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Abstract  

Biodosimetry-based discrimination between homogeneous total-body photon exposure and 

complex irradiation scenarios (partial-body shielding and/or neutron + photon mixtures) can 

improve treatment decisions after mass-casualty radiation-related incidents. Our study objective 

was to use high-throughput biomarkers to: a) detect partial-body and/or neutron exposure on an 

individual basis, and b) estimate separately the photon and neutron doses in a mixed exposure. 

We developed a novel approach, where metrics related to the shapes of micronuclei 

distributions per binucleated cell in ex-vivo irradiated human lymphocytes (variance/mean, 

kurtosis, skewness, etc.) served as predictors in machine learning or parametric analyses of the 

following scenarios: (A) Homogeneous gamma-irradiation, mimicking total-body exposures, vs. 

mixtures of irradiated blood with unirradiated blood, mimicking partial-body exposures. (B) X 

rays vs. various neutron + photon mixtures. Classification of samples as homogeneously vs. 

heterogeneously irradiated (scenario A) achieved a receiver operating characteristic curve area 

(AUROC) of 0.931 (uncertainty range of 0.903-0.951), and R2 for actual vs. reconstructed mean 

dose was 0.87. Detection of samples with ≥10% neutron contribution (scenario B) achieved 

AUROC of 0.916 (0.893-0.943), and R2 for reconstructing photon-equivalent dose was 0.77. 

These encouraging findings demonstrate a proof-of-principle for the proposed approach of 

analyzing micronuclei/cell distributions to detect clinically-relevant complex radiation exposure 

scenarios. 

 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 23, 2019. ; https://doi.org/10.1101/646711doi: bioRxiv preprint 

https://doi.org/10.1101/646711
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

 

Introduction 

The need for high-throughput biodosimetry in response to a large-scale radiological event 

such as improvised nuclear device (IND) detonations stems from several considerations 1. First, 

triage, which is expected to take place away from a hospital, is crucial for preventing treatment 

locations from being overwhelmed. Second, to determine the optimal treatment for an individual 

exposed to a large radiation dose, it is critical to quantitatively reconstruct the radiation dose 

that the individual received to identify among an exposed population those individuals who are 

most likely to develop acute or late radiation injury. Third, the need to convey credible 

information about radiation doses to individuals as quickly as possible is a major lesson learned 

from earlier radiological events 2. 

It is likely that large numbers of victims of an IND will receive partial body exposure, due to 

shielding by buildings or vehicles, as well as a mixture of densely ionizing neutrons and sparsely 

ionizing gamma rays, with the radiation quality and type of exposure varying between 

individuals 3. A rapid assessment of exposure type would need to be made for a large number of 

individuals following a large-scale radiological event. Consequently, there is a well-recognized 

need for development and utilization of high-throughput assays that can discriminate between 

these complex irradiation scenarios like partial-body shielding and/or neutron + photon mixtures 

from simpler exposures such as homogeneous total-body photon exposure 4–6. Such 

reconstruction of exposure type is important for making appropriate triage and treatment 

decisions in mass casualty situations. 

Significance of neutrons 

A likely scenario for an IND is a gun-type detonation using highly enriched uranium 7. Here, 

the prompt exposure will consist of gamma rays combined with a device-dependent dose of fast 

neutrons 8. Monte-Carlo based estimates of the neutron component from a 10 kT urban ground 
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burst IND 3 suggest in-air neutron fractions of 20% to 90% and, more relevantly, organ-dose 

neutron fractions of 3 to 14% in the colon and 6 to 27% in the bone marrow 3. Due to the high 

relative biological effectiveness of neutrons for causing cytogenetic damage 9–11, the neutron 

dose contributes roughly 4 times the damage of an equivalent photon dose. Consequently, 

these neutron components are likely to have a profound impact on disease type and 

progression 12–15. It is also likely that different countermeasures will be required for neutron-

induced disease and photon-induced exposure 16  

Significance of partial body exposures 

A significant proportion of individuals exposed indoors to the initial blast from an IND will be 

exposed non-homogeneously, to a partial body exposure, due to shielding by objects and 

building materials 7. By contrast, external fallout is likely to result in a more homogenous 

exposure but decreases over time, approximately following a power function called “the 7:10 

rule” 17,18. Partial body exposure has important consequences in terms of medical 

countermeasures and disease progression. For example, the hematopoietic system can recover 

much better after high-dose irradiation when part of the body containing bone marrow (e.g. one 

or more limbs) is shielded 19. In animal studies, even 5% bone marrow shielding results in a 

large increase in survival from hematopoietic acute radiation syndrome (H-ARS) 20 and can also 

profoundly affect the GI syndrome 21. A simple biodosimetric dose reconstruction that estimates 

a single dose number assumes uniform irradiation and would thus generate incorrect results, 

likely overestimating the risk for H-ARS and underestimating the risk for later disease in the 

organs that were irradiated.  

