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19 Abstract 

20 The entheses of the masticatory muscles differ slightly from those of the trunk and limb 

21 muscles. However, the bones of the skull are subject to various functional pressures, 

22 including masticatory force, resulting in a complex relationship between bone structure 

23 and muscle function that remains to be fully elucidated. The present study aimed to 

24 clarify aspects of masseter muscle-tendon-bone morphological characteristics and local 

25 load environment through quantitative analysis of biological apatite (BAp) crystallite 

26 alignment and collagen fiber orientation together with histological examination of the 

27 entheses.

28 Result of histological observation, the present findings show that, in the entheses of the 

29 masseter muscle in the first molar region, tendon attaches to bone via unmineralized 

30 fibrocartilage, while some tendon collagen fibers insert directly into the bone, running 

31 parallel to the muscle fibers. Furthermore, BAp crystallites in the same region show 

32 uniaxial preferential alignment at an angle that matches the insertion angle of the tendon 

33 fibers. Conversely, in the entheses of the masseter muscle in the third molar region, the 

34 tendon attaches to the bone via a layer of thickened periosteum and chondrocytes. As in 

35 the first molar region, the results of bone quality analysis in the third molar region 

36 showed BAp crystallite alignment parallel to the orientation of the tendon fibers. This 
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37 indicates that the local mechanical environment generates differences in enthesis 

38 morphology.

39  The present study showed a greater degree of uniaxial BAp crystallite alignment in 

40 entheses with direct insertion rather than indirect tendon-bone attachment and the 

41 direction of alignment was parallel to the orientation of tendon fibers. These findings 

42 suggest that functional pressure from the masseter muscle greatly affects bone quality as 

43 well as the morphological characteristics of the enthesis, specifically causing micro- and 

44 nanostructural anisotropy in the direction of resistance to the applied pressure.
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55 1．Introduction

56 The tendons of the trunk and limb muscles attach to bones via entheses [1-3]. 

57 These attachment sites are broadly categorized as either fibrous entheses, composed of 

58 perforating mineralized collagen fibers, or fibrocartilaginous entheses, comprising a 

59 multitissue interface involving the following four tissues of tendon, unmineralized 

60 fibrocartilage, mineralized fibrocartilage, and bone [4]. The composition, structure, and 

61 mechanical properties of these multitissue interfaces vary widely, creating spatial 

62 gradients that mediate load transfer between soft and hard tissues and minimize stress 

63 concentration [5]. Muscle loading is extremely important for healthy enthesis formation 

64 and suppression of muscle function greatly diminishes the biomechanical performance 

65 of the enthesis [6]. 

66 Histological examination by Hems et al. revealed that the entheses of the 

67 masticatory muscles differ slightly from those of the trunk and limb muscles [7]. 

68 Specifically, the masticatory muscles contain three types of enthesis, including sites of 

69 direct tendon insertion into the bone. The authors concluded that these different types 

70 contribute to the unique biomechanical function of the masticatory muscles, enabling 

71 them to work as an “angle and stretching brake”. However, the bones of the skull are 

72 subject to various functional pressures, including masticatory force, resulting in a 
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73 complex relationship between bone structure and muscle function that remains to be 

74 fully elucidated. Clarification of the relationships between the micro- and nanostructural 

75 characteristics of the muscles, tendons, and bones in the maxillofacial area and the 

76 mechanical environment is required [8, 9].

77 The relevance of bone quality in addition to bone density with regard to bone 

78 strength was proposed National Institutes of Health Consensus Development 

79 Conference in 2000. Since then, studies on the relationship between bone structural 

80 characteristics and bone strength have focused on bone quality factors [10]. Collagen 

81 fibers and biological apatite (BAp) crystallites have been identified as dominant bone 

82 quality factors that are resistant to tensile and compressive stress, respectively, on bone 

83 tissue [11, 12].

84 Biological apatite is a hexagonal, ionic crystal that has a highly anisotropic 

85 nanostructure with preferential alignment along the c axis in the loading direction [13]. 

