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11 Abstract

12 The deep sea is one of the most extreme environments on earth, with low oxygen, high hydrostatic 

13 pressure and high levels of toxins. Species of the family Vesicomyidae are among the dominant 

14 chemosymbiotic bivalves found in this harsh habitat. Mitochondria play a vital role in oxygen usage 

15 and energy metabolism; thus, they may be under selection during the adaptive evolution of deep-sea 

16 vesicomyids. In this study, the mitochondrial genome (mitogenome) of the vesicomyid bivalve 

17 Calyptogena marissinica was sequenced with Illumina sequencing. The mitogenome of C. marissinica 

18 is 17,374 bp in length and contains 13 protein-coding genes, 2 ribosomal RNA genes (rrnS and rrnL) 

19 and 22 transfer RNA genes. All of these genes are encoded on the heavy strand. Some special elements, 

20 such as tandem repeat sequences, “G(A)nT” motifs and AT-rich sequences, were observed in the 

21 control region of the C. marissinica mitogenome, which is involved in the regulation of replication and 

22 transcription of the mitogenome and may be helpful in adjusting the mitochondrial energy metabolism 

23 of organisms to adapt to the deep-sea environment. The gene arrangement of protein-coding genes was 

24 identical to that of other sequenced vesicomyids. Phylogenetic analyses clustered C. marissinica with 

25 previously reported vesicomyid bivalves with high support values. Positive selection analysis revealed 

26 evidence of adaptive change in the mitogenome of Vesicomyidae. Ten potentially important adaptive 

27 residues were identified, which were located in cox1, cox3, cob, nad2, nad4 and nad5. Overall, this 

28 study sheds light on the mitogenomic adaptation of vesicomyid bivalves that inhabit the deep-sea 

29 environment.
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30 Introduction

31 Mitochondria, which descended from proteobacteria via endosymbiosis, are important organelles in 

32 eukaryotic cells and are involved in various processes, such as ATP generation, signaling, cell 

33 differentiation, growth and apoptosis [1]. Moreover, mitochondria have their own genetic information 

34 system. In general, the metazoan mitogenome is a closed, circular DNA molecule, ranging from 12 to 

35 20 kb in length and usually containing 37 genes: 13 protein-coding genes (PCGs) (atp6, atp8, cox1-3, 

36 cytb, nad1-6 and nad4l) of the respiratory chain, 2 ribosomal RNA (rRNA) genes (rrnS and rrnL) and 

37 22 transfer RNA (tRNA) genes [2]. In addition, there are several noncoding regions in the mitogenome, 

38 and the longest noncoding “AT-rich” region is known as the control region (CR), which includes 

39 elements controlling the initiation and regulation of transcription and replication [3]. Owing to maternal 

40 inheritance, variable gene order, a low frequency of gene recombination and different genes having 

41 different evolutionary rates, mitochondrial sequences are widely used for species identification, genetic 

42 diversity assessment and phylogenetics at various taxonomic levels [4–7].

43 Since the discovery of cold seeps and hydrothermal vents in the deep sea, the unique biological 

44 communities that depend on chemosynthetic primary production have attracted the attention of 

45 researchers [8–11]. These deep-sea environments lack sunlight and exhibit high pressure, low oxygen 

46 and high levels of chemical toxicity due to various heavy metals, and the organisms that live there 

47 show a series of adaptations compared with marine species in coastal environments [12–15]. 

48 Mitochondria are the energy metabolism centers of eukaryotic cells, which can generate more than 95% 

49 of cellular energy through oxidative phosphorylation (OXPHOS) [3]. Therefore, mitochondrial PCGs 

50 may undergo evolutionary selection in response to metabolic requirements in extremely harsh 

51 environments. Numerous studies have found clear and compelling evidence of adaptive evolution in the 

52 mitogenome of organisms from extreme habitats, including Tibetan humans [16], Chinese snub-nosed 

53 monkeys [17], Tibetan horses [18–19], Tibetan wild yaks [20], galliform birds [21], and Tibetan 

54 loaches [22].

55 The family Vesicomyidae (Dall & Simpson, 1901) is widely distributed worldwide from shelf to 

56 hadal depths and comprises specialized bivalves occurring in reducing environments such as 

57 hydrothermal vents located in mid-ocean ridges and back-arc basins, cold seeps at continental margins 

58 and whale falls [23–26]. Studies have shown that vesicomyid bivalves rely upon the symbiotic 

59 chemoautotrophic bacteria in their gills for all or part of nutrition [27–28]. Based on the shells and soft 
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60 body, the Vesicomyidae is divided into two subfamilies: Vesicomyinae and Pliocardiinae. The 

61 Vesicomyinae includes only one genus, Vesicomya, while Pliocardiinae currently contains 20 genera. 

62 Among the 20 genera, Calyptogena is the most diverse group of deep-sea vesicomyid bivalves in the 

63 western Pacific region and its marginal seas [29]. As some of the dominant species in the deep sea, 

64 vesicomyids are an interesting taxon with which to study the mechanisms of adaptation to diverse 

65 stressors in deep-sea habitats. Considering that the mitogenome has highly compact DNA and is easily 

66 accessible, several complete/nearly complete mitogenomes of vesicomyids have been sequenced [30–

67 33] in recent years; however, limited information is available about the mechanism of adaptation to 

68 deep-sea habitats in vesicomyids at the mitogenome level.

69 In the present study, we obtained the mitogenome of Calyptogena marissinica, a new species of the 

70 family Vesicomyidae from the Haima cold seep of the South China Sea. First, the mitogenome 

71 organization, codon usage, and gene order information were obtained, and we compared the 

72 composition of this mitogenome with that of other available vesicomyid bivalve mitogenomes. Second, 

73 based on mitochondrial PCGs and 2 rRNA genes, the phylogenetic relationships between C. 