Current approaches for evaluating complex exposures 

There is a large body of literature on various computational biodosimetry approaches for 

estimating radiation doses in various exposure scenarios based on micronuclei yields and other 
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cytogenetics markers like dicentric chromosomes 22–32.  As compared to uniform photon 

exposures, both neutron and partial body exposures result in a non-poissonian distribution of 

damage in the cells scored for biodosimetry due to the shielding and/or differences in radiation 

track structure and energy deposition patterns. Thus, there are a larger number of undamaged 

cells than would be expected based on Poisson statistics, coupled with more damage in those 

that are traversed by ionizing tracks. While these phenomena has been observed for many 

years and applied to the dicentric assay, essentially by analyzing the proportion of undamaged 

metaphases 33–35, these approaches can be directly applied to high-throughput assays 5,6.  

It is well known that cytogenetic damage distribution shapes, which are commonly modeled 

by Poisson, Negative Binomial or Neyman distributions 26,36,37, can change depending on 

exposure type. For example, densely ionizing radiations like neutrons tend to produce 

“overdispersed” distributions of cytogenetic damage, where the ratio of variance/mean becomes 

significantly higher than in a standard Poisson distribution 38,39. Partial-body exposures also tend 

to produce overdispersion because even if the damage distribution for a homogeneous 

exposure is Poisson, the contribution from a shielded fraction of the body that received a much 

lower dose would cause the distribution to become a mixture of two or more Poissons with 

different means 40,41. Although the methodologies for analyzing these phenomena differ (e.g. 

frequentist vs. Bayesian techniques), a more common popular approach is to fit selected 

probability density functions (e.g. Zero-Inflated Poisson or Negative Binomial) to the data 31,42,43. 

The best-fit parameters and their uncertainties are then used to estimate the outcomes of 

interest. However all these techniques are based on manual scoring of the number of dicentrics 

in a large number of metaphases and they are not compatible with processing of tens of 

thousands of samples using automated biodosimetry. 

Potential of machine learning techniques 
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The data fitting methodologies described above rely on parametric regression, such as 

linear or linear quadratic functions, to describe the radiation response. To our knowledge, 

ensemble machine learning techniques such as random forests (RF) and generalized boosted 

regression models (GBM) 44,45 have not been used for radiation biodosimetry applications. Both 

parametric and machine learning regression approaches have specific advantages and 

disadvantages. Parametric models are easily interpretable because each fitted coefficient has a 

specific meaning for relating a given predictor or predictor combination to the outcome(s). RF 

and GBM can be more complicated to interpret because they consist of multiple (usually >100) 

decision trees. However, RF and GBM tend to be more flexible than parametric models in 

describing nonlinear dependences and interactions between predictors, and therefore tend to be 

more accurate.  

Ensemble methods like RF and GBM train and test multiple models of a given type on 

randomly-selected subsets of the analyzed data set and combine the results, thereby 

generating more robust and accurate predictions than those obtainable using a single model 45. 

RF uses decision trees as base models, and employs “bagging” and tree de-correlation 

approaches to improve performance. The bagging (bootstrapping and aggregation) procedure 

involves generating bootstrapped samples and using a random subsample of the features for 

each fitted decision tree. Decision trees have some very useful properties for analyzing data set 

types such as those in the current application. For example, they are not sensitive to outliers 

and to the presence of many weak or irrelevant predictors. They are also unaffected by 

monotonic (e.g. logarithmic) transformations of the data. RF readily allows for multivariate 

analysis with more than one outcome variable and a common set of predictor variables. All of 

these properties can potentially prove useful in biodosimetry applications. GBM also uses 

decision trees, but the trees are averaged by boosting rather than bagging. Boosting involves 

iterative fitting of trees: the data are reweighted so that the next trees focus more strongly on 
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those data points on which previous trees performed the worst. GBM readily accommodates 

different types of error distributions, e.g. Gaussian for continuous data and Bernoulli for binary 

data.  

 

Study design 

In this work, we employed machine learning approaches in a novel role, using the shape of 

the distribution curve of micronuclei per binucleated cell as a source of information for 

discriminating between simple and complex radiation exposure scenarios, e.g. total-body vs. 

partial-body photon exposures, or vs. neutron + photon mixtures. Specifically, using our high-

throughput CBMN assay 5,9,46 we wish to evaluate on an individual basis: 1) the photon and the 

neutron doses and the fraction of neutrons in the total dose after a mixed exposure, 2) whether 

there was indeed a partial body exposure. Our study design (shown schematically in Fig. 1) 

consisted of using fresh human peripheral blood samples irradiated ex vivo to analyze the 

following simple and complex exposure scenarios:  

Scenario A. Homogeneous 0, 2, 4, or 8 Gy gamma irradiation, mimicking total-body 

exposures, vs. 1:1 mixtures of 4 or 8 Gy irradiated blood with unirradiated blood, mimicking 

partial-body exposures. In this data set, 4 Gy-irradiated blood mixed with unirradiated blood was 

intended to produce a similar mean micronuclei yield to blood irradiated with a homogeneous 

dose of 2 Gy. The goal of the computational biodosimetry approach in this scenario was to 

correctly classify such situations as homogeneous exposures vs. mixtures.  

