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ABSTRACT 16 

Objective. Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease that 17 

is difficult to treat. There is currently no optimal stratification of patients with SLE, and thus 18 

responses to available treatments are unpredictable. Here, we developed a new stratification 19 

scheme for patients with SLE, based on the whole-blood transcriptomes of patients with SLE. 20 

Methods. We applied machine learning approaches to RNA-sequencing (RNA-seq) datasets 21 

to stratify patients with SLE into four distinct clusters based on their gene expression profiles. 22 

A meta-analysis on two recently published whole-blood RNA-seq datasets was carried out and 23 

an additional similar dataset of 30 patients with SLE and 29 healthy donors was contributed in 24 

this research; 141 patients with SLE and 51 healthy donors were analysed in total.  25 

Results. Examination of SLE clusters, as opposed to unstratified SLE patients, revealed 26 

underappreciated differences in the pattern of expression of disease-related genes relative to 27 

clinical presentation. Moreover, gene signatures correlated to flare activity were successfully 28 

identified. 29 

Conclusion. Given that disease heterogeneity has confounded research studies and clinical 30 

trials, our approach addresses current unmet medical needs and provides a greater 31 

understanding of SLE heterogeneity in humans. Stratification of patients based on gene 32 

expression signatures may be a valuable strategy to harness disease heterogeneity and identify 33 

patient populations that may be at an increased risk of disease symptoms. Further, this approach 34 

can be used to understand the variability in responsiveness to therapeutics, thereby improving 35 

the design of clinical trials and advancing personalised therapy. 36 

 37 

Abstract word count: 242 38 

 39 
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Abbreviations 42 

ACR, American College of Rheumatology; ANA, anti-nuclear autoantibodies; BAFF, B cell 43 

activating factor of the TNF family; cpm, counts per million; ECOC, error-correcting output 44 

codes; ENA, extractible nuclear antigens; FPKM, fragments per kilobase of transcript per 45 

million mapped reads; GILZ, glucocorticoid-induced leucine zipper; GO, gene ontology; HPC, 46 

high performance computing; ISM, interferon signature metric; KEGG, Kyoto Encyclopedia 47 

of Genes and Genomes; MSigDB, Molecular Signatures Database; PCA, principle component 48 

analysis; sPLS-DA, sparse partial least squares discriminant analysis; SLE, systemic lupus 49 

erythematosus; Tg, transgenic; TLR, toll-like receptor.  50 
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INTRODUCTION 51 

Systemic lupus erythematosus (SLE) is a debilitating chronic autoimmune condition 52 

characterised by the activation of inflammatory immune cells and the production of pro-53 

inflammatory autoantibodies responsible for pathology in multiple organs.1 SLE is highly 54 

heterogeneous, and can be seen as a syndrome rather than a single disease.2 The responsiveness 55 

of patients to available treatments is variable and difficult to predict. Rather than a small 56 

number of highly associated loci, over 60 SLE low-association loci have been identified by 57 

genome-wide association studies.3-6 SLE has been studied using numerous useful mouse 58 

models, each of which manifest SLE-like symptoms underpinned by different molecular 59 

mechanisms. Two examples are mice overexpressing B cell activating factor of the TNF family 60 

(BAFF, also known as TNFSF13B) i.e. BAFF-transgenic mice, in which low-affinity self-61 

reactive B cells aberrantly survive,7, 8 and glucocorticoid-induced leucine zipper (GILZ)-62 

deficient mice9 with impaired regulation of activated B cells. These and various other mouse 63 

models of SLE replicate some aspects of disease relevant to some patients with SLE, but most 64 

likely do not individually account for all the disease symptoms and pathogenesis mechanisms 65 

in humans. 66 

 67 

Numerous large-scale clinical trials for SLE treatments have been carried out, with an 68 

improvement over standard of care as the expected outcome of these studies. Disappointingly, 69 

the vast majority of tested therapies failed their primary endpoints,10 except belimumab, an 70 

inhibitor of the cytokine BAFF, showing modest efficacy in a subset of patients with SLE.11 71 