74 marissinica and other species from subclass Heterodonta were examined. Finally, to understand the 

75 adaptive evolution of deep-sea organisms, we conducted positive selection analysis of vesicomyid 

76 bivalve mitochondrial PCGs.

77 Materials and Methods

78 Sampling, identification and DNA extraction

79 Specimens of C. marissinica were sampled from the “Haima” methane seep in the northern sector of 

80 the South China Sea at a depth of 1,380-1,390 m using a remotely operated vehicle (ROV) in May 

81 2018. Species-level morphological identification was performed according to the main points of Chen 

82 et al. (2018) [29]. Specimens were preserved at -80℃ until DNA extraction. Total genomic DNA was 

83 extracted using a DNeasy tissue kit (Qiagen, Beijing, China) following the manufacturer's protocols.

84 Illumina sequencing, mitogenome assembly and annotation

85 After DNA isolation, 1 μg of purified DNA was fragmented, used to construct short-insert libraries 

86 (insert size of 430 bp) according to the manufacturer’s instructions (Illumina), and then sequenced on 

87 an Illumina HiSeq 4000 instrument (San Diego, USA).

88 Prior to assembly, raw reads were filtered. This filtering step was performed to remove the reads 
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89 with adaptors, the reads showing a quality score below 20 (Q<20), the reads containing a percentage of 

90 uncalled bases (“N” characters) equal to or greater than 10% and the duplicated sequences. The 

91 mitochondrial genome was reconstructed using a combination of de novo and reference-guided 

92 assemblies, and the following three steps were used to assemble the mitogenome. First, the filtered 

93 reads were assembled into contigs using SOAPdenovo 2.04 [34]. Second, contigs were aligned to the 

94 reference mitogenomes from species of the family Vesicomyidae using BLAST, and aligned contigs 

95 (≥80% similarity and query coverage) were ordered according to the reference mitogenomes. Third, 

96 clean reads were mapped to the assembled draft mitogenome to correct the incorrect bases, and the 

97 majority of gaps were filled via local assembly.

98 The mitochondrial genes were annotated using homology alignments and de novo prediction, and 

99 EVidenceModeler [35] was used to integrate the gene set. rRNA genes and tRNA genes were predicted 

100 by rRNAmmer [36] and tRNAscan-SE [37]. A whole-mitochondrial genome BLAST search (E-value ≤ 

101 1e-5, minimal alignment length percentage ≥ 40%) was performed against 5 databases, namely, the 

102 KEGG (Kyoto Encyclopedia of Genes and Genomes), COG (Clusters of Orthologous Groups), NR 

103 (Non-Redundant Protein), Swiss-Prot and GO (Gene Ontology) databases. Organellar Genome DRAW 

104 [38] was used for circular display of the C. marissinica mitogenome.

105 Sequence analysis

106 The nucleotide composition and codon usage were computed using DnaSP 5.1 [39]. The AT and GC 

107 skews were calculated with the following formulas: AT skew = (A − T) / (A + T) and GC skew = (G − 

108 C) / (G + C) [40], where A, T, G and C are the occurrences of the four nucleotides. Tandem Repeats 

109 Finder 4.0 [41] was used to search for the tandem repeat sequences. The online version of Mfold [42] 

110 was applied to infer potential secondary structure, and if more than one secondary structure appeared, 

111 the one with the lowest free energy score was used.

112 Phylogenetic analysis

113 The phylogeny of the subclass Heterodonta was reconstructed using mitogenome data from 41 species, 

114 including 2 Lucinida species, 2 Myoida species, and 37 Veneroida species, and Chlamys farreri and 

115 Mimachlamys nobilis from the subclass Pteriomorphia served as outgroups (S1 Table). Our data set 

116 was based on nucleotide and amino acid sequences from 9 mitochondrial PCGs (cox1, cox2, cox3, cob, 

117 atp6, nad1, nad4, nad5, and nad6) and 2 rRNA genes. The atp8, nad2, nad4l and nad6 sequences were 

118 excluded due to several species with incomplete mitogenomes. Multiple alignments of the 11 genes 
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119 were conducted using MUSCLE 3.8.31, followed by manual correction. In aligned sequences, 

120 ambiguously aligned regions and gaps were removed using Gblocks server ver. 0.91b [43] with the 

121 default setting. ModelTest 2.1.10 [44] and ProtTest 3.4 [45] were used to select the best-fit 

122 evolutionary models GTR + I + G and LG + I + G + F for the nucleotide dataset and amino acid dataset, 

123 respectively. Maximum likelihood (ML) analysis was performed using RAxML ver. 8.2.8 [46]. 

124 Topological robustness for the ML analysis was evaluated with 100 replicates of bootstrap support. 

125 Bayesian inference (BI) was conducted using MrBayes 3.2.6 [47], and four Markov chain Monte Carlo 

126 (MCMC) chains were run for 106 generations, with sampling every 100 generations and a 25% relative 

127 burn-in. All phylogenetic trees were graphically edited with the iTOL 3.4.3 

128 (https://itol.embl.de/itol.cgi).

129 Positive selection analysis

130 Comparing the nonsynonymous/synonymous substitution ratios (ω = dN/dS) has become a useful 

131 approach for quantifying the impact of natural selection on molecular evolution [48]. ω >1, =1 and <1 

132 indicate positive selection, neutrality and purifying selection, respectively. The codon-based maximum 

133 likelihood (CodeML) method implemented in the PAML package [49] was applied to estimate the 

134 dN/dS ratio ω. The combined database of 13 mitochondrial PCGs was used for the selection pressure 

135 analyses. Both the ML and Bayesian phylogenetic trees were separately used as the working topology 

136 in all CodeML analyses.