Scenario B. Photons (0-4 Gy of x-rays) vs. mixtures of neutrons + photons in various 

proportions (up to 3 Gy neutrons). The neutron proportions were intentionally varied over a wide 

range to mimic various types of realistic exposure scenarios. The goal of the computational 
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biodosimetry approach in this scenario was to distinguish neutron + photon mixtures from pure 

photon exposures, and to quantify the neutron contribution.  
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Materials and Methods 

Blood collection and irradiation 

Fresh peripheral blood samples were collected by venipuncture into 6 ml lithium-

heparinized Vacutainer® tubes (BD Vacutainer™, Franklin Lakes, NJ) from healthy female and 

male donors with informed consent as approved by the Columbia University Medical Center 

Institutional Review Board (IRB protocol no: AAAE-2671). Healthy blood donor volunteers, aged 

between the ages of 24 and 48 years were non-smokers and in relatively good health at the 

time of donation with no known exposure to x rays or CT scan within the last 12 months.  

i) Neutron and x-ray irradiations 

These irradiations were performed at the Columbia IND Neutron Facility (CINF) 9,47,48. Our 

broad-energy neutron irradiator has been designed to expose blood or small animals to neutron 

fields mimicking those from an IND. This spectrum, dominated by neutron energies between 0.2 

and 9 MeV that mimics the Hiroshima gun-type energy spectrum at a relevant distance (1-1.5 

km) from ground zero 8,9, is significantly different from a standard reactor fission spectrum, 

because the bomb spectrum changes as the neutrons are transported through air. Blood 

aliquots (1 ml) in 1.4 ml Matrix 2D-barcoded storage tubes (Thermo Fisher Scientific, Waltham, 

MA) were prepared and either sham-irradiated or exposed to neutrons and x rays at the 

Radiological Research Accelerator Facility (RARAF). Details of the IND-spectrum neutron 

irradiator and dosimetry have been described previously 9,48. Briefly, the aliquoted blood 

samples were placed in adjacent positions on an eighteen position Ferris wheel. The wheel 

rotates during irradiations and maintains the sample locations at a distance of 17.5cm and an 

angle of 60 from the beam’s impingement on a thick beryllium target. Neutron irradiations were 

performed over several runs with 15-30 μA mixed beams of protons and deuterons on the target 

generating a neutron dose rate of 1.3-2.6 Gy/h with a 18% concomitant dose of gamma rays. To 
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ensure a uniform scatter dose, equivalent tubes containing water were placed in any empty 

positions on the wheel. Dosimetry for CINF was performed, on the day of the experiment, as 

described previously 9. 

For the mixed photon + neutron exposure studies, some blood samples were exposed to x 

rays following neutron irradiation. This was done using a Westinghouse Coronado orthovoltage 

x-ray irradiator running at 250-kVp and 15 mA with a 0.5 mm Cu + 1 mm Al filter (Half Value 

Layer 2 mm Cu). X rays were delivered at a dose rate of 1.23 Gy/min. All tested combinations of 

x rays and neutrons are shown in the Supplementary_data_file1 online.  

ii) Gamma ray irradiations  

Irradiations for partial body exposures were performed at the Center for Radiological 

Research, Columbia University Irving Medical Center, New York. Blood aliquots (6 ml) in  15-ml 

conical bottom tubes (Santa Cruz Biotechnology® Inc., Dallas, TX) were prepared and 

transported to a Gammacell 40 137Cesium (137Cs) irradiator (Atomic Energy of Canada Ltd.). The 

blood samples were placed in a custom-built 15 ml tube holder and exposed to 0 (control), 2.0, 

4.0, or 8 Gy of γ rays at a dose rate of 0.73 Gy/min. The 137Cs irradiator is calibrated annually 

with TLDs and homogeneity of exposure across the sample volume was verified using EBT3 

Gafchromic™ film with less than 2% variation within the sample (Ashland Advanced Materials, 

Bridgewater, NJ). For the heterogeneous exposures, the blood samples were mixed 1:1 (0 Gy 

and 4 or 8 Gy).   

Micronucleus assay 

Whole blood samples from each dose point were cultured in PB-MAX™ Karyotyping media 

(Life Technologies, Grand Island, NY), and incubated at 37°C, 5% CO2, 98% humidity. After 44 

h, the media was refreshed with PB-MAX™ media supplemented with cytochalasin B (Sigma-

Aldrich LLC, St. Louis, MO) at a final concentration of 6 μg/mL to block cytokinesis. After a total 
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incubation period of 72 h, the cells were harvested. The cells were treated with 0.075 M KCl 

solution (Sigma-Aldrich, St. Louis, MO) at room temperature for 10 min. After hypotonic 

treatment, the cells were fixed with fixative (4:1 methanol:glacial acetic acid). The fixed cell 

samples were stored at 4°C (at least overnight), dropped on slides, allowed to air dry for 10 min  

and then stained with Vectashield® mounting media containing DAPI (Vector Laboratories, 

Burlingame, CA). The slides were left overnight at 4°C prior to imaging.  

Imaging analysis and micronuclei scoring 

Slides were imaged using a Zeiss fluorescence microscope (Axioplan 2; Carl Zeiss 

MicroImaging Inc., Thornwood, NY) with a motorized stage and Zeiss 10× air objective. 