Highly variable responses to treatments could be explained by the fact that recruitment of 72 

patients into clinical trials is based on a limited set of clinical manifestations and/or clinical 73 

scores, unlikely to fully capture the differences between patients. Therefore, there is an unmet 74 

need for more meaningful patient stratification and recruitment criteria, not just limited to 75 

clinical manifestations. Indeed, this can be better achieved using biomarkers reflecting the 76 

specific underlying mechanism of disease, allowing for a more mechanism-targeted and 77 

personalised approach to therapy. 78 

 79 

Here, we have applied machine learning approaches to stratify patients with SLE based on gene 80 

expression patterns derived from whole-blood transcriptome data. We demonstrated that this 81 

approach can better harness disease heterogeneity than clinical observations alone and can 82 

identify patient clusters with different biological mechanisms underpinning disease. 83 

  84 
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MATERIALS AND METHODS 85 

Human subjects 86 

Human subjects in Datasets 1 and 3 are previously described (table 1).12, 13 Patients with SLE 87 

and healthy donors in Dataset 2 were recruited from the Monash Medical Centre.14 Patients 88 

with SLE fulfilled the American College of Rheumatology (ACR) classification criteria.15 The 89 

SLE disease activity index 2000 (SLEDAI-2k)16 and the Physician Global Assessment (PGA; 90 

range 0-3)17 scores were recorded. Blood was collected into PAXgene Blood RNA tubes (BD), 91 

which were frozen at -20 °C for later RNA extraction. Patients did not participate in the 92 

analysis. 93 

 94 

RNA extraction and RNA-sequencing 95 

RNA was extracted using PAXgene Blood RNA kits (Qiagen). RNA libraries were prepared 96 

for sequencing using standard Illumina protocols. RNA-sequencing (RNA-seq) was performed 97 

on an Illumina HiSeq 2500 platform; 100 bp single-end, stranded reads were analysed with the 98 

bcl2fastq 1.8.4 pipeline. Sequence read data is available on Gene Expression Omnibus 99 

(GSE112087). 100 

 101 

Bioinformatics analysis 102 

Read quality, trimming, mapping, and summarisation: 103 

Publicly available datasets used in this study are listed in Table 1.12, 13 RNA-seq data was 104 

processed using a consistent workflow (supplementary figure S1). All software is listed in 105 

supplementary table S1. Read ends were trimmed with Trimmomatic (v0.38) using a sliding 106 

window quality filter.18 Datasets 2 and 3 were truncated to 50 bp single-end format to be 107 

consistent with Dataset 1, before read mapping. Reads were mapped using HISAT219 (v2.1.0) 108 

to the human reference genome GRCh38/hg38 and the GENCODE Release V27 of the human 109 

genome GRCh38.p10 was used to annotate genes (35,398 genes included). Read counts were 110 

summarised using the featureCounts function of the Subread software package (v1.6.1);20 non-111 

uniquely mapped reads (i.e. reads which map to more than one gene ambiguously) were 112 

excluded from analysis. Males (10% of patients) were included but Y-chromosome genes were 113 

excluded from the analyses. Lowly expressed genes were filtered out using a threshold 114 

requiring at least 0.5 counts per million (cpm) in healthy donor samples across all datasets. In 115 

total, 9,983 genes with unique Entrez accession numbers were retained. 116 

  117 
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Normalisation and standardisation: 118 

Read counts were normalised by the upper-quartile method, to correct for differences in 119 

sequencing depth between samples, using edgeR.21, 22 Counts were log2 transformed with an 120 

offset of 1, and samples in each dataset were computed as the log2 fold-change (log2FC) against 121 

the matching healthy control group mean. These processing steps were useful to reduce the 122 

distracting effects of extreme values and skewness typically found in RNA-seq data.23 123 

 124 

Gene selection, clustering, and machine learning: 125 

Principal components analysis (PCA) and sparse partial least squares discriminant analysis 126 

(sPLS-DA) was performed using the mixOmics R package (using Lasso penalisation to rank 127 

predictive genes),24 and the MUVR R package (v.0.0.971).25 Cross-validation was used to 128 

protect against overfitting: in mixOmics, using M-fold cross-validation (10-folds averaged 50 129 

times); in MUVR, using 15 repetitions of repeated double cross-validation (rdCV). A repeated 130 

measures design was used when combining datasets.26 Unsupervised clustering was performed 131 

with MATLAB (MathWorks), using the k-means function (using 100 repetitions to optimise 132 

initial centroid positions). Error-correcting output codes (ECOC) classifiers, which contain 133 

several support vector machines for multi-class identification, were generated using 134 

MATLAB. Random forest classifiers were generated using MUVR.25 135 

 136 

Differential gene expression and gene set enrichment analysis 137 

Count-based expression analyses 138 

The limma/edgeR workflow was used for differential expression analysis.22 The EGSEA 139 

