
Title: Co-Stimulation–Induced AP-1 Activity is Required for Chromatin 

Opening During T Cell Activation  

 
 
Authors:  Masashi Yukawa1, Sajjeev Jagannathan1, Andrey V. Kartashov1, Xiaoting Chen2, 
Matthew T. Weirauch2,3,4,5, Artem Barski1,4,6,*

  

Affiliations: 
1Division of Allergy & Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, 
Ohio, USA 45229-3026 
2Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical 
Center, Cincinnati, Ohio, USA 45229-3026 
3Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, 
Cincinnati, Ohio, USA 45229-3026 
4Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, 
USA 45267-0555 
5Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center,  
Cincinnati, Ohio, USA 45267-0555  
6Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, 

USA 45229-3026 
* Corresponding author. Email: artem.barski@cchmc.org 
Work Telephone Numbers: (513) 636 1851 

 

Running title: AP-1 controls T cell chromatin remodeling. 

 

Abstract: Activation of T cells is dependent on organized and timely opening and closing of 
chromatin. Herein, we identify AP-1 as the transcription factor that directs most of this 
remodeling. Chromatin accessibility profiling showed quick opening of closed chromatin in 
naïve T cells within 5 hours of activation. These newly open regions were strongly enriched 
for the AP-1 motif, and indeed, ChIP-seq demonstrated AP-1 binding at more than 70% of 
them. Broad inhibition of AP-1 activity prevented chromatin opening at AP-1 sites and 
reduced expression of nearby genes. Similarly, induction of anergy in the absence of co-
stimulation during activation, was associated with reduced induction of AP-1 and a failure of 
proper chromatin remodeling. The translational relevance of these findings was highlighted 
by the substantial overlap of AP-1–dependent elements with risk loci for multiple immune 
diseases, including multiple sclerosis, inflammatory bowel disease and allergic disease. Our 
findings define AP-1 as the key link between T cell activation and chromatin remodeling. 
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Introduction 
Upon encountering an antigen, naïve T helper cells are activated and differentiate over 
several days into various effector lineages that contribute to immune responses(O’Shea and 
Paul, 2010; Russ et al., 2013). These differentiated effector cells secrete different sets of 
cytokines and have specific functions in orchestrating immune responses against pathogens. 
In the contraction phase of the response, most effector cells die, but a few survive and 
become long-lived memory cells (Ben Youngblood et al., 2017). We and others have 
demonstrated that epigenetic states induced during T cell activation, differentiation, and 
memory formation are associated with T-cell lineage stability and plasticity, cytokine 
production in effector cells, and rapid recall response in the memory cells (Vahedi et al., 2012; 
Barski et al., 2009; Komori et al., 2015; Smith et al., 2009; Hawkins et al., 2013; Mukasa et al., 
2010; Mazzoni et al., 2015; Sekimata et al., 2009; Wei et al., 2009; Ohkura et al., 2012). An 
outstanding question in the field is how the epigenetic changes are induced and targeted to 
specific loci during primary activation of T cells. 

The differentiation of T cells is a multi-step process starting with T cell activation. The 
activation is accomplished through simultaneous stimulation of the T cell receptor (TCR) and 
co-stimulatory receptors such as CD28. Downstream NFATs, AP-1 (a heterodimer of FOS and 

JUN proteins), and NFB are activated via Ca2+-calcineurin, MAP kinase and PI3K/PKC 
pathways (Fathman and Lineberry, 2007; Crabtree and Olson, 2002; Zhu and Paul, 2010; Jain 
et al., 1994; Rochman et al., 2015). Concurrently with activation signals, differentiation signals 
provided by the cytokine milieu lead to activation of JAK-STAT pathways, induction of lineage-
specific transcription factors (TFs), and eventually lineage-specific cytokine gene expression 
(Zhu et al., 2010). The Il2 locus has previously been used as a model to study activation-
induced transcriptional regulation. The Il2 promoter has several AP-1 and NFAT binding sites 
that are conserved between human and mouse (Rooney et al., 1995; Macian et al., 2001). The 
binding sites are adjacent, and AP-1 and NFAT form a heteromer (Jain et al., 1994; Chen et al., 
1998) and synergize to induce Il2 expression (Walters et al., 2013; Nguyen et al., 2010). 

Mutation of these binding sites prevents Il2 expression (Walters et al., 2013). NFB and 
several other TFs also participate in Il2 regulation during T cell activation via their binding sites 
near the promoter (Thaker et al., 2015; Skerka et al., 1995). However, the mechanisms of 
transcriptional regulation during T cell activation are not common for all genes. For example, 
IL2 expression is dependent on new protein synthesis, but IL10, IFNG, and TNF are not 
(Sareneva et al., 1998).  