Quantification of micronuclei yields was performed by automatic scanning and analysis with the 

Metafer MNScore software (MetaSystems, Althaussen, Germany) using the Metafer classifier 

described in our earlier work 49. Images were captured using a high-resolution, monochrome 

megapixel charge coupled device (CCD) camera. For each sample, more than 1000 binucleated 

cells were scored and the micronuclei distribution per cell recorded. The values reported by the 

Metafer MnScore software were the micronuclei counts per binucleated cell, ranging from 0 to 5. 

The counts in the bin labeled 5 actually represent the sum of counts with values ≥5, as 

outputted by the Metafer software. These counts were typically low (median = 0, maximum = 16, 

whereas the median sum of all counts per sample was 461) and the lack of detailed bin 

information for bins >5 was unlikely to modify the results substantially.   

Compilation of the Data sets 

The experimental data analyzed by this study were compiled into two data sets, labeled A 

and B, which are presented in the Supplementary_data_file1 online. Data set A consisted of a 

single experimental design with homogeneous 0, 2, 4, or 8 Gy gamma irradiation, mimicking 

total-body exposures, vs. 1:1 mixtures of 4 or 8 Gy irradiated blood with unirradiated blood, 
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mimicking partial-body exposures. Data set B was a large compilation blood samples which had 

been exposed  to IND-spectrum neutrons and neutron + photon mixtures in various proportions 

(up to ~82% neutrons),  including one previously published sample set  9. The goal of combining 

such a large number of experiments was to increase statistical power and to clarify the main 

patterns of interest, such as the dependences of micronuclei per cell distributions on photon and 

neutron contributions in the dose. 

Development of predictor sets 

The main goal of this study was to develop novel methods for classifying samples by 

radiation exposure type: “simple” exposures like homogeneous photon irradiation, vs. “complex” 

exposures like heterogeneous (e.g. partial-body) photon irradiation and/or neutron + photon 

mixed exposures. Therefore, in data set A we compared homogeneous and heterogeneous 

photon irradiation, and in data set B we compared photons only with neutron + photon mixtures.  

Based on the distribution of micronuclei counts in each sample, we calculated several 

summary variables, described in Table 1, for evaluation as potential predictors of simple vs. 

complex exposure type. Heavily damaged cells are less likely to reach the binucleated state 

needed for micronuclei scoring, causing the total number of scored cells per sample to decrease 

with radiation dose. This phenomenon was the rationale for using the variable LnSum. The 

other variables listed in Table 1 were used based on our judgement of what metrics could act as 

reasonable potential predictors of exposure type and/or dose, combined with information about 

overdispersion of cytogenetic damage from complex exposure scenarios 31,38,39. 

For data set A (homogeneous gamma irradiation of ex vivo human blood vs. 1:1 mixtures of 

irradiated and unirradiated blood) the outcome (independent) variables were called MixIndex 

and MeanDose. MixIndex was a binary variable, where 0 indicate homogeneous irradiation and 

1 indicated a mixture of irradiated and unirradiated blood. MeanDose was the average gamma 
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ray dose (in Gy), defined as the dose divided by 1+MixIndex. In other words, MeanDose for a 

sample of mixed blood was ½ of the dose received by the irradiated blood.  

For data set B (ex vivo human blood irradiation with x-rays vs. neutron + photon mixtures) 

the outcome variables were called Neutron_dose, Photon_dose, MixIndex, and 

NeutronIndex. Neutron_dose and Photon_dose represent the dose contributions (in Gy) for 

each radiation type, respectively. The photon dose includes the gamma ray component of the 

neutron beam (~18%) and the added x-ray dose. MixIndex in this data set was set to 1 if 

Neutron_dose/(Neutron_dose+ Photon_dose) ≥ 0.1, and set to 0 otherwise. NeutronIndex 

was set to 1 if Neutron_dose ≥ 0.5 Gy, and set to 0 otherwise. In other words, MixIndex = 1 

indicated ≥10% neutron contribution to the total dose, and NeutronIndex = 1 indicated ≥0.5 Gy 

neutron dose. The cutoff values of 10% neutrons for MixIndex and 0.5 Gy for NeutronIndex 

were selected based on practical relevance and to create approximately balanced data classes 

(i.e. approximately equal numbers of samples above and below the cutoff). These outcome 

variables for both data sets are listed in Table 1. All parameter names starting with Ln are 

natural log transformed. 

Data analysis 

We imported both data sets into R 3.5.1 software for analysis, and randomly split each of 

them into training and testing sets. Data set A was generated from a single experiment with a 

balanced design, with equal numbers of samples for homogeneous and heterogeneous 

radiation exposures. Consequently, we used the raw samples for analysis. In contrast, data set 

B was compiled from multiple experiments performed over several years, using a wide variety of 

photon and neutron doses. It contained 486 raw blood samples, where the total number of 

analyzed cells per sample varied greatly (from 33 to 3561) and the representation of different 

neutron + photon combinations was not equal. Consequently, we pooled (summed) all samples 
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with the same combination of photon and neutron doses using the aggregate function in R. The 

raw and processed data sets are contained in the Supplementary_data_file1 online. 