(v1.10.1) R package was used to statistically test for enrichment of gene expression sets, using 140 

a consensus of several gene set enrichment analysis tools.27 EGSEA uses count data 141 

transformed with voom (a function of the limma package).28 Collections of pre-defined gene 142 

sets were from KEGG Pathways, and the Molecular Signatures Database (MSigDB: “H”, “c2”, 143 

and “c5” collections).29 144 

 145 

Circulating immune cell composition analysis 146 

Flow cytometry 147 

Whole blood samples collected into lithium heparin tubes (BD) were examined for frequency 148 

of circulating neutrophils (CD16+, CD49d–) by flow cytometry, using an LSR Fortessa 149 

instrument (BD Biosciences), and FlowJo software (Tree Star), as previously described.30 150 

 151 
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Transcript-length-adjusted expression and cell type enrichment analysis 152 

Transcript-length-adjusted expression estimates (FPKM, or Fragments Per Kilobase of 153 

transcript per Million mapped reads) were obtained using StringTie (v1.3.4) and Ballgown 154 

(v2.12.0) R packages.19 Whole-blood RNA-seq results (FPKM format) were analysed for 155 

immune cell type signature enrichment using the xCell R package (v1.1.0).31 156 

 157 

Statistical Analysis 158 

The mixOmics and MUVR R packages were used for multivariate analysis using count data.32 159 

R version 3.5.2 was used. Kruskal-Wallis tests (with Dunn’s correction for multiple 160 

comparisons) and Mann-Whitney tests were performed using Prism software (v8.0.2, 161 

GraphPad). Statistically significant differences are shown for p < 0.05 (*), p < 0.01 (**), p < 162 

0.001 (***); p < 0.0001 (****); or not significant (n.s.).  163 

 164 

RESULTS 165 

We examined our cohort of 30 patients with SLE and 29 healthy donors for differentially 166 

expressed genes by RNA-seq, alongside two other publicly available datasets (141 SLE and 51 167 

healthy donor whole-blood transcriptomes in total). Principal components analysis (PCA), 168 

which looks at all gene expression and visualises the overall variance between individuals, 169 

suggests a higher gene expression heterogeneity in SLE samples than healthy controls, which 170 

projected more closely together (figure 1A). Gene expression in some SLE samples was similar 171 

to that of healthy controls. Supervised clustering (to draw apart the groups) was performed 172 

using sparse partial least squares discriminant analysis (sPLS-DA). This method selected a 173 

subset of discriminating genes that are more useful for separating healthy and SLE patients 174 

(figure 1B). An expression heatmap using the top-ranking discriminating genes shows 175 

heterogeneity across patients with SLE (figure 1C), but visually demonstrates the possibility 176 

of organising SLE patients into several discrete clusters.  177 

 178 

We applied unsupervised k-means clustering to group patients into four clusters, C1-C4; 179 

Clusters were visualised with a PCA plot (figure 2A). The k-means clustering algorithm uses 180 

a chosen number of cluster centroids, which are repositioned among the samples until 181 

convergence.33 Supervised machine learning was applied, confirming that classification 182 

software can be trained to learn the transcriptomic signatures of each cluster and accurately 183 

classify new patients (88% accuracy, supplementary figures S2-3, using two different classifier 184 

algorithms).  185 
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 186 

Cluster 1 (C1) is transcriptionally the most similar to healthy donors, compared to C2-C4, 187 

which have incrementally more differentially expressed genes (supplementary figure S4). Gene 188 

set enrichment analysis was performed to summarise the predominant transcriptomic 189 

differences between the clusters (figure 2B). The top-ranking disturbed pathways, which 190 

differentiate the clusters, include immune activation pathways (e.g. anti-viral interferon 191 

response), metabolic pathways (e.g. citrate cycle), and DNA repair gene sets. Some of the 192 

pathways are likely attributable to particular medications, such as reactive oxygen species 193 

(ROS) generation gene sets, which are a known effect of hydroxychloroquine treatment.34 194 

 195 

Interestingly, anti-Ro autoantibody positivity was substantially increased in C2 and C4 (figure 196 

2C). Ascending levels of overall disease severity were observed from cluster 1 to 4, as 197 

suggested by the SLEDAI-2k (figure 3A), and PGA scores (figure 3B). Anti-dsDNA 198 

autoantibody ratio is significantly increased in C4 compared to the other clusters (figure 3C). 199 