137 To evaluate positive selection in the vesicomyid bivalves, we used branch models in the present 

138 study. First, a one-ratio model (M0), the simplest model, which allows only a single ω ratio for all 

139 branches in the phylogeny [50], was used to preliminarily estimate the ω value for the gene sequences. 

140 Then, a two-ratio model, which allows the background lineages and foreground lineages to have 

141 different ω ratio values, was used to detect positive selection acting on branches of interest [51–52]. 

142 Last, a free-ratio model, which allows ω ratio variation among branches, was used to estimate ω values 

143 on each branch [52]. Here, a one-ratio model and a free-ratio model were compared to confirm whether 

144 different clades in Heterodonta had different ω values. Additionally, we compared a one-ratio model 

145 and a two-ratio model to investigate whether deep-sea vesicomyid clades are subjected to more 

146 selection pressure than other Heterodonta species in coastal waters. ω0 and ω1 represent the values for 

147 the other Heterodonta clades in the phylogeny and the vesicomyid clades, respectively. Pairwise 

148 models were compared with critical values of the Chi square (χ2) distribution using likelihood ratio 
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149 tests (LRTs), in which the test statistic was estimated as twice the log likelihood (2ΔL) and the degrees 

150 of freedom were estimated as the difference in the number of parameters for each model.

151 Furthermore, we fit branch-site models to examine positive selection on some sites among the 

152 vesicomyid clades. Branch-site models allow ω to vary both among sites in the protein and across 

153 branches on the tree. Branch-site model A (positive selection model) was used to identify the positively 

154 selected sites among the lineages of vesicomyids (marked as foreground lineages). The presence of 

155 sites with ω > 1 suggests that model A fits the data significantly better than the corresponding null 

156 model. Bayes Empirical Bayes analysis was used to calculate posterior probabilities in order to identify 

157 sites under positive selection on the foreground lineages if the LRTs was significant [53].

158 Results and Discussion

159 C. marissinica mitogenome organization

160 The Illumina HiSeq runs resulted in 20,359,890 paired-end reads from the C. marissinica library with 

161 an insert size of approximately 450 bp. Selective-assembly analysis showed that 2,422 Mb of clean 

162 data (Q20 quality score of 97.01%) was assembled into a 17,374-bp circular molecule, which 

163 represented the complete mitogenome of C. marissinica (Fig 1 and Table 1). This length is shorter than 

164 that of the complete mitogenome of other vesicomyid bivalves, which ranges from 19,738 bp in 

165 Calyptogena magnifica [30] to 19,424 bp in Abyssogena phaseoliformis [32]. The genome encodes 37 

166 genes, including 13 PCGs, 2 rRNA genes, and 22 tRNA genes (duplication of tRNALeu and tRNASer). 

167 All of the genes are encoded on the heavy (H) strand, as consistently reported for other bivalves [32–

168 33,54], and transcribed in the same direction. A total of 2,287 bp of noncoding nucleotides are scattered 

169 among 23 intergenic regions varying from 1 to 1,676 bp in length (Table 1). The largest noncoding 

170 region (1,676 bp) is located between tRNATrp and nad6 and is identified as the putative control region 

171 (CR) due to its location and high A+T content (73.3%). Furthermore, there are four overlaps between 

172 adjacent genes in the C. marissinica mitogenome with a size range of 1 to 5 bp (tRNAGlu / tRNASer(UCA), 

173 tRNALeu(UUA) / nad1, rrnS / tRNAMet, and cox3 / tRNAPhe).

174 Fig 1. Complete mitogenome map of C. marissinica. All 37 genes are encoded on the heavy (H) strand. Genes for proteins and 

175 rRNAs are shown with standard abbreviations. Genes for tRNAs are displayed by a single letter for the corresponding amino acid, 

176 with two leucine tRNAs and two serine tRNAs differentiated by numerals.
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177 Table 1. Mitogenome organization of C. marissinica.