Herein, we profiled chromatin accessibility during the early stages of T cell activation 
in human primary naïve CD4 T cells. We were struck by the massive number of regions 
undergoing remodeling within 5 h of activation and by the considerable enrichment of AP-1 
motifs. Chromatin immunoprecipitation (ChIP-seq) demonstrated AP-1 binding at the 
majority of these regions, often together with its partner NFAT1. AP-1 was also strongly 
present at super enhancer (SE) elements formed during activation. Whereas prior studies 
have focused on genetic disruption of individual AP-1 members, herein we broadly blocked 
the AP-1 family in human naïve T cells by electroporating a dominant-negative protein (A-
FOS); this resulted in loss of chromatin remodeling and T cell activation. Conversely, AP-1–
associated chromatin changes were absent during induction of T cell anergy. The translational 
significance of these findings to clinical medicine was supported by the overlap of activation-
specific enhancers and AP-1 binding sites with single-nucleotide polymorphisms (SNPs) 
associated with increased risk for a variety of diseases, most substantially found for multiple 
sclerosis.    
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Results 
Characterizing open chromatin regions 
Human naïve CD4 T cells isolated from the blood of healthy donors were activated with anti-
CD3/CD28 beads for 5, 24, and 60 h. (Fig. S1 A and B). Open chromatin in resting and activated 
cells was profiled by ATAC-seq, and differentially accessible regions were identified (Fig. 1 A 
and B). Herein, we will refer to loci that are accessible only in naïve cells or only activated cells 
as “naïve open region (NOR)” or “effector open region (EOR)”, respectively, and to those loci 
maintained in both naïve and activated cells as “common open region (COR)”. For example, 
KLF2, encoding a quiescence-related TF (Kuo et al., 1997) downregulated upon activation, had 
a NOR, whereas EGR2, an early growth response TF that is induced during activation, has both 
a COR and an EOR (Fig. 1 A and B). Overall, genome-wide analysis indicates that the chromatin 
remodeling that occurs at the early stages of T cell activation is dramatic (Fig. 1 C): in addition 
to the 11,117 open regions present in resting T cells (NORs plus CORs), 10,218 regions became 
accessible after 5 h of activation (EORs). Only 899 of open regions closed. We observed fewer 
changes at later time points, indicating that chromatin remodeling is more active immediately 
after activation. For the 5-h time point, we also identified a high confidence set of regions 
that were consistently identified as NOR, COR, or EOR in T cell from two separate donors and 
were used for further analysis (Fig. 1 C). As expected, chromatin opening was associated with 
gene expression changes: genes nearest to EORs were enriched among genes upregulated 
during T cell activation (FDR = 0.018 for 736 genes with 1 EOR and FDR < 0.001 for 338 genes 
with > 1 EOR), (Fig. 1 D). In contrast to EOR genes, genes possessing NORs were 
downregulated during T cell activation (FDR < 0.001 for 95 genes with 1 NOR), (Fig. S1 D). 
Furthermore, we found that the set of genes in the vicinity of 5-h EORs (EOR genes) were 
enriched for genes related to T cell function and activation (GO terms, “lymphocyte activation” 
and “T cell activation”) by gene ontology analysis, whereas those genes that became 
accessible at later time points (5-24 h, 24-60 h) were involved in cell migration, proliferation, 
and metabolism (Fig. 1 E). We also found that NOR and COR gene sets were not enriched with 
genes related to T cell function and activation (Fig. S1 D). Further, we intersected the EORs 
with the genetic variants that related to various human conditions using the regulatory 
element locus intersection (RELI) approach (Harley et al., 2018). The results show that the risk 
SNPs for autoimmune or allergic diseases (e.g., Multiple sclerosis, Inflammatory bowel 
disease, Crohn disease, Self-reported allergy, and combined allergic disease SNPs (asthma, 
hay fever or eczema) have significant overlap with EORs (Fig. 1 F and Table S1). Thus, 
formation of open chromatin at early time points during T cell activation is likely to play an 
important role in T cell activation and its disruption may play a key role in immune disease 
processes. 

Interestingly, the majority of NOR and COR loci were found in promoter regions, 
whereas the majority of EOR loci were not (Fig. 2 A). These findings suggest that these newly 
accessible sites might serve as regulatory elements. To investigate their function, we 
examined changes of histone modifications at these open chromatin regions (Fig. 2 B and C). 
For example, at the CD82 gene, we observed increased accessibility at two internal elements 
upon activation, and this was accompanied by an increase in H3K27Ac levels, suggesting that 
the elements may function as enhancers. Genome-wide analysis showed that the levels of 
H3K27Ac and H3K4me3 at the EOR were significantly increased in the transition from naïve 
to activated cells at 5 h (Fig. 2 C). These two histone modifications are considered to be 
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hallmarks of enhancers and strong enhancers, respectively (Ernst et al., 2011). In conjunction 
with the EOR association with transcriptional upregulation, these findings suggest that the 
EOR are likely to serve as transcriptional enhancers. 
 

Transcription factors AP-1 and NFAT1 bind effector open chromatin regions 
To identify TFs that may play a role in chromatin remodeling during activation, we applied the 
HOMER software (Heinz et al., 2010) to identify TF binding sites over-represented within the 
differentially accessible regions (Fig. 3 A and Fig. 2 A and B). Analysis showed that DNA motifs 
of AP-1 or the AP-1/NFAT composite element were enriched in EOR but not in NOR and COR. 
Interestingly, the NFAT motif alone was not enriched as strongly. BORIS and CTCF motifs were 
prominent at the EOR sites not bound by AP-1 (Fig. S2 C), suggesting that nuclear organization 
may be also affected by activation-induced chromatin opening. In contrast to EORs, NORs 
were enriched in motifs for EGR and KLF, which have been reported to be negative regulators 
of T cell activation (Safford et al., 2005) and to maintain the naïve state in T cells (Yamada et 
al., 2009). For COR, motifs of ETS, which is important in T cell development and activation 
(Panagoulias et al., 2016; Muthusamy et al., 1995), were prominent. Indeed, enrichment of 
JunB motifs and binding at the sites of chromatin remodeling was previously reported in 
mouse T cells (Bevington et al., 2016). To test whether AP-1 and NFAT TFs actually bind EORs 
in human T cells, we performed ChIP-seq for cFOS and JUNB (components of AP-1), NFAT1, 

NFAT2, NFB, and cMyc, which are known to be important for T cell activation and 
proliferation (Liu et al., 2016; Trushin et al., 1999; Wong et al., 1999; Chou et al., 2014; Wang 
et al., 2011). cFOS, JUNB, and NFAT1 were present in EORs more than in NORs and CORs, 

whereas NFB and cMyc were not enriched in EORs (Fig. 3 B). For example, the TNFRSF18 
gene locus had two EOR regions (Fig. 3 C). One of them was bound by AP-1 and NFAT1, but 
the other was only bound by AP-1. Previously, it was reported that AP-1 and NFAT formed a 
heteromer on the IL2 promoter (Chen et al., 1998), leading us to examine combinatorial 
effects of the TFs on the opening of chromatin genome-wide (Fig. 3 D). Remarkably, more 
than 70% of EOR were bound by AP-1 (cFOS/JUNB) alone or AP-1 and NFAT1 together. Further, 
almost all NFAT1-bound EOR were also bound by AP-1 (cFOS or JUNB). Interestingly, the triple 
combination of cFOS, JUNB, and NFAT1 resulted in the highest accessibility, followed by the 
cFOS/JUNB dimer, whereas NFAT1 sites not bound by AP-1 showed minimal opening (Fig. 3 
E) in agreement with the NFAT-only motif not being enriched in EORs. Moreover, the H3K27Ac 
level was also the highest in regions with the triple combination (Fig. S3 A). Furthermore, the 
level of chromatin openness was correlated with the strength of cFOS, JUNB, and NFAT1 
binding, (Fig. S3 B). These data suggest either a role for AP-1 in chromatin remodeling during 
T cell activation or passive binding of AP-1 complexes to enhancers opened by other TFs. 
 