86 Using microbeam X-ray diffraction analysis, Nakano et al. quantitatively analyzed BAp 

87 crystallite alignment in animal trunk and limb bones, demonstrating a high correlation 

88 between mechanical stress and BAp crystallite alignment [14, 15]. With regard to 

89 collagen fibers as a bone quality factor, ongoing research by Vashishth et al. has shown 

90 that collagen crosslinks are a factor in age-related reductions in bone quality [16].
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91 Meanwhile, Kawagoe et al. reported a relationship between bone strength and 

92 orientational anisotropy of collagen fibers for the masticatory muscles [17]. Quantitative　

93 analysis of the jaw bone, particularly at entheses, should enable accurate prediction of 

94 the effects of the masseter muscles on the load environment of the mandible.

95 The present study aimed to clarify aspects of masseter muscle-tendon-bone 

96 morphological characteristics and local load environment through quantitative analysis 

97 of BAp crystallite alignment and collagen fiber orientation together with histological 

98 examination of the entheses.

99

100 2. Materials and Methods

101 2.1 Samples

102 The present study was approved by the Ethics Committee of Tokyo Dental 

103 College (Ethics Application No. 282807). Samples were prepared from the skulls of 

104 five 24-week-old male Wistar rats euthanized after deep anesthesia with ethyl ether. 

105

106 2.2 Tissue slice preparation

107 To obtain suitable samples for bone quality analysis, the left skull was 

108 embedded in autopolymerizing acrylic resin and sagittally sectioned using a saw 
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109 microtome (SP1600; Leica, Wetzlar, Germany) with a blade width of 300 μm. Samples 

110 were then sanded using wet/dry sandpaper of increasing grit (400, 800, and 1200) to 

111 prepare thin, 200 μm slices. The right skull was fixed in 4% paraformaldehyde 

112 phosphate buffer solution and demineralized in 10% ethylenediaminetetraacetic acid 

113 (EDTA) for 4 weeks. Using standard methods, samples were embedded in paraffin 

114 embedding and sliced about 5µm thick in the coronal plane to enable observation of the 

115 masseter muscle entheses. Masson’s trichrome staining were performed to observe the 

116 structural morphology of masseter muscle entheses in the first and third molar regions. 

117 And Toluidine blue staining were used to make the acidic mucus polysaccharide present 

118 in the cartilage metachromatic.

119

120 2.3 Second harmonic generation (SHG) imaging

121 SHG images were acquired using a multiphoton confocal microscopy system 

122 (A1R+MP, Nikon, Japan) with an excitation laser (Mai Tai eHP, wavelengths: 690-

123 1040 nm; repetition rate: 80 MHz; pulse width: 70 fs; Spectra-Physics, CA, US) and a 

124 water-immersion objective lens (CFI75 Apo 25W MP, numerical aperture: 1.1; Nikon, 

125 Tokyo, Japan). The excitation wavelength for the observation of collagen fibers was 880 

126 nm. Image acquisition, processing for orthogonal views and cropping were performed 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 23, 2019. ; https://doi.org/10.1101/648105doi: bioRxiv preprint 

https://doi.org/10.1101/648105
http://creativecommons.org/licenses/by/4.0/


8

127 using NIS-Elements version 4.0 (Nikon). Brightness and contrast of some images were 

128 adjusted using look-up tables (LUTs) of this software by the same parameters among 

129 relevant images to facilitate visibility.

130

131 2.4 Micro-computed tomography (micro-CT) imaging

132 Samples were examined using micro-computed tomography (micro-CT; 

133 HMX225 Actis4; Tesco, Tokyo, Japan) under the following imaging conditions: tube 

134 voltage, 140 kV; tube current, 100 µA; matrix size, 512×512; magnification, ×2.5; slice 

135 width, 50 µm; and slice pitch, 50 µm. Three-dimensional reconstruction was performed 

136 using TRI/3D-BON software (RATOC System Engineering, Tokyo, Japan).

