. Vasquez PA, Hult C, Adalsteinsson D, Lawrimore J, Forest MG, Bloom K.
Entropy gives rise to topologically associating domains. Nucleic Acids Research.
2016;44(12):5540–5549.

12. Dekker J, Rippe K, Dekker M, Kleckner N. Capturing chromosome conformation.
Science. 2002;295(5558):1306–1311.

13. Le TB, Imakaev MV, Mirny LA, Laub MT. High-resolution mapping of the
spatial organization of a bacterial chromosome. Science. 2013;342(6159):731–734.

14. Rao SS, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT,
et al. A 3D map of the human genome at kilobase resolution reveals principles of
chromatin looping. Cell. 2014;159(7):1665–1680.

15. Dekker J. Mapping in Vivo Chromatin Interactions in Yeast Suggests an
Extended Chromatin Fiber with Regional Variation in Compaction. The Journal
of Biological Chemistry. 2008;283(50):34532–34540.

16. Lieberman-Aiden E, Van Berkum NL, Williams L, Imakaev M, Ragoczy T,
Telling A, et al. Comprehensive mapping of long-range interactions reveals
folding principles of the human genome. Science. 2009;326(5950):289–293.

17. Duan Z, Andronescu M, Schutz K, McIlwain S, Kim YJ, Lee C, et al. A
three-dimensional model of the yeast genome. Nature. 2010;465(7296):363.

18. Tanizawa H, Iwasaki O, Tanaka A, Capizzi JR, Wickramasinghe P, Lee M, et al.
Mapping of long-range associations throughout the fission yeast genome reveals
global genome organization linked to transcriptional regulation. Nucleic Acids
Research. 2010;38(22):8164–8177.

19. Pope BD, Ryba T, Dileep V, Yue F, Wu W, Denas O, et al. Topologically
associating domains are stable units of replication-timing regulation. Nature.
2014;515(7527):402.

May 21, 2019 21/25

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 23, 2019. ; https://doi.org/10.1101/648196doi: bioRxiv preprint 

https://doi.org/10.1101/648196
http://creativecommons.org/licenses/by/4.0/


20. Vian L, Pękowska A, Rao SS, Kieffer-Kwon KR, Jung S, Baranello L, et al. The
Energetics and Physiological Impact of Cohesin Extrusion. Cell.
2018;173(5):1165–1178.

21. Hult C, Adalsteinsson D, Vasquez PA, Lawrimore J, Bennett M, York A, et al.
Enrichment of dynamic chromosomal crosslinks drive phase separation of the
nucleolus. Nucleic Acids Research. 2017;45(19):11159–11173.

22. Belmont AS, Straight AF. In vivo visualization of chromosomes using lac
operator-repressor binding. Trends in Cell Biology. 1998;8(3):121–124.

23. Pearson CG, Maddox PS, Salmon E, Bloom K. Budding yeast chromosome
structure and dynamics during mitosis. The Journal of Cell Biology.
2001;152(6):1255–1266.

24. Fisher J, Ballenger M, O’Brien E, Haase J, Superfine R, Bloom K. DNA
relaxation dynamics as a probe for the intracellular environment. Proceedings of
the National Academy of Sciences. 2009;106(23):9250–9255.

25. Belmont AS, Li G, Sudlow G, Robinett C. Visualization of large-scale chromatin
structure and dynamics using the lac operator/lac repressor reporter system. In:
Methods in cell biology. vol. 58. Elsevier; 1999. p. 203–222.

26. Rajapakse I, Scalzo D, Tapscott SJ, Kosak ST, Groudine M. Networking the
nucleus. Molecular Systems Biology. 2010;6(1):395.

27. Rajapakse I, Groudine M. On emerging nuclear order. The Journal of Cell
Biology. 2011;192(5):711–721.

28. Rajapakse I, Groudine M, Mesbahi M. Dynamics and control of state-dependent
networks for probing genomic organization. Proceedings of the National Academy
of Sciences. 2011;.