Formation of super enhancers involves chromatin opening 
Combinations of several nearby enhancer elements with unusually high total level of H3K27 
acetylation and/or binding of Mediator or BRD4 proteins are known as super enhancers (SEs) 
and are believed to induce expression of cell type–specific genes (Whyte et al., 2013; Selective 

Inhibition of Tumor Oncogenes by Disruption of Super-Enhancers, 2013). Therefore, we examined 
whether EORs were involved in the assembly of SEs. We identified 640 and 384 SEs in naïve 
and activated T cells, respectively, and 203 of them were shared between the cell states (Fig. 
S4 A and B). As expected, the presence of SEs resulted in high expression of nearby genes (Fig. 
S4 C). SE formation during T cell activation was associated with chromatin remodeling. For 
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example, the IL2RA SE formation was accompanied by open chromatin formation after 
activation (Fig. 4 A and B). In addition to the EOR frequency being higher in activated SE (28.3 
EOR/ 1 Mb), the frequency of EORs also was higher in shared SE (24.4 frequency EOR/ 1 Mb) 
(Fig. 4 C). SEs in naïve cells seem to rely on NOR and COR in contrast to SE in activated cells 
(Fig. 4 C and Fig. S4 D and E). Furthermore, AP-1 and NFAT1 were bound to activated and 
shared SEs at high frequency in contrast to naïve SEs (Fig. 4 D). Collectively, these results 
suggest that AP-1 and NFAT1 likely play a role in the formation of SEs during T cell activation.  

 

AP-1 activity is required for open chromatin formation during T cell activation 
In order to examine the role of AP-1 in the formation of open chromatin, we sought to inhibit 
AP-1 activity during T cell activation. Unfortunately, due to co-expression of multiple JUN and 
FOS family members in T cells and their common upregulation during activation (Fig. 5 A) (Jain 
et al., 1994), knock-out or knock-down strategies are unlikely to be successful. For this reason, 
we instead used the AP-1 dominant-negative protein A-FOS (Biddie et al., 2011). A-FOS can 
sequester JUN isoforms and prevent FOS-JUN complex formation and DNA binding. 
Bacterially expressed A-FOS or GFP control proteins were purified and electroporated into 
naïve T cells before activation. Electroporation efficiency was close to 100%, and GFP 
electroporation did not affect T cell activation (data not shown). We observed that in the A-
FOS–electroporated cells, chromatin opening was decreased at EORs but not at NORs and 
CORs (Fig. 5 B). This blocking effect was more significant in EORs strongly bound by AP-1 (Fig. 
5 C), and the effect appeared to be site-specific: an EOR bound by AP-1 was affected in the 
IRF8 locus, whereas an EOR not bound by AP-1 was not affected (Fig. 5 D). The specific effect 
of A-FOS protein transduction provides reassurance that the electroporation procedure was 
functional and well received by the T cells. Furthermore, inhibiting AP-1 resulted in 
downregulation of activation-inducible genes such as TBX21, IFNG, and CSF2 (Fig. 5 E). These 
results indicate that AP-1 binding is required for opening chromatin during T cell activation at 
many genomic loci. 
 

Co-stimulation is required for open chromatin formation  
In order to better understand the role of AP-1–induced chromatin remodeling in the greater 
context of the immune response, we next performed T cell activation in the absence of CD28 
co-stimulation (Fig. 6 A). Previous studies have shown that the lack of co-stimulation reduces 
activation of AP-1 and eventually leads to the induction of anergy (Macian et al., 2002; Kriegel 
et al., 2009; Rochman et al., 2015). Indeed, cells not receiving CD28 co-stimulation (Anergy) 

showed dramatic reduction of nuclear translocation of AP-1 and to a smaller degree NFB 

p50, whereas nuclear levels of NFATs and NFB p65 were reduced only slightly (Fig. S6 A). 
Genome-wide, the reduction of AP-1 activity was accompanied by decreased chromatin 
opening at EORs (Fig. 6 B and C). For example, in the absence of CD28 signaling, the AP-1–
bound EOR in the vicinity of the JAK2 gene was not remodeled and did not become acetylated 
on H3K27 (Fig. 6 D); consequently, JAK2 demonstrated reduced gene expression (Fig. 6 E). The 
promoter-associated COR, also bound by AP-1, remained but with decreased H3K27Ac levels. 
Interestingly, NFAT binding was still detectable at the majority of sites including those that 
lost the ATAC signal in the absence of co-stimulation, suggesting that NFAT is not sufficient 
for opening chromatin (Fig. 6 D and Fig. 5S B). Failure of EOR formation in co-stimulation–
deficient cells was especially prominent in regions that have higher openness among EORs in 
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effector-activated cells at 24 h (Fig. 6 C). We tested whether failure of chromatin remodeling 
due to the lack of CD28/AP-1 affected the histone modifications and transcriptome in cells 
that did not receive co-stimulation. Indeed, failure of open chromatin formation led to 
reduced H3K27Ac level and gene expression at nearby genes (5 h, Spearman R = 0.13, p = 
4.4e-15; 24 h, Spearman R = 0.32, p = 3.6e-87) (Fig. S5 C and D). These results suggest that 
induction of anergy by activation in the absence of co-stimulation is associated with the 
failure of AP-1–dependent chromatin remodeling. 
 

 

Discussion 
T cell activation is associated with dramatic chromatin de-condensation that is essential for T 
cell differentiation and function (Rawlings et al., 2010; Lee et al., 2015). Genome-wide 
regulatory elements are bound by TFs that recruit chromatin-remodeling complexes and 
chromatin-modifying enzymes, leading to expression of activation-related genes. We mapped 
putative regulatory elements in human naïve and activated CD4 T cells by ATAC-seq and 
identified the regions that undergo remodeling at early time points during T cell activation. 
Many of them stay open in the resting memory cells. These regions also gained “positive” 
histone modification, such as H3K4me3 and H3K27ac, whereas the nearby genes tended to 
demonstrate increased expression. Interestingly, these regulatory elements showed 
significant overlap with SNPs associated with a number of immune diseases, underscoring 
their importance for the regulation of the immune system. Next, we identified the TF binding 
motifs that are present at the sites of remodeling and thus may control chromatin remodeling 
at these elements. To confirm the results of the computational analysis, we monitored actual 

binding of NFAT1 and AP-1, as well as NFB and cMYC, during activation by ChIP-seq. 
Comparing TF binding and chromatin opening data suggested that AP-1 is the factor 
responsible for opening chromatin at regulatory elements during T cell activation. Indeed, 
delivery of the AP-1 dominant-negative protein A-FOS into naïve T cells resulted in the T cells’ 
failure to remodel chromatin. Finally, we found that lack of the AP-1 activation during 
induction of anergy resulted in a failure of T cells chromatin remodeling. 