137

138 2.5 BAp crystallite alignment

139 Quantitative analysis of BAp crystallite alignment was conducted using an 

140 optical curved imaging plate (IP) X-ray diffraction system (XRD; D/MAX PAPIDⅡ-

141 CMF; Rigaku, Tokyo, Japan). Measurements were performed in reflection and 

142 transmission modes with Cu-Kα as the radiation source at a tube voltage of 40 kV and 

143 tube current of 30 mA. Reference axes were established in X axis, Y axis, and Z axis for 

144 each sample (Fig. 1) [18, 19]. Regions of interest in the mandible comprised masseter 
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145 muscle entheses (Fig. 2).The radiation site was determined using the light microscope 

146 of the XRD system (magnification, ×0.6-4.8), then an incident beam (diameter, 50 μm) 

147 was applied. Using reflection mode in the X-axis direction and transmission mode in the 

148 Y-axis and Z-axis directions, the diffracted X-ray beam was detected using a curved IP 

149 based on the conditions described by Nakano et al. [20]. The diffracted X-ray beam was 

150 detected as a diffraction ring on the IP. Using 2-dimensional data-processing software 

151 (Rigaku), X-ray diffraction intensity ratios were calculated for the two diffraction peaks 

152 corresponding to planes 002 and 310.

153

154 Fig 1. Reference points, plane and axes: point a the lowest point in anterior 

155 thickening area of mandible. Point p the lowest point in posterior thickening area of 

156 mandible; Mandibular plane passing through a-a’ and p-p’ lines; X-axis passing through 

157 the mid-point of a-a’ and p-p’; Y-axis the vertical axis against the mandibular plane; Z-

158 axis the vertical axis against the X-Y plane.

159 Fig 2. Measurement points. (A) First molar region. (B) Third molar region.

160

161 2.6 Statistical analysis

162 Mean values for the five samples for each measurement point were calculated 
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163 and compared using Tukey’s multiple comparison test. Significance was set at P<0.05.

164

165 3. Results

166 3.1 Histological observation of entheses

167 The results of Masson’s trichrome staining and toluidine blue staining are 

168 showed of a coronal section in the first molar region of 24-week-old Wistar rat skulls 

169 (Fig. 3).Thick masseter muscle tendons with fibers largely grouped into bundles could be 

170 seen directly integrating into the buccal cortical bone. In the enthesis, the periosteum was 

171 fragmented and aggregation of chondrocytes was observed at the tendon-bone interface 

172 (Fig. 3B, C,D,E). The results of Masson’s trichrome staining and toluidine blue staining 

173 are showed of a coronal section in the third molar region of 24-week-old Wistar rat skulls 

174 (Fig. 4).

175

176 Fig 3. Masson’s trichrome and toluidine blue staining of masseter muscle enthesis in 

177 the first molar region. MA: masseter muscle. T: tongue. 1st Molar: first molar region.

178 Fig 4. Masson’s trichrome and toluidine blue staining of masseter muscle enthesis in 

179 the third molar region. MA: masseter muscle. T: tongue. 3rd Molar: third molar region.

180
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181 In the masseter muscle enthesis, muscle fibers could be seen covering the area 

182 from the lateral aspect to the base of the mandible, while thin tendons ran toward the 

183 cortical bone protuberance on the buccal side of the mandibular body (Fig. 4A). The 

184 tendon was attached to the periosteum without rupturing (Fig. 4B,D) and thickened 

185 chondrocytes were observed on the bone surface in the enthesis (Fig. 4C,E). 

186

187 3.2 Orientational anisotropy of collagen fibers

188 SHG images from the first molar region are showed in Figure 5. The masseter 

189 muscle tendon in the first molar region comprised thick collagen fibers extending through 

190 the enthesis, some of which penetrated the cortical bone. As in the first molar region, 

191 collagen fibers in the third molar region ran toward the bone. However, these fibers were 

192 interrupted at the thickened periosteum. In the vicinity of the enthesis, many collagen 

193 fibers inside the bone were observed running parallel to the orientation of the tendon (Fig. 

194 6). In the first and third molar regions, tendon fibers ran tangentially to the bone at 31.1°

195 [standard deviation (SD), 4.6°] and 40.4°[SD, 3.5°] , respectively (Fig. 7). 

196

197 Fig 5. Coronal section in first molar region. (A) Hematoxylin and eosin staining. (B) 

198 Second harmonic generation imaging. The masseter muscle tendon in the first molar 
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199 region comprised thick collagen fibers extending through the enthesis, some of which 

200 penetrated the cortical bone.