Size Codon

Name Strand Range Nucleotides Amino 

acids

Start Stop Anticodon Intergenic nucleotides

cox1  1-1833 1833                       610 ATG TAA -

tRNA-Pro  1854-1917 64 TGG 20

cox2  1918-2934 1017 338 ATG TAA 0

tRNA-Arg  2941-3005 65 TCG 6

cob  3010-4143 1134 377 ATG TAA 4

rrnL  4305-5340 1036 161

atp8  5377-5493 117 38 --- TAG 36

nad4  5506-6852 1347 448 ATG TAA 12

tRNA-His  6873-6933 61 GTG 20

tRNA-Glu  6934-6999 66 TTC 0

tRNA-SerUCA  6996-7059 64 TGA -4

atp6  7060-7773 714 237 ATG TAA 0

nad3  7872-8192 321 106 ATT TAA 98

tRNA-Gln  8203-8269 67 TTG 10

tRNA-Ile  8272-8338 67 GAT 2

tRNA-Lys  8339-8405 67 TTT 0

tRNA-LeuUUA  8407-8469 63 TAA 1

nad1  8467-9381 915 304 ATA TAG -3

tRNA-Val  9399-9460 62 TAC 17

tRNA-Asn  9461-9522 62 GTT 0

nad5  9550-11223 1674 557 ATA TAA 27

tRNA-LeuCUA  11236-11297 62 TAG 12

tRNA-Trp  11298-11362 65 TCA 0

contral region  11363-13038 1676 0

nad6  13039-13554 516 171 ATT TAA 0

nad4l  13595-13843 249 82 ATT TAA 40

tRNA-Gly  13844-13907 64 TCC 0

nad2  13925-15010 1086 361 ATT TAG 17

tRNA-Asp  15020-15081 62 GTC 9

tRNA-Thr  15082-15142 61 TGT 0

rrnS  15160-16027 868 17

tRNA-Met  16023-16089 67 CAT -5

tRNA-Cys  16092-16153 62 GCA 2

tRNA-Tyr  16159-16220 62 GTA 5

tRNA-SerAGA  16228-16296 69 TCT 7

cox3  16297-17148 852 283 ATG TAG 0

tRNA-Phe  17148-17210 63 GAA -1

tRNA-Ala  17228-17293 66 TGC 17

178 The C. marissinica mitogenome has a nucleotide composition of 25.9% A, 10.8% C, 23.8% G, and 

179 39.5% T and an overall AT content of 65.4%. The AT skew and GC skew are well conserved among 

180 vesicomyids, which vary from -0.165 to -0.230 and 0.343 to 0.440, respectively (Table 2). For the C. 
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181 marissinica mitogenome, the AT skew is -0.209, and the GC skew is 0.375, which indicates bias 

182 toward T and G similar to that in other vesicomyids. The complete mitochondrial DNA sequence has 

183 been deposited in GenBank under accession number MK948426.
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184 Table 2. Mitogenomes of Vesicomyidae species sequenced to date and their genomic features.

Genome Protein-coding genes rrnL rrnS tRNAs Control region

Species Genus
Accession

number

Length

(bp) AT% AT 

skew

GC 

skew

Length

(aa)

AT%

(all)

AT%

(3rd)

Length

(bp)

AT% Length

(bp)

AT% Number/

Length(bp)

AT% Length

(bp)

AT%

Abyssogena mariana1 Abyssogena LC126311 15,927 69.8 -0.210 0.408 3884 69.0 73.9 1196 71.2 862 70.8 23/1279 71.7 - -

Abyssogena phaseoliformis Abyssogena AP014557 19,424 70.4 -0.199 0.440 3881 68.3 73.7 1196 71.2 862 70.9 24/1282 70.4 3438 74.4

Akebiconcha kawamurai2 Akebiconcha AP014551 12,946 65.2 -0.222 0.371 3249 62.5 68.7 1194 69.7 205 67.7 17/1090 69.0 - -

Archivesica gigas1 Archivesica MF959623 15,674 65.0 -0.228 0.389 3878 63.6 70.6 1223 68.9 879 67.9 21/1212 68.7 - -

Archivesica pacifica1 Archivesica MF959624 17,782 68.6 -0.214 0.429 4002 67.1 79.5 1226 71.3 885 69.9 22/1282 69.6 - -

Archivesica sp.1 Archivesica MF959622 15,650 64.8 -0.228 0.386 3889 63.7 70.8 1221 69.0 879 67.8 20/1214 68.7 - -

Calyptogena fausta2 Calyptogena AP014549 13,509 66.0 -0.218 0.394 34100.64    64.7 70.7 1189 70.3 205 67.8 17/1092 70.0 - - 

Calyptogena laubirei2 Calyptogena AP014553 12,968 64.3 -0.226 0.361 3259 61.6 67.1 1191 69.0 204 67.2 17/1090 67.8 - -

Calyptogena magnifica Calyptogena NC_028724 19,738 68.4 -0.195 0.390 3928 65.5 75.6 1219 70.5 935 70.0 22/1347 70.2 3910 75.2

Calyptogena marissinica Calyptogena 17,374 65.4 -0.209 0.375 3912 63.2 69.7 1,036 67.2 868 67.7 22/1,411 68.7 1676 73.3

Calyptogena nautilei2 Calyptogena AP014554 13,281 69.4 -0.196 0.353 3298 68.0 74.4 1182 72.1 204 72.1 17/1088 71.4 - -

Calyptogena pacifica2 Calyptogena AP014556 13,454 67.6 -0.222 0.420 3390 66.6 72.6 1195 70.8 204 69.6 17/1088 69.5 - -

Isorropodon fossajaponicum1 Isorropodon AP014550 19,556 68.2 -0.165 0.343 3894 66.6 70.6 1199 70.3 861 68.3 24/1290 70.3 - -

Phreagena kilmeri2 Phreagena AP014552 12,944 64.9 -0.223 0.365 3249 63.4 68.0 1191 69.5 204 68.3 17/1089 68.7 - -

Phreagena okutanii1 Phreagena AP014555 16,336 65.6 -0.230 0.405 3833 64.0 68.1 1191 69.7 861 67.7 23/1277 68.9 - -

Phreagena soyoae2 Phreagena AP014558 12,941 64.9 -0.223 0.365 3249 63.4 67.9 1190 69.5 204 68.1 17/1089 68.7 - -

Pliocardia stearnsii2 Pliocardia AP014559 13,012 67.7 -0.230 0.402 3265 66.6 72.7 1201 71.6 203 69.5 17/1096 69.1 - -

185 Note:  indicates incomplete mitogenomes.

186 1 Incomplete mitogenomes for which the control region was not sequenced.