It has long been known that activation of T cells requires two signals. Work from the 
Rao laboratory and others has shown that insufficient induction of AP-1 in the absence of co-
stimulation fails to induce Il2 gene expression and eventually leads to anergy (Macian et al., 
2002; Kriegel et al., 2009; Rochman et al., 2015). However, murine cFOS knock-out T cells 
demonstrated normal response to activation, suggesting that either cFOS was not necessary 
(Jain et al., 1994) or that the other FOS family members, such as FOSB, FRA-1, and FRA-2, 
could substitute for cFOS (Fleischmann et al., 2000; Gruda et al., 1996). Indeed, all AP-1 family 
genes are dramatically upregulated upon T cell activation (data not shown). Given that the 
AP-1 family includes 18 genes, generating a complete deletion was impractical. Furthermore, 
manipulating expression in resting naïve T cells is difficult because successful viral 
transduction requires T cell proliferation, and although plasmid electroporation is possible, 
the process impairs cell activation (data not shown). We overcame this dual problem by (i) 
employing the A-FOS dominant-negative protein that sequesters JUN family members into 
unproductive A-FOS/JUN complexes (Biddie et al., 2011) and (ii) electroporating the protein 
into resting naïve T cells, which (unlike plasmid electroporation) did not affect T cell activation. 
In the presence of A-FOS, T cells failed to remodel their chromatin at multiple AP-1–bound 
sites. This experiment explains the role of AP-1 in T cell activation—establishing chromatin 
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remodeling. Without CD28-driven AP-1 induction, naïve CD4 T cells could not establish open 
chromatin regions to act as enhancer elements for inducing gene expression in T cell 
activation. Our results further confirmed the hypothesis (Jain et al., 1994) that although 
individual FOS family proteins are redundant, induction of the AP-1 family is critical for T cell 
activation. 

CD4 T cells control functions of other immune cells and are the key regulators of 
immune response and homeostasis. Impairment of T cell activation may lead to persistent 
infections and cancer, and over activation of T cells may cause autoimmune or atopic disease. 
Aside from elucidating the epigenetic mechanism of T cell activation, our data demonstrate a 
significant overlap between putative regulatory elements employed in T cell activation (EORs) 
with previously unexplained risk loci for several autoimmune diseases, such as Crohn disease, 
multiple sclerosis, and inflammatory bowel disease (Fig. 1 F) (Soderquest et al., 2017). 
Previously AP-1 sites were found to be enriched near SNPs for autoimmune diseases (Farh et 
al., 2014). In order to gain further clues into potential disease mechanisms, we repeated the 
RELI analysis with TF ChIP-Seq data in order to identify the candidate TFs that may bind risk 
loci. This analysis revealed that risk loci for multiple immune diseases were enriched for AP-
1– and NFAT1 (Fig. 7 A-C). We next endeavored to check whether the EORs overlapping 
disease risk loci are differentially open (or modified) in T cell from patients. Although we could 
not find such data for our top hits (MS and IBD), a recent study (Seumois et al., 2014) reported 
H3K4me2 profiles for Th2 cells obtained from asthmatics and healthy controls. We found that 
2 allergic disease risk loci (CD25 and PHF19) that significantly overlap with EORs (Fig. 7C) 
showed significant increase in the level of H3K4me2 in asthma patients compared to healthy 
controls (FDR<0.1, Fig. 7 D). These findings indicate the importance of proper chromatin 
remodeling for immune homeostasis.  

How does binding of AP-1 lead to chromatin remodeling? Previous studies have shown 
that AP-1 proteins can recruit components of BAF chromatin remodeling complex. In 
particular, SMARCD1 was shown to be AP-1 interacting partner in yeast two-hybrid screen(Ito 
et al., 2001).  ATF3 was shown to physically interact with SMARCA4 (BRG1-ATPase) (Xu et al., 
2011), while a more recent study showed interaction of FOS with 10 out of 15 BAF members 
and ability of other FOS family members (FOSD, FOSL1/2) to recruit both SMARCB1 and 
SMARCD1 (Vierbuchen et al., 2017).  

Other TFs are involved in regulating the epigenome during T cell activation. Recent 
studies discussed the roles of STATs, GATA3, and T-BET (Vahedi et al., 2012; Durant et al., 
2010; Wan et al., 2015; Pham et al., 2013; Kanhere et al., 1AD). Moreover, although AP-1 is 
required for chromatin remodeling at the regulatory elements for T cell activation, our study 
does not completely answer the question of specificity: many cell types express AP-1 and 
NFATs but do not induce T cell genes such as IL2 (Armstrong, 2004; Turner et al., 1998; Ranger 
et al., 2000; Jauliac et al., 2002). Thus, the specificity would need to be established either by 
a pre-existing epigenetic state or by interaction with additional TFs. For this reason, AP-1 
cannot be considered to be a pioneer factor (Zaret and Mango, 2016) just by itself. RUNX 
family proteins, which are broadly expressed in lymphocytes and regulate expression of IL2 
(Djuretic et al., 2006; Ono et al., 2007) and  ETS family members (Bevington et al., 2016) may 
play a role, but involvement of additional TFs is also possible.  
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Method 
Isolating, culturing, and activating human CD4 T cells 
Blood filters containing cells from de-identified donors were supplied by Hoxworth Blood 
Center at the University of Cincinnati. Peripheral blood mononuclear cells (PBMCs) were 
isolated by Ficoll density gradient centrifugation. Isolated PBMCs were processed with the 
EasySep™ Human Naïve CD4+ T Cell Isolation Kit (STEMCELL, cat#19555) to negatively isolate 
human CD4+/CD45RO- cells (naïve T cells), and the purity was confirmed by flow cytometry 
(Fig. S1 B). Isolated naïve T cells were cultured in RPMI media with L-glutamine (HyClone, 

cat#SH30027.01) supplemented with 10% FBS and 25 M 2-ME before activation. For bead 

activation, 100 L of anti-mouse pluriBeads (pluriSelect, cat#31-GTaMS-10) were incubated 
with 24 ng of anti-human CD3 antibody (Bio X Cell, cat#BE0001-2) and 52 ng of either anti-
human CD28 antibody (Bio X Cell, cat# BE0248) or mouse IgG (Millipore, cat#12-371) with 
rotation for 3-4 h at RT. The beads were centrifuged and washed with PBS twice. Antibody-
bound pluriBeads were directly added to the cultures of human CD4+ T cells, and the cultures 
were shaken for 4 hr and swirled every 10 min until cells were bound to the beads.   
 