 200 

Flow cytometry revealed that circulating neutrophil numbers were significantly increased in 201 

C3 (figure 3D). “xCell” (a software tool looking at cell-specific genes) 31 calculated enrichment 202 

scores, suggesting several cell-type compositions differences (supplementary figure S3). In 203 

particular, plasma cell gene signature is reduced in C3, B cell and CD8+ T cell gene signatures 204 

are reduced in C3 and C4; NKT cell gene signature is increased in C4, while that of 205 

conventional dendritic cells (cDC) is reduced in C4. M1 and M2 macrophage gene signatures 206 

are not significantly altered (supplementary figure S3). 207 

 208 

The 30 patients in Dataset 2 all presented with a similar total number of American College of 209 

Rheumatology (ACR) criteria, although there are marked differences in the type of ACR 210 

criteria in each cluster. For instance, C4 has the highest positivity for immunologic/renal 211 

disorders and flare activity (suggesting more serious disease severity), whereas C2 and C3 have 212 

the highest positivity for arthritis (figure 3E). 213 

 214 

In comparing the expression levels of several well-established SLE-associated genes in SLE 215 

clusters, we found evidence that different pathogenesis pathways were associated with each 216 

cluster of patients. BAFF (TNFSF13B) overexpression is well-established as a driver of 217 

autoimmunity,7 targeted by belimumab. Interestingly, high BAFF expression is a very 218 

significant feature of C4 and to a lesser magnitude C2, but not C1 and C3 (figure 4A). TNFSF10 219 
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mRNA (encoding the apoptosis-inducing ligand TRAIL) expression is also upregulated in 220 

SLE,35 and this mirrors elevated BAFF expression in C4 and C2 (figure 4B). Defective 221 

apoptosis has been implicated in autoinflammatory settings, including SLE.36 Efficient 222 

apoptosis can be impaired by upregulation of anti-apoptotic factors such as cellular FLICE-223 

inhibitory protein (encoded by CFLAR), previously reported to be upregulated in blood B cells 224 

of patients with SLE, and correlating with disease severity.36 This likely prevents apoptosis 225 

signalling in response to ligands such as TRAIL and FASL, to allow aberrant survival of 226 

autoreactive cells.36 Our stratification found substantial CFLAR overexpression in C3 and C4 227 

(figure 4C).  228 

 229 

Excessive TLR receptor signalling is implicated in autoimmunity, with TLR2, TLR7 and TLR9 230 

pursued as potential therapeutic targets in SLE.37 Deregulated excessive TLR signalling is 231 

thought to exacerbate unspecific immune cell activation.38 Interestingly, TLR7 expression was 232 

significantly upregulated in C2 and downregulated in C3 (figure 4D). PELI1 (encoding 233 

Pellino1) is a TLR3-inducible negative regulator of noncanonical NF-kB and the expression 234 

of PELI1 was negatively correlated with disease severity.39, 40 In our stratification, PELI1 is 235 

not significantly under-expressed in any SLE clusters, but is upregulated in C3 and C4, possibly 236 

induced for NF-kB regulation (figure 4E). TSC22D3 (also known as GILZ) was identified as a 237 

negative regulator of B cells and lack of GILZ can drive autoimmune disease.9 GILZ expression 238 

was markedly diminished in C2, suggesting a loss of B cell regulation. GILZ was upregulated 239 

in C3 and C4, possibly as an effect of glucocorticoid induction (figure 4E). 240 

 241 

CD40L, encoded by CD40LG, mediates T-cell help driving T-dependent B-cell activation, and 242 

has been targeted in unsuccessful clinical trials.10 CD40LG expression was significantly 243 

diminished in clusters C2, C3, and C4, possibly reducing the usefulness of CD40L blockade in 244 

those patients (figure 4F). 245 

 246 

IFNAR1 expression is significantly increased in clusters C3 and C4, suggesting increased 247 

interferon signalling sensitivity (figure 3H). CTLA4 expression is significantly reduced in C3 248 

and C4, suggesting impaired regulation of effector T cells (figure 3I). The Interferon Signature 249 

Metric (ISM) is a composite score of mRNA expression from three interferon-regulated genes 250 

(HERC5, CMPK2, and EPSTI1).41 Expression of these genes was consistently upregulated in 251 