187 2 Incomplete mitogenomes for which nad2, nad4l, nad6, a few tRNA genes and the control region were not sequenced.
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188 Protein-coding genes

189 The total length of all 13 PCGs of C. marissinica is 11,775 bp, accounting for 67.8% of the complete 

190 length of the mitogenome, and the PCGs encode 3,912 amino acids (Table 2). In the mitogenome of 

191 metazoans, most PCGs start with the standard ATN codon [2,55–56]. In the present study, with the 

192 exception of the atp8 gene, which had the alternate initiation codon GTG, all the PCGs were initiated 

193 by typical ATN codons: 6 genes (atp6, cob, cox1, cox2, cox3, and nad4) were initiated by ATG, 4 

194 genes (nad2, nad3, nad4l, and nad6) were initiated by ATT, and 2 genes (nad1 and nad5) were 

195 initiated by ATA. Notably, genes are commonly initiated by GTG in vesicomyid bivalves [31], and the 

196 amino acid encoded by GTG is valine, which belongs to the nonpolar amino acids, such as methionine 

197 and isoleucine encoded by ATN. Moreover, in eight other vesicomyid bivalves (Archivesica sp., 

198 Archivesica gigas, Archivesica pacifica, C. magnifica, Abyssogena mariana, Ab. phaseoliformis, 

199 Isorropodon fossajaponicum, and Phreagena okutanii), cox3 had a truncated termination codon, TA 

200 [31]. Previous studies have shown that the truncated stop codon is common in the metazoan 

201 mitogenome and might be corrected by posttranscriptional polyadenylation [57–58]. However, in the 

202 mitogenome of C. marissinica, all of the PCGs were ended by a complete TAA (atp6, cob, cox1, cox2, 

203 nad3, nad4, nad4l, nad5, and nad6) or TAG (atp8, cox3, nad1, and nad2) termination codon.

204 Numerous studies have indicated that metazoan mitogenomes usually have a bias toward a higher 

205 representation of nucleotides A and T, leading to a subsequent bias in the corresponding encoded 

206 amino acids [56,59–61]. In the mitogenome of C. marissinica, the A+T contents of PCGs and third 

207 codon positions are 63.2% and 69.7%, respectively, which are similar to the values observed in other 

208 vesicomyids (Table 2). The amino acid usage and relative synonymous codon usage (RSCU) values in 

209 the PCGs of C. marissinica are summarized in Fig 2. The mitogenome encodes a total of 3,912 amino 

210 acids, among which leucine (13.6%) and glutamine (1.4%) are the most and the least frequently used, 

211 respectively. As mentioned earlier, the amino acids encoded by A+T-rich codon families (Asn, Ile, Lys, 

212 Met, Phe and Tyr) have a higher frequency of use than those encoded by G+C-rich codon families (Ala, 

213 Arg, Gly and Pro). The RSCU values indicate that the six most commonly used codons are TTA (Leu), 

214 ACT (Thr), GGG (Gly), TCT (Ser), GCT (Ala), and CCT (Pro) (Fig 2), which show A+T bias at their 

215 third codon position. In addition, the codons with A and T in the third position are used more 

216 frequently than other synonymous codons. These features reflect codon usage with A and T biases at 

217 the third codon position, which are similar to the biases that exist in many metazoans [62–65].
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218 Fig 2. Codon usage (A) and the relative synonymous codon usage (RSCU) (B) of the C. marissinica mitogenome. Numbers 

219 to the left refer to the total number of codons (A) and the RSCU values (B). Codon families are provided on the X axis.

220 Ribosomal RNA and transfer RNA genes

221 The rrnL and rrnS genes of C. marissinica are 1,036 bp (AT% = 67.2) and 868 bp (AT% = 67.7) in 

222 length, respectively. As in other vesicomyid bivalves, rrnL is located between the cytb and atp8 genes, 

223 and rrnS is located between tRNAThr and tRNAMet. The largest known rrnL and rrnS genes are 1,226 bp 

224 in Ar. pacific and 935 bp in C. magnifica, respectively [30–32].

225 Twenty-two tRNA genes were identified in the mitogenome of C. marissinica, which is typical for 

226 metazoans. However, the number of tRNA genes varies among other vesicomyid bivalves (Table 2). 

227 The length of tRNA genes in C. marissinica ranges from 61 (tRNAHis and tRNAThr) to 69 (tRNASer (AGA)) 

228 bp (Table 1), and the AT content of the tRNA genes is 68.7%. The secondary structures of tRNA genes 

229 are schematized in S1 Fig. Generally, a typical tRNA clover-leaf structure includes a 7-8 bp aminoacyl 

230 acceptor stem, a 3-5 bp TψC stem, a 5 bp anticodon stem and a 4 bp DHU stem. In the present study, 

231 most of the tRNA genes had the typical secondary structure, except for tRNAHis, tRNAThr, tRNATyr, 

232 tRNASer(UCA) and tRNASer(AGA). In tRNAHis, tRNAThrand tRNATyr, the TψC loops are incomplete, which is 

233 not observed in other vesicomyid bivalves [31–33], and this feature might be a specific character in the 

234 C. marissinica mitogenome. In tRNASer(UCA) and tRNASer(AGA), the DHU stems are reduced to a simple 

235 loop, as in many other bivalve mitogenomes [31,66]. Many studies have shown that the incomplete 

236 clover-leaf secondary structure of tRNA genes is common in metazoan mitogenomes and that aberrant 

237 tRNA genes can still function normally through posttranscriptional RNA editing and/or coevolved 

238 interacting factors [67–69]. Additionally, several mismatch pairs were detected within amino acid 

239 acceptors and anticodon stems in tRNA genes of C. marissinica. Such mismatches seem to be 

240 ubiquitous phenomena in the mitogenomes of many organisms and can also be corrected by 

241 posttranscriptional RNA editing [56,64,70–71].