The training half of each data set was used for model fitting and selection, and the testing 

half was used to assess model performances. On the training data, we generated Spearman’s 

correlation coefficient matrices, including all predictors and outcome variables. To analyze all 

outcome variables simultaneously, using the same set of predictors, we employed the 

multivariate random forest (RF) machine learning approach (MultivariateRandomForest R 

package, https://cran.r-project.org/web/packages/MultivariateRandomForest/index.html) on 

each data set 50. The outcome variables were MeanDose and MixIndex for data set A, and 

Neutron_dose, Photon_dose, MixIndex, and NeutronIndex for data set B, as defined above. 

In data set B we also analyzed the “photon-equivalent dose”, defined as x-ray dose + 

RBE×neutron dose, where RBE is the neutron relative biological effectiveness. RBE was an 

adjustable parameter, and the analysis was performed using RF.  

To focus in more detail on the main outcome variable of interest in both data sets, 

MixIndex, and to identify the strongest predictors of this variable, we also used the generalized 

boosted regression (GBM) algorithm 45,51 (gbm R package, https://cran.r-

project.org/web/packages/ gbm/index.html) with a Bernoulli error distribution, and logistic 

regression (LR). The RF, GBM and LR methodologies and their implementation in our study are 

described in Supplementary Methods online.  

Results 

Analysis of data set A: homogeneous vs, non-homogeneous irradiation  

Shape of micronucleus distribution 

In this data set, partial-body exposures were mimicked by mixing gamma-irradiated and 

unirradiated blood samples with total-body exposures mimicked by standard ex-vivo irradiation. 
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The goal of the analysis was to use metrics related to the shape of micronuclei per binucleated 

cell distributions to distinguish between homogeneous and mixed exposures. Differences in 

micronuclei/cell distributions between these exposure scenarios were apparent upon visual 

inspection of the pooled data (Fig. 2). For example, the distribution of micronuclei per cell for a 

1:1 mixture of 4 Gy with 0 Gy irradiated blood was different from the distribution for blood 

irradiated with 2 Gy of pure gamma rays (Fig. 2), despite the fact that the mean micronuclei 

yields per binucleated cell were similar for these two scenarios (0.20 vs. 0.22, respectively).  

These differences were also reflected in the correlation matrix of predictors and outcomes 

(Fig. 3A). This matrix provides a convenient visualization of how all the analyzed variables are 

related to each other. As expected, the binary variable MixIndex, which indicated 

heterogeneous (mixed) vs. homogeneous exposure, was positively correlated with metrics of 

overdispersion: LnVarMean, LnFD, and SEK (Fig. 3A). In other words, overdispersed 

micronuclei/cell distributions with large “tails” were associated with heterogeneous exposures, 

whereas homogeneous irradiation was associated with lower variance/mean ratios and “tails”. 

The average dose received by each blood sample (MeanDose) was positively correlated 

with metrics for total damage, e.g. the mean micronuclei yield (LnMean) and the fraction of cells 

with ≥3 micronuclei (Ln3Frac), and negatively correlated with the sum of all analyzed cells 

(LnSum) and with the fraction of cells with zero micronuclei (LnZeroFrac) (Fig. 3A). In other 

words, the mean micronuclei yield, the total number of cells that made it to the binucleated 

stage, and the fraction of cells with no micronuclei were correlated with the average dose 

received by the blood sample.  

Classification of partial body exposures 

Multivariate machine learning analysis of data set A showed very good performance for 

reconstructing MeanDose and for detecting heterogeneous exposures (MixIndex) in a binary 
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classification (Fig. 3B, Supplementary Table 1). Specifically, the area under the receiver 

operating characteristic curve (AUROC) for MixIndex, generated by RF analysis of on the 

testing data was 0.931 (range over 300 repeats was 0.903, 0.951), which falls into the 

“excellent” category for ROC curve metrics 52 (Supplementary Table 1). Univariate analyses 

using GBM and LR, which focused on reducing the predictor set and identifying the strongest 

predictors of MixIndex, as described in Supplementary Methods, performed in the “fair” to 

“good” range 52 (Supplementary Tables 1-2). The retained strongest predictors were 

LL_exp_Pois_dif, LnVarMean, and LnFD according to GB, and LnFD and 

LL_exp_Pois_dif×SEK according to LR. As mentioned above, these predictors indicate 

distribution shapes that are overdispersed relative to Poisson and are more similar to an 

exponential dependence, with a large “tail” at multiple micronuclei/cell. Their specific meanings 

are listed in Table 1 and in the Materials and Methods section.  

Analysis of data set B: photons vs. neutron + photon mixtures 

This large data set consisted of ex vivo   human blood samples exposed to x rays vs. 

neutron + photon mixtures in various proportions. The dependence of the mean micronucleus 

yield per binucleated cell on total radiation dose (photons + neutrons) and on the neutron 

contribution to this dose is shown graphically in Fig. 4. These data suggest that increasing the 

neutron contribution to the total dose notably increased the mean micronuclei yield, which is 

consistent with the high RBE of neutrons 9–11. It was also seen that, in mixed exposures, the 

yield of micronuclei is given by the sum of the yield of micronuclei we would expect from the 

separate photon and neutron irradiations – thus the two radiation types appear to be additive 

with respect to micronucleus yields.  