29. Xu Z, Zhang G, Jin F, Chen M, Furey TS, Sullivan PF, et al. A hidden Markov
random field-based Bayesian method for the detection of long-range chromosomal
interactions in Hi-C data. Bioinformatics. 2015;32(5):650–656.

30. Chen J, Hero III AO, Rajapakse I. Spectral identification of topological domains.
Bioinformatics. 2016;32(14):2151–2158.

31. Cabreros I, Abbe E, Tsirigos A. Detecting community structures in hi-c genomic
data. In: Information Science and Systems (CISS), 2016 Annual Conference on.
IEEE; 2016. p. 584–589.

32. Schmitt AD, Hu M, Jung I, Xu Z, Qiu Y, Tan CL, et al. A compendium of
chromatin contact maps reveals spatially active regions in the human genome.
Cell Reports. 2016;17(8):2042–2059.

33. Liu S, Chen H, Ronquist S, Seaman L, Ceglia N, Meixner W, et al. Genome
architecture leads a bifurcation in cell identity. bioRxiv. 2017; p. 151555.

34. Liu S, Chen PY, Hero A, Rajapakse I. Dynamic Network Analysis of the 4D
Nucleome. bioRxiv. 2018; p. 268318.

35. Chen H, Chen J, Muir LA, Ronquist S, Meixner W, Ljungman M, et al.
Functional organization of the human 4D Nucleome. Proceedings of the National
Academy of Sciences. 2015;112(26):8002–8007.

May 21, 2019 22/25

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 23, 2019. ; https://doi.org/10.1101/648196doi: bioRxiv preprint 

https://doi.org/10.1101/648196
http://creativecommons.org/licenses/by/4.0/


36. Delaneau O, Zazhytska M, Borel C, Giannuzzi G, Rey G, Howald C, et al.
Chromatin three-dimensional interactions mediate genetic effects on gene
expression. Science. 2019;364(6439):eaat8266.

37. Ronquist S, Patterson G, Muir LA, Lindsly S, Chen H, Brown M, et al.
Algorithm for cellular reprogramming. Proceedings of the National Academy of
Sciences. 2017;114(45):11832–11837.

38. Mucha PJ, Richardson T, Macon K, Porter MA, Onnela JP. Community
structure in time-dependent, multiscale, and multiplex networks. Science.
2010;328(5980):876–878.

39. Newman ME. Modularity and community structure in networks. Proceedings of
the National Academy of Sciences. 2006;103(23):8577–8582.

40. Eser U, Chandler-Brown D, Ay F, Straight AF, Duan Z, Noble WS, et al.
Topologically associating genomic domains in yeast. Proceedings of the National
Academy of Sciences. 2017;114(15):3061–3070.

41. Schalbetter S, Goloborodko A, Fudenberg G, Belton J, Miles C, Yu M, et al.
Structural maintenance of chromosome complexes differentially compact mitotic
chromosomes according to genomic context. Nature Cell Biology.
2017;19(9):1071–1080.

42. Fudenberg G, Imakaev M, Lu C, Goloborodko A, Abdennur N, Mirny LA.
Formation of chromosomal domains by loop extrusion. Cell Reports.
2016;15(9):2038–2049.

43. Dekker J, Marti-Renom MA, Mirny L. Exploring the Three-Dimensional
Organization of Genomes: Interpreting Chromatin Interaction Data. Nature
Reviews Genetics. 2013;14(6):390–403.

44. Imakaev M, Fudenberg G, McCord RP, Naumova N, Goloborodko A, Lajoie BR,
et al. Iterative Correction of Hi-C Data Reveals Hallmarks of Chromosome
Organization. Nature Methods. 2012;9(10):999–1003.

45. Johzuka K, Horiuchi T. The cis element and factors required for condensin
recruitment to chromosomes. Molecular Cell. 2009;34(1):26–35.

46. Johzuka K, Terasawa M, Ogawa H, Ogawa T, Horiuchi T. Condensin loaded onto
the replication fork barrier site in the rRNA gene repeats during S phase in a
FOB1-dependent fashion to prevent contraction of a long repetitive array in
Saccharomyces cerevisiae. Molecular and Cellular Biology. 2006;26(6):2226–2236.