201 Fig 6. Coronal section in third molar region. (A) Hematoxylin and eosin staining. (B) 

202 Second harmonic generation imaging. In the vicinity of the enthesis, many collagen 

203 fibers inside the bone were observed running parallel to the orientation of the tendon.

204 Fig 7. Orientation of tendon fibers in relation to bone. (A) First molar region. (B) Third 

205 molar region.

206

207 3.3 BAp crystallite alignment

208 The angles of preferential alignment of BAp crystals are showed in an enthesis 

209 in relation to tooth axis in the first and third molar regions (28° [SD, 10.95°]) and 36° 

210 [SD, 8.94°], respectively). X-ray diffraction intensity ratios calculated for the three 

211 reference axes for quantitative analysis are showed in Figure 8. The intensity ratios for 

212 hydroxyapatite powder were 1.4 and 5.6 in reflection and transmission modes, 

213 respectively. In both the first and third molar regions, strong uniaxial preferential 

214 alignment was noted in the Y-axis direction in the masseter muscle entheses. 

215 Furthermore, X-ray diffraction intensity ratios in the Y-axis direction were significantly 

216 higher in the first compared to the third molar region.
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217

218 4. Discussion

219 According to Huang et al., as the superior digital flexor tendon develops before 

220 and then joins with the subsequently formed digital bone, the related entheses penetrate 

221 the periosteum [21]. Conversely, the entheses of many of the muscles in the trunk and 

222 limbs do not involve the periosteum, suggesting that these attachments are already 

223 formed at the stage of periosteal development [22]. The present findings also show that, 

224 in the entheses of the masseter muscle in the first molar region, tendon attaches to bone 

225 via unmineralized fibrocartilage, while some tendon collagen fibers insert directly into 

226 the bone, running parallel to the muscle fibers. Furthermore, BAp crystallites in the 

227 same region show uniaxial preferential alignment at an angle that matches the insertion 

228 angle of the tendon fibers. This suggests that both the anisotropy of the collagen fibers 

229 and BAp crystallite alignment confer high resistance in the direction of the masseter 

230 muscle tendon. As the masseter muscle in the first molar region is directly attached to 

231 the bone via the tendon, these structural characteristics may optimize bone quality to 

232 enable the high load generated by muscle contraction to be efficiently transmitted from 

233 tendon to bone [23].

234 Conversely, in the entheses of the masseter muscle in the third molar region, 
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235 the tendon attaches to the bone via a layer of thickened periosteum and chondrocytes. 

236 Muscles with entheses that indirectly attach to the bone via the periosteum do not 

237 produce large functional pressures; rather, they are responsible for precise movements 

238 [24]. As in the first molar region, the results of bone quality analysis in the third molar 

239 region showed BAp crystallite alignment parallel to the orientation of the tendon fibers. 

240 However, the intensity ratio values were significantly lower. This indicates that the local 

241 mechanical environment generates differences in enthesis morphology.

242 Matsumoto et al. analyzed bone quality in human jaw bones and found uniaxial 

243 preferential alignment of BAp crystallites and high bone strength in the tooth axis 

244 direction in specific alveolar bone [25]. Meanwhile, Nakano et al. demonstrated a strong 

245 positive correlation between bone quality factors and bone strength, indicating that the 

246 mechanical environment of entheses determines the orientation of the collagen fibers, 

247 which is linked to the preferential alignment of BAp crystallites. Changing the amount 

248 and direction of functional pressure from the muscles may thus affect not only bone 

249 density, but also bone density.

250

251 5. Conclusion

252 In the entheses of rat masseter muscle, some tendons attach to the bone directly 
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253 and others attach indirectly via the periosteum. The present study showed a greater 

254 degree of uniaxial BAp crystallite alignment in entheses with direct insertion rather than 

255 indirect tendon-bone attachment and the direction of alignment was parallel to the 

256 orientation of tendon fibers. These findings suggest that functional pressure from the 

257 masseter muscle greatly affects bone quality as well as the morphological characteristics 

258 of the enthesis, specifically causing micro- and nanostructural anisotropy in the 

259 direction of resistance to the applied pressure.

260
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