Shape of micronucleus distribution 
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The presence of neutrons in the total dose also markedly alters the shape of the 

micronuclei per binucleated cell distributions. For example, Fig. 5 compares Poisson distribution 

fits to our micronuclei per cell data for 1.0 Gy of x-rays or 1.2 Gy of a neutron + photon beam 

(~82% neutrons). The x-ray data in this example are clearly much more consistent with the 

Poisson distribution than the neutron beam data, which have a much larger “upper tail”, i.e. 

higher than Poisson-predicted probabilities of multiple micronuclei per cell.  

These effects of neutrons on the micronuclei/cell distribution are reflected in the correlation 

matrix of predictor and outcome variables are shown in Fig. 6A. Neutron dose was positively 

correlated with metrics for high damage yield (LnMean, Ln3Frac) and overdispersion 

(LnVarMean, SEK, LL_exp_Pois_dif), and negatively correlated with metrics for low damage 

yield (LnSum, LnZeroFrac) (Fig. 6A). Photon dose had the opposite correlation pattern 

regarding LnVarMean, SEK and LL_exp_Pois_dif, compared with neutron dose. These trends 

are intuitively explainable by the known overdispersion of neutron-induced damage compared 

with photon-induced damage 38.  

Classification of neutron exposures 

The binary variable NeutronIndex, which indicated exposure to ≥0.5 Gy of neutrons, had 

essentially the same correlation patterns as neutron dose (Fig. 6A). The variable MixIndex, 

which indicated ≥10% of neutrons in the total dose, was most strongly positively correlated with 

two predictors: LL_exp_Pois_dif and LnVarMean, again suggesting that the overdispersion 

phenomenon is associated with neutron irradiation.  

Multivariate RF analysis of data set B was quite good in reconstructing the photon-

equivalent dose, defined as photon dose + RBE×neutron dose (Fig. 6B, Supplementary Table 

1). The concordance between predictions and actual values was particularly close in the dose 

region around 2 Gy, which is important for triage decision-making (Fig. 6B). The best-fit neutron 
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RBE value was 3.8, very similar to the previously published value of 4 for micronuclei following 

irradiation at CINF 9.  

Notably, multivariate RF was very good at detecting a neutron fraction ≥10% (MixIndex) 

and neutron doses ≥0.5 Gy (NeutronIndex) in binary classifications (Fig. 7A-B). The AUROC 

values for MixIndex and NeutronIndex were 0.916 (uncertainty range 0.893 to 0.943 over 300 

RF repeats) and 0.848 (0.815 to 0.879), respectively (Supplementary Table 1). These values fall 

into the good to excellent range for ROC curve metrics 52. Targeted analyses using GBM and 

LR (described in Supplementary Methods) performed as well as RF in predicting MixIndex, with 

AUROC of 0.922 (0.878, 0.961) and 0.911 (0.819, 1.0), respectively (Supplementary Tables 1, 

3). These techniques used fewer predictors: LnVarMean, LL_exp_Pois_dif, LnSum, SEK, 

Ln3Frac, and LnZeroFrac for GB, and LnSum, LL_exp_Pois_dif×Ln3Frac, and 

LL_exp_Pois_dif×LnSum for LR. Therefore, accurate predictions of MixIndex were generated 

using predictor groups that were indicative of overdispersion (e.g. LnVarMean and 

LL_exp_Pois_dif) and total damage yields (e.g. LnSum, Ln3Frac, and LnZeroFrac). 

Quantitative reconstructions of the neutron and photon dose components (Neutron_dose  

and Photon_dose, respectively) were weaker, compared with the binary classifications. 

Neutron dose reconstructions were decent (Fig. 7C, Supplementary Table 1), and photon dose 

reconstructions were relatively poor (Fig. 7D, Supplementary Table 1). These results may 

indicate that the selected predictor set, which was focused on micronuclei/cell distribution 

shapes, is a sensitive qualitative indicator of complex exposure scenarios, but is less sensitive 

for quantifying the details of these scenarios.  

Discussion 

The CBMN assay is one of the simplest cytogenetic biodosimetry assays to perform and 

score. It is therefore also the easiest to automate 53. However, the conventional CBMN assay is 
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geared towards uniform photon exposures and provides only the photon-equivalent total body 

dose, which may not be the most useful parameter in scenarios involving mixed neutron + 

photon or partial body exposures. To address these issues, there are many advanced 

techniques for dose reconstruction for complex exposure scenarios, which are generally based 

on fitting parametric linear or linear quadratic dose response functions with selected error 

distributions (e.g. Zero-Inflated Poisson or Negative Binomial) 31,40,42,43. Here we extended the 

analysis of micronuclei per cell distribution shapes in a different direction: we used various 

summary metrics like index of dispersion, skewness and kurtosis as potential predictors of 

complex exposure scenarios, and imported these predictors into machine learning or parametric 

regression methods.  