47. Prieto JL, McStay B. Recruitment of factors linking transcription and processing
of pre-rRNA to NOR chromatin is UBF-dependent and occurs independent of
transcription in human cells. Genes & Development. 2007;21(16):2041–2054.

48. Albert B, Colleran C, Leger-Silvestre I, Berger AB, Dez C, Normand C, et al.
Structure-function analysis of Hmo1 unveils an ancestral organization of
HMG-Box factors involved in ribosomal DNA transcription from yeast to human.
Nucleic Acids Research. 2013;41(22):10135–10149.

49. Otsu N. A threshold selection method from gray-level histograms. IEEE
Transactions on Systems, Man, and Cybernetics. 1979;9(1):62–66.

50. Code Release: Bloom Lab Yeast – Nucleolar Analysis; available at
https://github.com/BloomLabYeast/nucleolarAnalysis;.

May 21, 2019 23/25

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 23, 2019. ; https://doi.org/10.1101/648196doi: bioRxiv preprint 

https://doi.org/10.1101/648196
http://creativecommons.org/licenses/by/4.0/


51. Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E. Fast unfolding of
communities in large networks. Journal of Statistical Mechanics: Theory and
Experiment. 2008;2008(10):P10008.

52. Taylor D, Shai S, Stanley N, Mucha PJ. Enhanced detectability of community
structure in multilayer networks through layer aggregation. Physical Review
Letters. 2016;116(22):228301.

53. Taylor D, Caceres RS, Mucha PJ. Super-resolution community detection for
layer-aggregated multilayer networks. Physical Review X. 2017;7(3):031056.

54. Weir WH, Emmons S, Gibson R, Taylor D, Mucha PJ. Post-processing partitions
to identify domains of modularity optimization. Algorithms. 2017;10(3):93.

May 21, 2019 24/25

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 23, 2019. ; https://doi.org/10.1101/648196doi: bioRxiv preprint 

https://doi.org/10.1101/648196
http://creativecommons.org/licenses/by/4.0/


Supporting Information
S1 Video. One minute of real-time simulation for µ = 0.09, demonstrating
association of beads into large, stable clusters. Resource available at
https://github.com/bwalker1/chromosome-videos/blob/master/Dataset0_
allRed_finer_realtime.mp4.

S2 Video. One minute of real-time simulation for µ = 0.19, showing association of
beads into clusters that exhibit frequent changes in membership. Resource available at
https://github.com/bwalker1/chromosome-videos/blob/master/Dataset6_
allRed_finer_realtime.mp4.

S3 Video. One minute of real-time simulation for µ = 1.6, showing no apparent
structure in the bead positions beyond simple pairing. Resource available at
https://github.com/bwalker1/chromosome-videos/blob/master/Dataset12_
allRed_finer_realtime.mp4.

S4 Video. One minute of real-time simulation for the rigid clustering regime with
µ = 0.09. We observe that the stable and well-separated clusters have been distinctly
labeled by the community detection algorithm. Resource available at
https://github.com/bwalker1/chromosome-videos/blob/master/Dataset0_
color_finer_realtime_altView.mp4.

S5 Video. One minute of real-time simulation for the flexible clustering regime with
µ = 0.19. Here the clusters are not so clearly separated, but the colored labels still
appear consistent with what one would expect. Resource available at
https://github.com/bwalker1/chromosome-videos/blob/master/Dataset6_
color_finer_realtime_altView.mp4.

S6 Video. One minute of real-time simulation for the non-clustering regime with
µ = 1.6. Here there are no clusters present in the data, but the community detection
algorithm still tries to give the same label to nearby beads. Due to the lack of stable
community structure, beads change label more frequently than for smaller values of µ.
Resource available at https://github.com/bwalker1/chromosome-videos/blob/
master/Dataset12_color_finer_realtime_altView.mp4.
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