C2 and C4, whereas C3 levels were comparable to that of healthy donors. Patients in C1 had 252 
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 10 

variable levels with only the expression of HERC5 but not the other ISM genes being 253 

significantly increased relative to healthy controls (figure 4G-I). 254 

 255 

In Dataset 2, 6 of the 30 patients with SLE had flares, who diverged further from healthy donors 256 

when visualised by PCA (figure 5A). Using sPLS-DA to select flare-discriminating genes 257 

(figure 5B), we found differential gene expression during flares to be consistent with increased 258 

innate activation and altered immune cell regulation (figure 5C-F). Indeed, the RETN gene, 259 

encoding the proinflammatory adipokine Resistin, is upregulated in patients with active flares 260 

only (figure 5C). Resistin is linked to proinflammatory cytokine induction.42 Significant 261 

downregulation of TCL1A and PAX5 (figure 5D-E) during flares suggests alterations in T- and 262 

B-cell homeostasis, respectively.43, 44 LCN2 expression is increased in patients with flares 263 

(figure 5F). LCN2 encodes neutrophil gelatinase-associated lipocalin (NGAL), which suggests 264 

increased neutrophil-mediated anti-bacterial activity; NGAL is also a biomarker of kidney 265 

injury.45 Gene set enrichment analysis revealed a number of pro-inflammatory gene sets and a 266 

neutrophil gene signature are predominant features of flare activity (figure 5G). 267 

 268 

DISCUSSION 269 

A universally effective and safe treatment for SLE remains an unmet need due to the 270 

heterogeneity of clinical presentation, leading to an unpredictable response to treatment.46 SLE 271 

remains a condition with poor long-term outcome. Over six decades of clinical trials in SLE 272 

have only yielded one new therapy, belimumab, an inhibitor of the cytokine BAFF, with mixed 273 

efficacy in patients.10 Major failures of targeted therapy in the clinic for SLE10, 47, 48  mean that 274 

breakthrough treatments remain years away. This situation has obligated clinical experts and 275 

the pharmaceutical sector to more rigorously assess the reasons for this high failure rate. 276 

Suggested factors include issues with the design of clinical trials, difficulty in defining robust 277 

endpoints, non-ideal drug targets and biomarkers, and, high heterogeneity of study 278 

populations.10 Large-scale clinical trials invariably fail to demonstrate efficacy when enrolling 279 

patients selected on a limited number of clinical criteria, which do not capture the underlying 280 

molecular mechanism likely underpinning disease, which varies greatly in patients (figures 2-281 

3). Inclusion of some patients with low disease propensity (C1) further weakens comparisons 282 

between placebo and experimental treatment groups. 283 

 284 

Our stratification method captures the likely underlying disease mechanism, using whole-blood 285 

transcriptomics to obtain a snapshot of the immune system. This stratification could be very 286 
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useful for the improved design of clinical trials, by more appropriately targeting specific 287 

clusters of patients with SLE who are much more likely to have a homogenous mechanism of 288 

action underpinning pathology (figures 2B,4). Retrospective analysis of previous failed trials 289 

could reveal high efficacy in specific clusters of patients, which was not possible to see in an 290 

unstratified analysis. Successful off-label usage of rituximab in some patients with SLE further 291 

suggests therapies that have failed in clinical trials with SLE may yet have efficacy in selected 292 

patients.49, 50 Indeed, looking at the expression levels of key drug-targeted molecules such as 293 

BAFF and CD40L suggests that certain clusters of patients might be much better fit for the 294 

rationale of targeted biologics than other clusters (figure 4). 295 

 296 

Similar to us, previous studies using microarrays have encountered distinct clusters of SLE 297 

patients in whole-blood transcriptome data.51, 52 In this study, we used RNA-seq data, which 298 

has the advantages of capturing additional genes (not restricted to probe sets) and improved 299 

dynamic range. Additional systems biology approaches (such as microbial metagenomics, and 300 

metabolomics) are becoming available in SLE, and combining matching data from additional 301 

profiling methods may allow for improved sets of clinically useful biomarkers.53-56 302 

 303 

Transient flare activity in SLE patients causes a significant surge in inflammation requiring 304 

medical attention, but much remains to be understood about the underlying molecular basis 305 

and transcriptomic features of flare activity. We identified several flare-associated genes 306 

including the RETN gene, encoding the proinflammatory adipokine resistin (figure 5C). 307 