The conceptual basis for our approach is that micronuclei per binucleated cell distributions 

from complex exposures have different shapes (e.g. “tails”), compared with distributions from 

simple exposures, even when the mean micronucleus yields are the same for both scenarios. 

These differences in distribution shapes translated into differences in variables like index of 

dispersion, kurtosis and skewness (Table 1), which were used to generate predictors imported 

into machine learning and parametric modeling approaches. To our knowledge, this approach is 

new and was not used previously in radiation biodosimetry.  

Our results suggest that 1:1 mixtures of irradiated and unirradiated blood can be quite 

accurately discriminated from homogeneous irradiations (AUROC > 0.9 on testing data, 

Supplementary Table 1). Ongoing work is focusing on determination of the minimal shielded 

percentage that can be reliably detected. 

Using the same approaches, we also obtained encouraging results in discrimination of 

mixed exposures to photons and neutrons from pure photon exposures, e.g. by detecting ≥10% 

neutron fractions or ≥0.5 Gy of neutrons in the total dose (AUROC > 0.9 for the first scenario 

and > 0.8 for the second, Fig. 7A-B, Supplementary Table 1). Of note, the dose reconstructions 
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performed using this method estimated the measured RBE rather well (3.8 in this work vs. 4 in 

reference 9). Ongoing work focuses on obtaining more precise reconstructions of the neutron 

fractions and photon doses.  

Therefore, although the two scenarios (partial body and neutron exposures) differ in 

experimental design and radiation doses and types, the general concept of using micronucleus 

distribution shape metrics as indicators of complex vs. simple exposure scenarios was 

applicable in both situations. At this stage, our results of course represent only a proof of 

principle because ex vivo blood irradiation is an “idealized” model system for partial-body and 

neutron + photon mixed exposures. Much more complexity is expected for realistic in vivo 

scenarios because various organs, which are (or are not) irradiated in the ex vivo situation, can 

contribute to the in vivo responses. Furthermore, a realistic exposure may include both neutron 

and partial body photon exposures. These type of scenarios were not investigated in this work 

but will be the focus of future studies. The accuracy of applying the approaches proposed here 

under realistic mass-casualty conditions can probably be increased by integrating micronuclei 

assays with other types of radiation biomarkers (e.g. dicentric chromosomes, gene expression 

levels, blood cell counts). Several biomarkers, combined into one framework, are likely to 

provide more detailed and useful information than a single assay alone.  

Conclusions 

We demonstrate a proof of principle that measurements of the distributions of 

micronuclei per binucleated cell, analyzed by a novel implementation of machine learning and 

parametric regression methods, contain enough information to detect complex exposure 

scenarios involving partial-body shielding or densely ionizing radiations. The ability to perform 

such detection reliably in a high throughput manner would be extremely useful in radiation-

related mass casualty situations such as IND detonations because partial-body and/or neutron 
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exposures can have very different clinical outcomes, compared with homogeneous photon 

irradiation.  
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Figures 

Figure 1. A schematic representation of our study design aimed at developing new 

computational methods for discriminating between triage-relevant simple and complex 

radiation exposure scenarios.  We used ex vivo irradiated human blood to generate two data 

sets (A and B), and analyzed each of them using a novel application of machine learning 

techniques. The data sets and analysis methods are described in detail in the Materials and 

Methods section. Yellow lightning symbols indicate photon irradiation, and blue ones indicate 

neutron irradiation of blood samples. Curves of various colors indicate probability distributions of 

micronuclei per cell, where the y-axis is probability density. Solid vs. dashed lines indicate the 

effects of different neutron proportions. These schematic distributions are intended to illustrate 

that complex exposure scenarios, such as mixtures of irradiated and unirradiated blood, or 

photon + neutron exposures, produce larger “tails” (i.e. larger probabilities of multiple 

micronuclei per cell) than simple exposures.  
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Figure 2.  Distributions of micronuclei per binucleated cell data set A: blood samples ex 

vivo irradiated with 0, 2, 4 or 8 Gy of gamma rays (labeled “homogeneous”), or with 1:1 

mixtures of 4 Gy with 0 Gy or 8 Gy with 0 Gy (labeled “mixed”). The differences between 

these distributions form the basis for our analysis aimed at discriminating between 

homogeneous and mixed exposures. Specifically, the data for 4 Gy mixed with 0 Gy are 

different from those for 2 Gy homogeneous (left panel), and the data for 8 Gy mixed with 0 Gy 

are different from those for 4 Gy homogeneous (right panel). Each curve was based on pooled 

analysis of a very large number of binucleated cells (from 8,417 to 21,056). 
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Figure 3. Analysis results summary for data set A: ex vivo human blood irradiated with 

homogeneous gamma ray doses vs. 1:1 mixtures of irradiated and unirradiated blood. A. 