Flow cytometry assay 
Cells were stained with PE-Cy™7 Mouse Anti-Human CD45RO, FITC Mouse Anti-Human 
CD45RA, and FITC anti-human CD69 antibodies. Flow cytometry was performed on the BD 
FACS Canto II using the BD FACSDIVA. 
 

Isolating nuclear proteins and western blotting 
T cells were collected and lysed with nuclear isolation buffer (10 mM HEPES-KOH [pH 8.0], 10 
mM KCl, 1.5 mM MgCl2, 0.34M sucrose, 10% glycerol, 1 mM DTT, and 1X protease inhibitors) 
for 10 min with shaking every 3 min. The nuclear pellet was collected by centrifugation and 
was suspended and washed with nuclear isolation buffer twice. The nuclear pellet was directly 
lysed in SDS sample buffer with 8M urea. SDS-PAGE was carried out in the Bolt® Bis-Tris 
system (Thermo Fisher Scientific). Transfer was carried out with 120 V for 90 min to a PVDF 
membrane. Blocking of the membrane was performed with Odyssey Blocking Buffer (LI-COR, 
cat#927-50000) for 60 min at RT with shaking. The antibody incubation was carried out at 4 °C 
overnight with an orbital shaker. Antibodies to cFOS (#2250), JUNB (#3753), NFAT1 (#5861), 

NFAT2 (#8032), NFB p50 (#12540), and PARP1 (#9532) from Cell Signaling; NFB p65 
(c15310256) from Diagenode; and GAPDH (NB600-502) from Novus were used as primary 
antibodies. Membranes were washed with TBS-Tween for 5 min 3 times and were incubated 
with IRDye secondary antibodies in 1/15,000 dilution in blocking buffer for 60 min at RT with 
shaking. Membranes were washed with TBS-Tween for 5 min 3 times again and with TBS once. 
Images were taken with an Odyssey Fluorescent Imaging system (LI-COR). 
 

ATAC sequencing (ATAC-seq) 
Fifty thousand naïve or activated T cells were collected and processed in a transposase 
reaction, and library preparation was as described by Buenrostro et al(Buenrostro et al., 2013). 
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Chromatin immunoprecipitation (ChIP) and library preparation by 
ChIPmentation 
Fixing solution (50 mM HEPES-KOH [pH 8.0], 100 mM NaCl, 1 mM EDTA, 0.5 mM EGTA, 8.8% 
formaldehyde) was added directly to T cell culture at a final formaldehyde concentration of 
0.88% for fixation. After the incubation for 4 min on ice, 2M glycine solution was added to a 
final concentration of 125 mM and incubated at room temperature for 10 min to stop fixation. 
Cells were transferred to tubes and washed with cold PBS twice. All buffers used in the 
following procedures were supplemented with 1X protease inhibitor solution (SIGMA, 
cat#P8340) before use. Fixed cells were resuspended in L1 buffer (50 mM HEPES-KOH [pH 
8.0], 140 mM NaCl, 1 mM EDTA, 10% glycerol, 0.5% NP-40, 0.25% Triton X-100, 1X protease 
inhibitors) and incubated on ice for 10 min with shaking every 3 min. Isolated nuclei were 
incubated with L2 buffer (10 mM Tris-HCl [pH 8.0], 200 mM NaCl, 1 mM EDTA, and 0.5 mM 
EGTA) with rotation for 10 min at RT. Then, isolated nuclei were carefully washed and 
resuspended in TE+0.1% SDS solution. Cells were sonicated (peak power: 105.0, Duty Factor: 
10.0, Cycle/Burst: 200) for 45 sec in microtubes at 4 °C using S220 Focused ultrasonicators 
(COVARIS) to obtain the 200-500–bp fragments of chromatin. Chromatin solution was 
centrifuged, and supernatant chromatin was collected. Triton X-100, glycerol, NaCl, and 
sodium deoxycholate were added into the chromatin solution to final concentrations of 1%, 
5%, 150 mM, and 0.1%, respectively. Protease inhibitors were also added.  

ChIPs were performed in an IP-Star® Compact automation system (Diagenode). In brief, about 

5-10 g of chromatin solution corresponding to 1-2 million cells and 5-10 L of Protein A or G 
Dynabeads (Thermo) were used per reaction. Antibodies against cFOS (Santa Cruz 
Biotechnology, sc-7202), H3K27Ac (Diagenode, pAb-196-050), or H3K4me3 (Millipore #17-
614) were used. The other antibodies were the same as used in western blotting. The 
Dynabeads were sequentially washed with wash buffer 1 (RIPA 150 mM NaCl: 10 mM Tris-HCl 
[pH 8.0], 150 mM NaCl, 1 mM EDTA, 0.1% SDS, 0.1% sodium deoxycholate, and 1% Triton X-
100), wash buffer 2 (RIPA 250 mM NaCl), wash buffer 3 (50 mM Tris-HCl [pH 8.0], 2 mM EDTA, 
and 0.2% N-Lauroylsarcosine sodium salt), and wash buffer 4 (TE+0.2% Triton X-100) for 15 
min each. Washed Dynabeads were processed with transposase per ChIPmentation protocol 
to accomplish tagmentation of ChIPed DNA(Schmidl et al., 2015). Tagmented DNA was 
incubated with proteinase K in elution buffer (TE with 250 mM NaCl and 0.3% SDS) for 4 h at 
65 °C and purified from beads with the Qiagen MinElute DNA kit. PCR amplification and 
purification were carried out in the same way as for ATAC-seq. 