Interestingly, serum resistin levels are elevated in patients with rheumatoid arthritis and/or SLE 308 

patients, although the differences were reported not significant in unstratified patients with 309 

SLE, where high heterogeneity was noted.57 The specificity of elevated resistin levels to flare-310 

active patients may explain these results. Taking this further, longitudinal studies would be 311 

useful for discovering flare-predicting transcriptional signatures, which may be used as 312 

prognostic markers alerting patients and physicians of an increased risk of flares under their 313 

current treatment plan. 314 

 315 

The IFN gene signature was associated with patients with SLE, although this feature does not 316 

correlate well with overall disease severity.41 Stratification of ISM-high patients is possible 317 

using qPCR assays for the gene expression of three genes in peripheral blood,41 which in our 318 

stratification corresponds to C2 and C4 (figure 2B, 4H-L). Several new treatments related to 319 

type I interferon are under investigation, for example, anti-IL3Ra (i.e. anti-CD123, CSL362 320 
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mAb), which depletes basophils and plasmacytoid dendritic cells, a cell type which produces 321 

type-I IFN.30  322 

 323 

In conclusion, our study provides new insights into the heterogeneity of patients with SLE with 324 

respect to gene expression in circulating immune cells, as the messengers of overall immune 325 

activity in individual patients. Our approach using whole-blood transcriptomics data combined 326 

with machine learning approaches is powerful at segregating and recognising patient clusters, 327 

uncovering cluster-specific gene expression patterns linked to known pathogenesis features. 328 

Optimal patient stratification is critically lacking in clinical trials for SLE, for which success 329 

rates and cost-effectiveness can be greatly improved by more robustly targeting the most 330 

relevant clusters of patients. Further development of machine-learned classifiers and validation 331 

of their utility using matching data on patients' response to specific therapies, may deliver new 332 

clinical tools assisting with better treatment decisions for individual patients. 333 
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Figure Legends 532 

 533 

Figure 1. Differential gene expression in SLE. 141 SLE (orange symbols) and 51 healthy 534 

donor (blue symbols) transcriptomes from three datasets (see table 1, shown with different 535 

symbol shapes), were examined using multivariate statistics methods. (A) Principal 536 

coordinates analysis (PCA) was applied to visualise the overall variance between individuals. 537 

(B) Sparse partial least squares discriminant analysis (sPLS-DA), a supervised clustering 538 

method, applies weighting to genes which separate healthy donors and unstratified SLE 539 

patients. Ovals indicate the 80% prediction interval. (C) Standardised expression of top-540 

weighted genes from the sPLS-DA model were plotted as a heatmap. Each row is an individual, 541 

each column is a gene.  542 

 543 

Figure 2. Patient clustering (A) PCA visualisation of 141 SLE whole-blood transcriptomes 544 

after clustering using the k-means algorithm. Four clusters of patients were segregated and 545 

displayed with different symbols. Three datasets were combined (see Table 1). (B) Venn 546 

diagram displaying selected top-ranking disturbed gene sets in each SLE cluster C1-C4 547 

compared to the healthy control group (derived from 99 patients with SLE and 18 healthy 548 

donors from Dataset 1). (C) Percentage of anti-Ro autoantibody levels in 99 patients from 549 

Dataset 1, rated as “none”, “medium” or “high”, derived from Dataset 1 metadata.12  550 

 551 

Figure 3. Disease severity and clinical features in SLE subtypes. SLE clusters C1-C4 in 552 

Dataset 2 were compared by clinical features. Blue bars represent the mean, symbols represent 553 

patients. Red (+) symbols represent patients experiencing flares (temporary period of worsened 554 

symptoms) at the time of sampling. (A) SLE disease activity index 2000 (SLEDAI-2k). (B) 555 

Physician Global Assessment (PGA). (C) Ratio of anti-dsDNA autoantibodies, in C4 vs the 556 

other clusters combined.  (D) Circulating neutrophil numbers. (E) Percentage map of patients 557 

in each cluster, who are positive for particular disease features as detailed (ACR criteria) and 558 

flare activity. 559 

 560 

Figure 4. Relative expression levels of known SLE-associated genes. Expression levels 561 

(Log2 fold-change relative to the mean of the healthy controls) of (A) TNFSF13B (BAFF), 562 