242 Noncoding regions and gene arrangement

243 A total of 23 noncoding regions (totaling 2,216 bp) are distributed in the C. marissinica mitogenome. 

244 The longest noncoding region (1,676 bp), located between tRNATrp and nad6, corresponds to the 

245 control region identified in most other vesicomyids. The nucleotide content of the 1,676 bp control 

246 region is 34.25% A, 39.02% T, 16.29% G, and 10.44% C. The A + T content (73.27%) of this region is 

247 higher than that of other regions in the C. marissinica mitogenome (Table 2). In general, the 
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248 mitochondrial control region is subjected to less evolutionary pressure than PCGs and thus has the 

249 highest variation in the whole mitogenome [72–73].

250 Additionally, in the mitochondrial control region of C. marissinica, we found a tandemly arranged 

251 repeated sequence, which was 354 bp in length (positions 12,675-13,028), including three identical 

252 tandem repeat units of 118 bp (Fig 3). The tandem repeat sequence could be folded into stem-loop 

253 secondary structures with minimized free energy (Fig 3), which is a common phenomenon in 

254 invertebrates [61,64–65,74]. The control region in the mitogenome is essential for transcription and 

255 replication in animals [75–76]. Therefore, the stem-loop structures mentioned above may play an 

256 important role in gene replication and regulation. In addition, some other peculiar patterns, such as 

257 special “G(A)nT” motifs and AT-rich sequences, were observed in the control region of the C. 

258 marissinica mitogenome (Fig 3). Furthermore, similar characteristics (e.g., repetitive elements, G(A)nT 

259 motifs and AT-rich sequences) were also observed in the deep-sea anemone Bolocera sp., alvinocaridid 

260 shrimp Shinkaicaris leurokolos and spongicolid shrimp Spongiocaris panglao [61,64–65]. In view of 

261 the particularity of the deep-sea environment, we speculate that these special control region elements 

262 are involved in the regulation of replication and transcription of the mitogenome and help organisms 

263 adapt to extreme deep-sea habitats.

264 Fig 3. Nucleotide sequences and stem-loop structures of the tandem repeat motifs in the control region (CR) of the C. 

265 marissinica mitogenome. The CR is flanked by sequences encoding tRNATrp and nad6. The CR consists of certain patterns, such 

266 as special G(A)nT motifs (marked with a box), AT-rich regions and tandem repeat motifs.

267 In contrast to other metazoans, the Mollusca showed frequent and extensive variation in gene 

268 arrangement, and among them, bivalves showed more gene order variation in their mitogenomes [77–

269 79]. Here, a comparison of the C. marissinica mitogenome with the other twelve Heterodonta 

270 mitogenomes is shown in Fig 4. All thirteen Heterodonta mitogenomes come from two orders (five 

271 families): Myoida (family Hiatellidae) and Veneroida (family Tellinidae, family Mactridae, family 

272 Veneridae and family Vesicomyidae). Among the Heterodonta mitogenomes analyzed in the present 

273 study, the gene arrangement has a distinct difference between the family Vesicomyidae and other 

274 species (Fig 4). In the family Vesicomyidae, we found that if the tRNA genes are not considered, the 

275 nine vesicomyid bivalves have a completely identical gene arrangement of PCGs. When compared to 

276 the “standard” mitogenome of Ar. pacific, C. magnifica and C. marissinica, several additional tRNA 

277 genes were identified in Ab. mariana (tRNALeu3), Ab. phaseoliformis (tRNAHis2 and tRNASer3), I. 

278 fossajaponicum (tRNAAsn2 and tRNALys2) and Ph. okutanii (tRNAMet2) (Fig 4). As a general rule, 
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279 additional gene copies usually obtained by gene replication and different gene copies would share some 

280 sequence identity with each other. However, analysis showed that the aforementioned additional tRNA 

281 genes have low similarity to other tRNA genes that encode the same tRNAs [31]. The remolding of 

282 tRNA genes, DNA shuffling and the point mutations in the anticodons may all provide chances for 

283 tRNA gene rearrangement within mitogenomes [3,80–81]. Furthermore, gene rearrangements usually 

284 occurred around the control regions, which are considered the replication origins. Perhaps gene 

285 replication events occur frequently in this region, and consequently, more novel gene arrangements will 

286 be found in this region. To date, there are four known mechanisms of gene rearrangements in 

287 mitogenomes: inversion, transposition, reverse transposition and tandem duplication-random losses 

288 (TDRLs) [82–83]. However, the specific mechanism of significant differences in mitochondrial gene 

289 arrangements in mollusks has not been completely clarified. With the determination of mitogenomes in 

290 more species of this phylum, the mechanism of large-scale rearrangement of mitochondrial genes in 

291 mollusks will be identified by further comparing and summarizing the rules of gene arrangement 

292 among different species.

293 Fig 4. Mitochondrial gene arrangement of 13 species in the subclass Heterodonta (Panopea generosa, Moerella iridescens, 

294 Coelomactra antiquata, Meretrix meretrix and 9 vesicomyid clams). CR indicates the control region. Genes for tRNAs are 

295 displayed by a single letter for the corresponding amino acid, with two leucine tRNAs and two serine tRNAs differentiated by 

296 numerals. Uniquely derived gene positions of individual species are depicted in red. Sequence segments are not drawn to scale.