 

RNA isolation and RNA sequencing (RNA-seq) 
Total RNA was isolated with the Aurum™ Total RNA Mini Kit (BIO-RAD, cat#7326820) including 
on-column DNaseI digest. PolyA selection and fragmentation of RNA were performed 
according to the TruSeqTM Stranded polyA RNA Sample Preparation Guide from Illumina. The 
fragmented RNA was subjected to first-strand cDNA synthesis. For second-strand cDNA 
synthesis and adapter ligation, the IP-Star® Compact automation system was used. After that, 
library construction was performed according to the Illumina protocol.  
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Sequencing, read mapping, peak calling, peak comparison, and calculation 
enrichment 
DNA libraries for ATAC-seq, ChIP-seq, and RNA-seq were sequenced on HiSeq2500 (Illumina) 
at the DNA Sequencing and Genotyping Core at Cincinnati Children’s Hospital Medical Center. 
Sequencing data were deposited to GEO under GSE116698 accession number. Data analysis 
was performed in BioWardrobe (Kartashov and Barski, 2015). Briefly, 75-bp reads were aligned 
to the human genome (hg19) using Bowtie (Langmead et al., 2009) (for ATAC-seq and ChIP-seq) 
or STAR (Dobin et al., 2013) (for RNA-seq). STAR was supplied with RefSeq annotation. For peak 
calling in ATAC-seq and ChIP-seq, MACS2 (Zhang et al., 2008) software was used.  

Browser screenshots show the coverage by estimated fragments: reads were extended to 
estimated (by MACS2) fragment length, normalized to total mapped read number, and 
displayed as coverage on a mirror of the University of California Santa Cruz (UCSC) genome 
browser. 

Peak comparison: MAnorm analysis was performed in BioWardrobe using peaks identified 
with MACS2 (Shao et al., 2012). To define NORs and EORs, differential fold enrichment > 2 and 
FDR ≤ 0.05 thresholds were used. For identifying “common” open chromatin regions (CORs), 
merged common regions from MAnorm analysis with FDR > 0.05 were used. 

Box plots and tag density: Uniquely mapped reads in ATAC-seq and ChIP-seq samples were 
extended to MACS2 estimated fragment length. At each nucleotide position, the number of 
reads mapping there per million of total uniquely mapped reads was calculated and converted 
into average density over the peak. The density was used for box plots, heatmaps, density 
profiles, and scatter plots. 

Differential expression analysis: Differential expression in RNA-seq between samples was 
identified by DEseq2 software, and the p-value was calculated (Love et al., 2014). 

 

Motif enrichment analysis 
Isolated genomic coordinates of open chromatin regions were used for identifying TF motifs 
by HOMER software (Heinz et al., 2010). We ran HOMER with the empirical data sets together 
with the control data sets, which comprised the same length of DNA sequence from the 
flanking regions within 20,000 bp from each region.  
 

Gene ontology enrichment analysis and GSEA 
Isolated genes nearby open chromatin regions were processed with the ToppFun function in 
the ToppGene Suite (Chen et al., 2007) website (https://toppgene.cchmc.org/enrichment.jsp) 
for ontology enrichment analysis. GSEA analysis was performed with manually defined gene 
sets located next to the open chromatin regions (Mootha et al., 2003; Subramanian et al., 
2005).  
 

Identifying SEs 
For identifying SEs, ChIP-seq of H3K27Ac and the same criteria and software as described in 
Whyte et al. and Lovén et al. were used (Whyte et al., 2013; Selective Inhibition of Tumor 
Oncogenes by Disruption of Super-Enhancers, 2013).  
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Regulatory element locus intersection (RELI) 
Briefly, SNPs that are in linkage disequilibrium with index risk SNPs for various disease from 
NIH GWAS catalog were identified. RELI software was used to calculate their overlap with 
ChIP-seq and ATAC-seq peaks with risk loci.  
 

Analysis of H3K4me2 data in asthmatic patient. 
H3K4me2 data in Th2 cells from asthmatic donors and healthy controls were collected from 
GSE53646 (Seumois et al., 2014), and initially processed in BioWardrobe as described above. 
H3K4me2 data are shown in WUSTL genome browser within BioWardrobe (Zhou et al., 2011). 
The H3K4me2 differential enrichment domains between asthmatics and healthy controls 
were identified by using rgt-THOR software (Allhoff et al., 2016).  

 

A-FOS and GFP protein preparation 
A-FOS and GFP cDNA fragments were amplified from CMV500 A-FOS (Addgene, # 33353) and 
pmaxGFP (Lonza) vectors by PCR, and a 6xHis-GST DNA fragment was also amplified from 
pGEX vector. A-FOS, GFP, and 6xHis-GST were individually mixed with digested plasmid DNA 
(GE Healthcare Life Sciences) with NcoI restriction enzyme in an infusion cloning reaction 
(TakaraBio). The constructed plasmid was transformed into the BL21 bacterial strain. A single 
colony was picked and transferred to 10 mL of TB-SB medium (TB:SB = 1:1) with Kanamycin, 
cultured overnight at 37 °C, transferred to 500 mL of TB-SB medium, and cultured until the 
optical density at 600 nm reached 0.8. For protein expression, IPTG was added into the culture 
to a final concentration of 0.5 mM, and bacteria were cultured for another 6-8 h at 34 °C. The 
bacteria were spun down, washed with PBS twice, and stored at -80 °C. The bacterial pellet 
was resuspended in 20 mL lysis buffer (50 mM Na2HPO4 pH 8, 300 mM NaCl, 10% glycerol, 
0.1% Triton X100, 20 mM imidazole with addition of protease inhibitors, lysozyme [100 

 g/mL], DNaseI [0.2 /mL], and beta-mercaptoethanol to 1 mM), sonicated with a probe 
sonicator, and then frozen, thawed, and sonicated again. The lysate was cleared by 
centrifugation and loaded on a 5-mL HisTrap HP column in Buffer A (50 mM Na2HPO4 pH 8, 
300 mM NaCl, 20 mM imidazole) using AKTA Start (GE Healthcare Life Sciences). The bound 
proteins were eluted by the gradient of Buffer B (50 mM Na2HPO4 pH 8, 300 mM NaCl, 500 
mM imidazole). The fractions containing protein were combined and subjected to dialysis 
against PBS with 1 mM beta-mercaptoethanol overnight. After dialysis, Triton X100 was 
added to the protein solution, and the His6-GST tag was cut with His-tagged HRV3C protease 
(Sigma) at RT for 5 h. In order to remove the tags and the protease, imidazole was added to 
20 mM, the solution was again passed through a 5-mL HisTrap HP column, and the flow-
through was collected. The purity was confirmed by gel electrophoresis (data not shown). The 
Endotoxin Removal Beads (Miltenyi Biotec cat# 130-093-657) were used to remove 
endotoxins. 