(B)TNFSF10 (TRAIL), (C) CFLAR, (D) TLR7, (E) PELI1, (F) TSC22D3 (GILZ), (G) CD40LG, 563 

(H) IFNAR1, (I) CTLA4. Expression of interferon signature metric (ISM) genes: (J) HERC5, 564 

(K)CMPK2, and (L) EPSTI1. Therapeutics are indicated in red text above genes coding for the 565 
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relevant target protein. Three datasets were combined (see Table 1). Significant differences 566 

(detailed in methods) between healthy and SLE samples are indicated. 567 

 568 

Figure 5. Gene signature for SLE flare activity. Whole-blood RNA-seq data from 30 SLE 569 

patients (24 without flares, and 6 with flares) and 29 healthy donors were compared (Dataset 570 

2, see Table 1). (A) Principal components analysis (PCA) to visualise the variation between 571 

samples (in all genes); different symbols represent individuals in each group as shown. (B) 572 

Sparse partial least squares discriminant analysis (sPLS-DA) was used to select genes which 573 

distinguish the groups. (C-F) Relative expression of flare-associated genes, shown as the log2 574 

fold-change relative to the mean of the healthy donor group (“H”) groups as shown. (G) Gene 575 

set enrichment analysis, showing the top-ranked gene sets which are differently expressed in 576 

patients with flares compared to patients without flares. 577 

 578 

Supplementary Figures 579 

 580 

Figure S1. Bioinformatics workflow. Three RNA-seq datasets (supplementary table S1) were 581 

processed consistently using the depicted workflow. 582 

 583 

Figure S2. SLE subset discrimination using support vector machine classifiers. An error-584 

correcting output codes (ECOC) classifier was trained using Dataset 1, to learn how to 585 

distinguish SLE clusters (C1-C4); in this case healthy donors were grouped with C1. The 586 

accuracy of the classifier was tested using independent cases from Datasets 2+3, checking 587 

whether the cluster identification matches the original clustering by k-means in figure 2. 588 

 589 

Figure S3. SLE subset discrimination using random forest classifiers. Three whole-blood 590 

RNA-seq datasets encompassing 141 patients with SLE were clustered (as in figure 1). (A) 591 

Random forest classifiers were trained and tested using repeated double cross validation to 592 

protect from overfitting, while selecting optimal gene sets with predictive value, using the 593 

minimum number of genes ('min'), maximum number of genes with predictive value ('max'), 594 

or the geometric mean from those models ('mid'). Using very few genes (on the left of this plot) 595 

results in a higher error rate; using too many genes with no added predictive value (on the right 596 

side of this plot) also results in a higher error rate due to the accumulation of noise. (B) 597 

Performance testing of the ‘mid’ classification model, which had 88% overall accuracy to 598 

predict the original cluster type, using 49 genes. For each sample (each horizontal lane), the 599 
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predicted probability of each cluster designation (coloured symbols) is plotted. Incorrect 600 

classifications are circled. Smaller symbols show the result of test repetitions, larger symbols 601 

show the average result from the repetitions. 602 

 603 

Figure S4. Differential Gene Expression in SLE clusters. Four SLE clusters (C1-C4) in 604 

Dataset 1 (A) and Dataset 2 (B) were analysed for differentially expressed (DE) genes 605 

compared to healthy donors, using the limma/edgeR workflow.22 The number of genes passing 606 

an arbitrary cut-off for differential expression (fold-change 1.5, BH-adjusted p-value 0.05) 607 

relative to Healthy donors are plotted as Venn diagrams. Using the same cut-off, fewer DE 608 

genes were found in Dataset 2 than Dataset 1 due to reduced cohort size, although the most DE 609 

genes were consistently found in C4 compared to other clusters regardless of dataset source. 610 

 611 

Figure S5. Cell subset deconvolution. 30 patients with SLE patients from Dataset 2 were 612 

stratified into four clusters (C1-C4); patients with flares are indicated with red (+) symbols. 613 

Blue bars show the mean. Immune cell type enrichment in whole-blood RNA-seq data was 614 

estimated from FPKM values using xCell.31 Signature enrichment scores for: (A) B cells and 615 

plasma cells; (B) CD8+ T cells, natural killer T cells (NKT); (C) conventional dendritic cells 616 

(cDC), M1 macrophages, M2 macrophages. 617 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 24, 2019. ; https://doi.org/10.1101/647719doi: bioRxiv preprint 

https://doi.org/10.1101/647719
http://creativecommons.org/licenses/by-nc-nd/4.0/


 27 

Figure 5 
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Table 1. Cohorts of patients and healthy donors, for whole-blood RNA-seq data. 
 