297 Phylogenetic relationships

298 Since several vesicomyid bivalves have incomplete mitogenomes at present, phylogenetic analyses 

299 were performed based on nucleotide and amino acid sequences of 9 mitochondrial PCGs (atp6, cox1, 

300 cox2, cox3, cob, nad1, nad3, nad4, and nad5) and 2 rRNA genes by maximum likelihood (ML) and 

301 Bayesian inference (BI) methods (Fig 5, S1-S3 Fig). The tree topologies resulting from the BI and ML 

302 analyses were not the same. There are two potential reasons for this discrepancy: one is that the 

303 presence of noncoding rRNA genes made the databases of nucleotides and amino acids different, and 

304 the other is the fact that several clades are represented by only one or two species each. The 

305 phylogenetic analyses clustered C. marissinica with the previously reported vesicomyid bivalves with 

306 high support values (Fig 5). In all phylogenetic trees, the family Vesicomyidae first clustered well with 

307 Veneridae and then united with Mactridae, which corroborates earlier studies of phylogenetic 

308 relationships based on the concatenated 12 PCGs and 2 rRNA genes [31–33]. Calyptogena (sensu lato) 

309 is the most diverse group of deep-sea vesicomyid bivalves in the western Pacific region and its 
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310 marginal seas. Until now, the composition, evolutionary position and level of the genus Calyptogena 

311 have been the subject of discussion [84–86]. Phylogenetic reconstruction using the cytochrome oxidase 

312 c subunit I (cox1) gene showed that C. marissinica was clearly nested within a fully supported 

313 monophyletic clade corresponding to Calyptogena sensu lato and consisting of all included 

314 Calyptogena (sensu lato) species [29]. Notably, in our studies, C. marissinica showed a 

315 close genetic relationship with the Akebiconcha species (Fig 5). Therefore, additional mitogenomes of 

316 a greater number of vesicomyid bivalves, combined with morphological characters, are necessary to 

317 determine the phylogenetic relationships among members of this family.

318 Fig 5. Phylogenetic tree derived from Bayesian analyses based on concatenated nucleotide sequences of 9 mitochondrial 

319 PCGs (cox1, cox2, cox3, cob, atp6, nad1, nad4, nad5, and nad6) and 2 ribosomal RNA genes (rrnS and rrnL). Numbers on 

320 branches are Bayesian posterior probabilities (percent). Two Pectinidae species belonging to the subclass Pteriomorphia were 

321 used as outgroups.

322 Positive selection analysis

323 Purifying selection is the predominant force in the evolution of mitogenomes, but because 

324 mitochondria are the main sites of aerobic respiration and are essential for energy metabolism, weak 

325 and/or episodic positive selection may occur against this background of strong purifying selection 

326 under reduced oxygen availability or greater energy requirements [87–88]. As proven by many studies, 

327 mitochondrial PCGs underwent positive selection in animals that survived in hypoxic environments or 

328 had higher energy demands for locomotion, such as Tibetan humans, Ordovician bivalves, diving 

329 cetaceans and flying insects [16,89–91].

330 Considering that the special habitats of the deep sea may impact the function of mitochondrial genes, 

331 we examined potential positive selection in the Vesicomyidae lineage using CodeML from the PAML 

332 package. Although different tree-building methods were used, the results of positive selection analyses 

333 were generally consistent (Table 3). In the analysis of branch models, the  (dN/dS) ratio calculated 

334 under the one-ratio model (M0) was 0.02272 for the 13 mitochondrial PCGs of sampled Heterodonta 

335 bivalves, suggesting that these genes have experienced constrained selection pressure to maintain 

336 function. Then, in the comparison of the one-ratio model (M0) and the free-ratio model, the LRTs 

337 indicated that the free-ratio model fit the data better than the one-ratio model (Table 3), which means 

338 that the  ratios are indeed different among lineages. Furthermore, the two-ratio model was also found 

339 to fit the data better than the one-ratio model (Table 3) when the family Vesicomyidae was set as a 

340 foreground branch. The ω ratio of the Vesicomyidae branch was almost treble that of other branches 
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341 (ω1 = 0.06398 and ω0 = 0.02278), indicating divergence in selection pressure between vesicomyid 

342 bivalves and other shallow-sea Heterodonta species. However, the ω ratio of the family Vesicomyidae 

343 (ω1= 0.06398) was still significantly less than 1. This result is consistent with the known functional 

344 significance of mitochondria as a respiration chain necessary for electron transport and OXPHOS [92].
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345 Table 3 CODEML analyses of selection pressure on mitochondrial genes in the Vesicomyidae lineage.

Trees Models lnL Parameter estimates Models compared 2∆L p-value

Branch models

Bayesian tree M0 -203672.1001  = 0.02272

Two-ratio -203666.6298 0 = 0.02278  1 = 0.06398 Two-ratio vs. M0 10.94072 0.00094

Free-ratio -202667.8186 Free-ratio vs. M0 2008.56299 0.00000

ML tree M0 -203672.1001  = 0.02272

Two-ratio -203666.6298 0 = 0.02278  1 = 0.06398 Two-ratio vs. M0 10.94072 0.00094

Free-ratio -202747.0065 Free-ratio vs. M0 1850.18729 0.00000

Branch-site models

Bayesian tree Null model -202664.0952 P0 = 0.77667  P1 = 0.02562  P2a = 0.19139  P2b = 0.00631

0 = 0.02110  1 = 1.00000  2a = 1.00000  2b = 1.00000 

Model A -202663.7531 P0 = 0.78464  P1 = 0.02590  P2a = 0.18340  P2b = 0.00605 Model A vs. Null model 0.68422 0.40814

0 = 0.02115  1 = 1.00000  2a = 1.21998  2b = 1.21998 

ML Null model -202664.0952 P0 = 0.77667  P1 = 0.02562  P2a = 0.19140  P2b = 0.00631

0 = 0.02110  1 = 1.00000  2a = 1.00000  2b = 1.00000 

Model A -202663.7531 P0 = 0.77667  P1 = 0.02562  P2a = 0.19139  P2b = 0.00631 Model A vs. Null model 0.68422 0.40814

0 = 0.02115  1 = 1.00000  2a = 1.22003  2b = 1.22003 
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347 Moreover, many studies have shown that positive selection often occurs over a short period of 

348 evolutionary time and acts on only a few sites; thus, the signal for positive selection is usually 

349 swamped by those for continuous purifying selection that occur on most sites in a gene sequence 

350 [87,93]. In the present study, branch-site models were used to detect possible positively selected sites in 

351 the vesicomyid bivalves (Table 4). Ten residues, which were located in cox1, cox3, cob, nad2, nad4 

352 and nad5, were identified as positively selected sites with high BEB values (> 95%).