 

Protein Electroporation 
A-FOS and GFP proteins were electroporated using Neon Nucleofector (Invtirogen) and the 
Neon™ Transfection System 100 µL Kit (Invitrogen, cat# MPK10025). Isolated naïve cells (3.5 
million cells) were mixed with 25 µg of A-FOS or GFP in T buffer and pulsed. For activation, 
the cells were stimulated 2 h after electroporation as described above.  
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Figures 

 
 
Figure 1. Characterization of open chromatin during T cell activation. 
(A) UCSC genome browser screenshots show open chromatin at the KLF2 and EGR2 loci in 
naive and activated T cells at 5 h. The y axis shows ATAC-seq coverage by estimated fragments 
normalized to the number of mapped reads. 
(B) Bar plots show expression of KLF2 and EGR2 genes by RNA-seq. Mean and standard error 
are shown. n=2.  
(C) Flow diagram shows the dynamics of open chromatin regions identified in naive T cells 
and T cells activated for the indicated time period. The numbers indicate the number of newly 
opened, maintained open, or newly closed chromatin regions. Numbers in parentheses 
indicate the number of highly reliable regions used for further analyses. 
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(D) Gene set enrichment analysis (GSEA) compares the gene list ranked by expression fold 
change during activation with the sets of genes that are located next to 1 or more than 1 NOR 
or EOR. NES: Normalized Enrichment Score. 
(E) Gene ontology analysis of genes adjacent to chromatin regions that open during T cell 
activation. Top gene ontology (GO) biological processes terms and -log10 p-values are shown. 
N: naïve.  
(F) Overlap between disease risk SNPs and EORs. Significance of overlap between disease risk 
SNPs and EORs as calculated by RELI approach. Only top 10 GWAS term is shown. Full list for 
NOR, COR, and EOR is available in Table S1. 
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Figure 2. EORs function as transcriptional enhancers during T cell activation. 
(A) Pie charts show the number and distribution of open chromatin areas relative to gene 
locations.  
(B) UCSC genome browser screenshot of ATAC-seq and ChIP-seq for H3K4me3 and H3K27Ac 
at the CD82 locus. The y axis shows the ATAC/ChIP-seq coverage by estimated fragments 
normalized to the number of mapped reads. 
(C) Changes in the H3K4me3 and H3K27Ac levels at the open chromatin regions during T cell 
activation. The y axis shows the log2 of the normalized ratio of ChIP-seq signals between 
naive and 5 h activated T cells (5 h/Naive). *p < 0.01 (Wilcoxon rank-sum test). 
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Figure 3. NFAT1 and AP-1 bind to EORs. 
(A) DNA binding motifs enriched in EORs. Heatmap shows the percentage of EORs with 
motifs. Overrepresented motifs were identified by HOMER analysis and selected with an 
adjusted p ≤ 10-5 and target / background > 2. *: AP-1 motifs 
(B) NFAT1 and AP-1 bind to EORs. 
Left: Fragment density heatmaps show read density of the ATAC-seq and TF ChIP-seq signal 
at open chromatin regions. C: Center of open chromatin regions. Right: Box plots show the 
TF ChIP-seq read density at open chromatin regions in activated T cells at 5 h. 
(C) UCSC genome browser screenshot showing ChIP-seq for AP-1 and NFAT1 at the 
TNFRSF18/GITR locus. Regions marked with red lines are EORs.  
(D) Stacked bar plot showing the percentage of EORs overlapping with significant TF ChIP-
seq peaks.  
(E) Boxplot showing the ATAC-seq signal in activated T cells at 5 h in the regions bound by a 
given combination of TFs. The genome average indicates the average ATAC-seq signal for the 
whole genome. The y axis indicates ATAC-seq tag density over peaks. 
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Figure 4. SE formation is associated with open chromatin formation. 
Super enhancers were identified using H3K27Ac ChIP-seq. 
(A) UCSC genome browser screenshot showing the ATAC and ChIP-seq signal for H3K27Ac and 
TFs around the super enhancer located in the IL2RA locus.  
(B) Bar plots show expression of IL2RA by RNA-seq. Mean and standard error are shown. n=2.  
(C) Heatmap showing the frequency of open chromatin regions per 1 Mb of a super enhancer. 
The frequency was calculated for super enhancers formed only in naive cells (Naive), only in 
activated cells (Activated), or in both cell types (Shared).  
(D) Heatmap showing the frequency of cFOS, JUNB, and NFAT1 peaks in super enhancer 
regions. 
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Figure 5. A-FOS, a dominant-negative regulator of AP-1, inhibits EOR formation. 
(A) Heatmap shows changes in mRNA expression level of AP-1 (FOS, JUN, ATF, and JDP) and 
BATF family proteins during T cell activation by RNA-seq. Color shows z-score. N: naive T cells. 
(B) Box plot showing the ratio of ATAC-seq signal in open chromatin regions between T cells 
electroporated with GFP and A-FOS after 5 h of activation. *p < 0.01 (Wilcoxon rank-sum test).  
(C) EORs were separated into quartiles on the basis of TFs’ ChIP-seq read density within peaks. 
Box plot shows the ratio of ATAC-seq signal in open chromatin regions between T cells 
electroporated with GFP and A-FOS after 5 h activation. *p < 0.01 (Wilcoxon rank-sum test).  
(D) UCSC genome browser screenshot showing the ATAC signal at the IRF8 locus in naive cells 
and activated cells with GFP or A-FOS. The red arrow indicates an EOR dependent on AP-1. 
The blue arrow indicates an EOR independent of AP-1.  
(E) Volcano plot showing the changes in gene expression between GFP- and A-FOS–
electroporated T cells by RNA-seq. X axis: ratio of expression between GFP and A-FOS T cells 
(log2). Y axis: -log10 DEseq2 p-value for the differential expression. Red dots: activated genes 
(Naïve→ 5-h Activation). Black dots: other genes. The vertical gray lines are at -1 and 1 on the 
x axis. The horizontal gray line is at 2 on the y axis. The p-value for overlap between genes 
induced during T cell activation and suppressed by A-FOS electroporation is calculated by the 
Fisher's exact test.   
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Figure 6. Incomplete open chromatin formation during induction of T cell anergy in the 
absence of co-stimulation. 
(A) Experimental approach: Naïve cells were activated with beads covered with anti-CD3 and 
anti-CD28 or only anti-CD3 antibodies. 
(B) Bar plot showing the percentage of open chromatin regions not formed at 5 h in cells that 
did not receive co-stimulation. 
(C) Chromatin fails to open in T cells that lack co-stimulation.  
Left: Box plot showing the ratio of ATAC signal between cells activated without and with CD28 
co-stimulation at 5 and 24 h. Right: Heatmap showing ATAC-seq and TF ChIP-seq read density 
in EORs. EORs were sorted based on cFOS signal. 
(D) UCSC genome browser screenshot showing the ATAC-seq and ChIP-seq for H3K27Ac, AP-
1, and NFAT1 in the JAK2 locus. The region bordered by lines is open in fully activated cells 
but not in cells lacking co-stimulation. 
(E) Bar plot shows expression of JAK2 by RNA-seq. Mean and standard error are shown. n=2.  
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Figure 7. Intersection of immune disease risk loci, open chromatin regions and TF binding 
interactions with the genome. 
(A-C) Heatmaps for IBD (A), MS (B), and Allergic disease, asthma, hay fever, or eczema (C) risk 
loci. The x axis displays diseases-associated loci. An asterisk means the genomic coordinates 
of the ChIP-seq peaks measuring open chromatin regions or TF binding (at 5 h) significantly 
intersect with disease risk loci at a RELI corrected p-value threshold of 10-6. A colored box 
indicates that the given locus contains at least one disease-associated variant located within 
an open chromatin region or a ChIP-seq peak for the given TF. 
 (D) Genome browser screenshot showing the ATAC-seq in naïve and activated T cells and 
heatmap showing H3K4me2 level in Th2 cells of asthmatics and healthy controls in the IL2RA 
and PHF19 loci. Red bars indicate differentially enriched loci (FDR is shown under the bars). 
Pink backgrounds indicates EORs. 
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Supplemental Figures 
 