Dataset & 
Reference 

Subjects Collection 
Site 

Clinical 
Metadata 

RNA Sequencing 
Method 

Dataset 1 
 
Hung et al. 
(2015)12 
 
Accession: 
PRJNA294187 

99 SLE 
(93 female,  
6 male). 
 
18 healthy 
(female). 

UCSF Medical 
Center, USA. 

• Anti-Ro (‘none’, 
‘medium’, 
‘high’) 

• ISM (‘low’, 
‘high’) 

• Whole-blood collected in PAXgene 
tubes, RNA extracted with TRIZOL 
(Ambion). 

• RIN checked but not specified. 
• TruSeq library preparation kit 

(Illumina). 
• HiSeq2000 platform (Illumina). 
• 50 bp SE reads. 

 
Dataset 2 
 
This study. 
 
Accession: 
PRJNA439269 

30 SLE 
(28 female,  
2 male). 
 
29 healthy  
(27 female,  
2 male). 

Monash Medical 
Centre, 
Melbourne, 
Australia. 

• Age 
• SLEDAI-2k, 

PGA 
• Clinical 

manifestations 
• Flow cytometry 
• Medications 

• Whole-blood collected in PAXgene 
tubes, RNA extracted with PAXgene 
kit. 

• RIN > 7. 
• TruSeq library preparation kit 

(Illumina). 
• HiSeq 2500 platform (Illumina). 
• 100 bp SE reads. 

 
Dataset 3 
 
Rai et al. 
(2016)13 
 
Accession: 
PRJNA318253 

12 patients 
with SLE. 
 
4 healthy 
donors. 
 
All female. 

Sir Sunderlal 
Hospital, 
Banaras Hindu 
University, 
India. 

• Age 
• SLEDAI-2k  
• Anti-DNA (±) 
• Anti-ENA (±) 
• Clinical 

manifestations 
• Medications 

• Whole-blood collected in heparin 
tubes, RBC lysis buffer, RNA 
extracted with TRI reagent (Sigma). 

• RIN > 7. 
• TruSeq library preparation kit 

(Illumina). 
• HiSeq2000 platform (Illumina). 
• 100 bp PE reads. 

 
Meta-analysis 
This study. 
Datasets 1+2+3. 

141 SLE 
51 healthy 
 

As above. As above. As above. 

All RNA-seq data are publicly available from the Sequence Read Archive (SRA).59 
Excluded sample in Dataset 2: “SLE_21” (SRR6970317) was later found to not have SLE. 
Abbreviations: ENA, extractable nuclear antigens; ISM, interferon signature metric; PE, paired-end; PGA, 
Physician Global Assessment; RIN, RNA integrity number; SE, single-end; SLE, systemic lupus erythematosus; 
SLEDAI-2k, SLE disease activity index 2000; UCSF, University of California San Francisco. 
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Supplementary Figure S1 
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Supplementary Figure S2 
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Supplementary Figure S3 
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Supplementary Figure S4 
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Supplementary Figure S5 
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Supplementary Table 1. Software used for processing RNA-seq data. 
 

Software Version Purpose in this project Ref. / Company 

Ballgown 2.12.0 Calculate transcript abundance (FPKM). 19 
edgeR 3.24.3 Count-based differential expression analysis. 22 

EGSEA 1.10.1 Gene set enrichment analysis. 27 

HISAT2 2.1.0 Gapped read alignment. 19 

limma 3.38.3 Count-based differential expression analysis. 22 

MATLAB 2018b Clustering, machine learning. MathWorks 

mixOmics 6.6.1 Multivariate methods, variable selection. 32 

MUVR 0.0.971 Variable selection, machine learning. 25 

PRISM 8 8.0.2 Graphing and statistical tests. GraphPad Software 

R 3.5.2 Statistical programming. 60 

R Studio 1.1.463 Integrated development environment for R. 61 

SAMtools 1.8 Sorting read alignments. 62 

SRA-toolkit 2.9.2 fastq-dump: Obtain archived fastq data. 59 

Stringtie 1.3.5 Transcript/splice model assembly. 19 

Subread 1.6.3 featureCounts: summarise read counts at the gene level. 20 

Trimmomatic 0.38 mRNA read trimming. 18 

xCell 1.1.0 Cell-type enrichment analysis. 31 
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