353 Table 4 Possible sites under positive selection in the Vesicomyidae lineage.

Bayesian tree ML tree

Gene Codon Amino acid BEB values Gene Codon Amino acid BEB values

cox1 529 W 0.967 cox1 529 W 0.967
cox3 998 G 0.956 cox3 998 G 0.956

1018 W 0.962 1018 W 0.962
1021 T 0.954 1021 T 0.954

cob 1131 K 0.982 cob 1131 K 0.982
1432 A 0.959 1432 A 0.959

nad2 2043 K 0.960 nad2 2043 K 0.960
nad4 2388 E 0.951 nad4 2388 E 0.951
nad5 2734 P 0.975 nad5 2734 P 0.975

2773 S 0.951 2773 S 0.951

354 It is well known that mitochondrial PCGs play a key role in the oxidative phosphorylation pathway; 

355 the above ten amino acid mutation sites are components of the respiratory chain and therefore may 

356 have important functions. As the first and the largest enzyme complex in the respiratory chain, the 

357 NADH dehydrogenase complex exercises the functions of proton pumps, and variation in loci may 

358 affect metabolic efficiency [90]. In this work, there were four positively selected sites located in the 

359 nad2, nad4 and nad5 genes. Similar results have been obtained in studies of the adaptive evolution of 

360 Tibetan horses, Chinese snub-nosed monkeys and Tibetan loaches, which live in high-altitude habitats 

361 [17,19,22]. Two residues in the cob gene were identified to be under positive selection. As a relatively 

362 conserved gene, cob plays a fundamental role in energy production in mitochondria. It catalyzes 

363 reversible electron transfer from ubiquinol to cytochrome c coupled to proton translocation [94]. Wide 

364 variation in the properties of amino acids was observed in functionally important regions of cob in 

365 species with more specialized metabolic requirements, such as adaptation to a low-energy diet or large 

366 body size and adaptation to unusual oxygen requirements or low-temperature environments [90,95]. 

367 Cytochrome c oxidase, which catalyzes the terminal reduction of oxygen and whose catalytic core is 

368 encoded by three mitochondrial protein-coding genes (cox1, cox2 and cox3), has been proven to be a 

369 particularly important target of positive selection during hypoxia adaptation [96–97]. Four positively 

370 selected residues were detected in the cox1 and cox3 genes. For C. marissinica, functional modification 
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371 mediated by positively selected mutations may increase the affinity between the enzyme and oxygen, 

372 thus allowing the efficient utilization of oxygen under hypoxia and maintaining essential metabolic 

373 levels.

374 The environment of deep-sea hydrothermal vents and cold seeps is characterized by darkness, a lack 

375 of photosynthesis-derived nutrients, high hydrostatic pressure, variable temperatures, low dissolved 

376 oxygen, and high concentrations of hydrogen sulfide (H2S), methane (CH4) and heavy metals, such as 

377 iron, copper and zinc. Previous studies have confirmed that all of the above environmental factors 

378 influence the process of mitochondrial aerobic respiration; for example, thirty potentially important 

379 adaptive residues were identified in the mitogenome of S. leurokolos and revealed the mitochondrial 

380 genetic basis of hydrothermal vent adaptation in alvinocaridid shrimp [65]. Similar findings have been 

381 reported in other deep-sea macrobenthos, such as the sea anemone Bolocera sp., starfish Freyastera 

382 benthophila and sea cucumber Benthodytes marianensis [64,98–99]. In the present study, ten 

383 potentially adaptive residues were identified in the cox1, cox3, cob, nad2, nad4 and nad5 genes, 

384 supporting the adaptive evolution of the mitogenome of C. marissinica. Our results at least 

385 partly explained how the deep-sea vesicomyid bivalves maintain aerobic respiration for sufficient 

386 energy in the extremely harsh deep-sea environment. The findings of this study could help deepen our 

387 understanding of the molecular mechanisms of adaptive evolution at the mitochondrial level in deep-

388 sea organisms.

389 Conclusion

390 This study characterized the complete mitogenome of the deep-sea vesicomyid bivalve C. marissinica, 

391 which is 17,374 bp in length and encodes 37 typical mitochondrial genes, including 13 PCGs, 2 rRNA 

392 genes, and 22 tRNA genes. All of these genes are encoded on the heavy strand. We analyzed the 

393 mitogenome organization, codon usage, control region features, gene arrangement, phylogenetic 

394 relationships and positive selection of C. marissinica. In the mitogenome of C. marissinica, tandem 

395 repeat sequences, “G(A)nT” motifs and AT-rich sequences were detected. In the family Vesicomyidae, 

396 we found that if the tRNA genes are not considered, the sequenced vesicomyid bivalves have a 

397 completely identical arrangement of PCGs. The phylogenetic analyses clustered C. marissinica with 

398 previously reported vesicomyid bivalves with high support values. Ten residues located in cox1, cox3, 

399 cob, nad2, nad4 and nad5 were inferred to be positively selected sites along the branches leading to 

400 vesicomyid bivalves, which may indicate that the genes were under positive selection pressure. This 
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401 study probes the mitochondrial genetic basis of deep-sea adaptation in vesicomyids and provides 

402 valuable insight into the adaptation of organisms to the extreme deep-sea environment.
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