 

 
 
 
 
Figure S1. Experimental scheme and characterization of NORs and CORs. 
(A) Experimental scheme: activation of primary human naive CD4 T cells using beads covered 
with anti-CD3 and anti-CD28 antibodies. 
(B) Flow cytometric analysis of isolated human naïve CD4 T cells. Left: counts for CD45RA and 
CD45RO. Right: counts for CD69 with or without 5 h activation. 
(C) GSEA analysis compares the gene list ranked by expression fold change during activation 
with the sets of genes that are located next to 1 or more than 1 COR. NES: Normalized 
Enrichment Score. 
(D) Gene ontology analysis of genes adjacent to NORs or CORs. Top gene ontology biological 
processes (GO) terms and -log10 p-values are shown. 
(E) Overlap between disease risk SNPs and CORs. Significance of overlap between disease risk 
SNPs and CORs as calculated by RELI approach. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 23, 2019. ; https://doi.org/10.1101/647388doi: bioRxiv preprint 

https://doi.org/10.1101/647388
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

 
 
 
 

 
 
 
Figure S2. DNA binding motifs enriched in open chromatin regions. 
(A and B) Enriched DNA motifs in NORs and CORs. Heatmap shows the percentage of regions 
with motifs. Overrepresented motifs were identified by HOMER analysis and selected with an 
adjusted p-value ≤ 10-5 and target / background > 2.  
(C) Same analysis as in a and b for EORs not bound by JUNB.  
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Figure S3. Combinatorial effects of AP-1 and NFAT1 to H3K27Ac and openness. 
(A) Boxplot showing H3K27Ac ChIP-seq signal in activated cells at 5 h in the regions bound by 
a given combination of TFs. The y axis shows the H3K27Ac ChIP-seq tag density for TF ChIP-
seq peaks. 
(B) Correlation of openness with TF enrichments in EORs. Heatmap shows the normalized 
fragment density of ATAC-seq and TF ChIP-seq in a 1-kb radius of the center of the EOR. C: 
center of open regions.  
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Figure S4. Detection and characterization of super enhancers in naïve and activated T cells. 
(A) Venn diagram showing the overlap of super enhancers (SEs) in naive and 24-h activated T 
cells. 
(B) Average tag density profile of H3K27Ac within SE regions in naive and activated T cells at 
24 h. Naive: naive SE, Shared: shared SE, and Activated: activated SE. 
(C) Boxplot shows expression of genes with naive (Naive), shared (Shared), or activated 
(Activated) SEs or without SE (No) in naive and 24-h activated T cells. 
(D) Bar plots show expression of CXCR4 by RNA-seq. Mean and standard error are shown. n=2.  
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(E) UCSC genome browser screenshot shows ATAC signal and H3K27ac and TFs ChIP-seq at a 
naive SE in the CXCR4 locus.  
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 23, 2019. ; https://doi.org/10.1101/647388doi: bioRxiv preprint 

https://doi.org/10.1101/647388
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
 
 
 
 
 
Figure S5. Expression and chromatin changes during anergy induction in the absence of co-
stimulation. 
(A) Western blot shows the nuclear levels of TFs during T cell activation with or without co-
stimulation. N: naive T cells. 
(B) Venn diagram shows the overlap between NFAT1 sites detected in cells stimulated with 
or without co-stimulation. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 23, 2019. ; https://doi.org/10.1101/647388doi: bioRxiv preprint 

https://doi.org/10.1101/647388
http://creativecommons.org/licenses/by-nc-nd/4.0/


(B) Correlation between the change in chromatin opening (ATAC) and H3K27Ac (ChIP-seq) at 
EOR at 5 h (left) and 24 h (right).  
(G) Cumulative distribution of fold changes between effector (CD28+) and anergic (CD28-) 
conditions for genes that have indicated ratios of ATAC value in EORs between activated and 
anergic T cells at 5 h (left) and 24 h (right). X axis: the ratio of expression between E and A 
conditions (log2). Y axis: the cumulative fraction of genes. Each line indicates gene groups by 
the ratio of ATAC value (for all EOR peaks that are nearby) (E/A), red < 1, blue > 1 and < 2, 
green > 2 and < 4, and purple > 4. *p < 0.05 and **p < 0.01 (Kolmogorov–Smirnov test). 
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Table S1. List of significant GWAS datasets overlapping NORs, CORs, or EORs. 
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