Matrix of Spearman’s correlation coefficients (pairwise, without correction for multiple testing) 

between predictors and outcome variables. The meanings of all variables are provided in Table 

1, and a color-coded correlation scale is provided on the right of the plot. Blue ellipses represent 

positive correlations, and red ones represent negative correlations. Darker color tones and 

narrower ellipses represent larger correlation coefficient magnitudes. Red star symbols indicate 

statistical significance levels: *** indicates p<0.001, ** indicates p<0.01, * indicates p<0.05, no 

stars indicates p>0.05. These p-values here are intended only for visualization: due to multiple 

comparisons, only 3 star significance levels are likely to indicate strong associations. Blank 

squares indicate correlation coefficients close to zero. B. Comparison of actual mean doses with 

reconstructed values by RF. Circles represent data points, and the line represents theoretically 

perfect 1:1 correlation.  
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Figure 4. Dependence of mean micronuclei yield per binucleated cell on total radiation 

dose (photons + neutrons) and on the fraction of neutrons in this dose 

(Neutron_fraction). Larger and lighter colored circles represent a larger fraction of neutrons in 

the total dose. 
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Figure 5. Comparison of Poisson distribution fits to micronuclei per binucleated cell data 

for 1.0 Gy x-rays vs. 1.2 Gy of a mixed neutron + photon beam that contains ~82% 

neutrons. The probabilities of 3-5 micronuclei per cell in the mixed beam data are much larger, 

than those predicted by the best-fit Poisson distribution. No symbols are shown for micronuclei 

per cell values for which the observed counts were zero. 
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Figure 6. Analysis results summary for data set B: ex vivo   human blood irradiated with 

x-rays vs. neutron + photon mixtures. A. Matrix of Spearman’s correlation coefficients 

(pairwise, without correction for multiple testing) between predictors and outcome variables. The 

meanings of all variables are provided in Table 1 and in the main text. The meanings of ellipse 

shapes and colors are the same as in Fig. 2, and a color-coded correlation scale is provided on 

the right of the plot.  Blank squares indicate correlation coefficients close to zero. B. 

Comparison of actual photon-equivalent doses (defined as photon dose + RBE×neutron dose) 

with reconstructed values by RF. Circles represent data points, and the line represents 

theoretically perfect 1:1 correlation. 
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Figure 7. RF performance for data set B: ex vivo human blood irradiated with x rays vs. 

neutron + photon mixtures. A. ROC curve for discriminating between exposures with ≥10% 

neutron fraction vs. those with <10% neutrons. B. ROC curve for discriminating between 

exposures with ≥0.5 Gy neutron dose vs. those with <0.5 Gy neutrons. C-D. Comparisons of 

actual and reconstructed neutron and photon doses, respectively. Circles represent data points, 

and the lines represents theoretically perfect 1:1 correlation. 
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Tables 

Table 1. Descriptions of outcome (dependent) and predictor (independent) variables used 

in our analyses. The prefix “Ln” indicates natural logarithm. M is the mean, V is the variance, 

and n is the number of cells in the analyzed sample. The predictor variables were selected 

based on our judgement, combined with information about overdispersion of cytogenetic 

damage from complex exposure scenarios 31,38,39. 

Data set Type of 
variable 

Name Definition  

A: Homogeneous 
vs. 
heterogeneous 
gamma ray 
irradiation 

Outcomes: MixIndex  
 

Binary variable: 0 = homogeneous exposure, 1 
= heterogeneous exposure 

MeanDose  Average dose to the sample in Gy 

B: x-rays vs. 
neutron + photon 
mixtures 
 

MixIndex  
 

Binary variable: 0 = <10% neutrons in total 
dose,  
1 = ≥10% neutrons 

NeutronIndex Binary variable: 0 = <0.5 Gy neutrons in total 
dose,  
1 = ≥0.5 Gy neutrons 

Photon_dose  Photon dose in Gy 
Neutron_dose Neutron dose in Gy 

Both A and B Predictors: LnSum Sum of analyzed cells per sample 
LnMean Mean number of micronuclei per cell 
LnVar Variance of the number of micronuclei per cell 
LnVarMean Variance divided by the mean 
LnZeroFrac ln[1+f0], where f0 is the fraction of cells with 0 

micronuclei 
Ln3Frac ln[1+f3], where f3 is the fraction of cells with ≥3 

micronuclei 
LnFD Fisher dispersion index, calculated according to 

the following equation 54: 

���� � ln 	
1
√2�� 	
� � 1�� �� � �����  

SEK Sample excess kurtosis, calculated using the 
following equation, where zi are standardized 
data values using the standard deviation based 
on n rather than on n − 1: 

����� � ln 	�
�

∑ ��� � 3�

��� �  
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LnSkew Sample skewness, defined as LnSkew = 
ln[m3/SD3], where m3 is the sample third central 
moment and SD is its standard deviation 

LL_exp_Pois_dif The difference in maximized log likelihoods for 
fitting an exponential distribution to the sample 
data vs. the Poisson distribution, calculated as 
follows, where k is the micronuclei count value 
in the i-th cell: 

����� � � �
� � 1� ln	1 � �� � � ln 	��
�

���

 

�� !"# � � � ln	�� � � � ln 	�!�
�

���

 

%%_'()_*+,-_.,/ � 
LLexp � LLPois�/n 
 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 23, 2019. ; https://doi.org/10.1101/646711doi: bioRxiv preprint 

https://doi.org/10.1101/646711
http://creativecommons.org/licenses/by-nc-nd/4.0/


37 

 

List of supplementary files: 

Supplementary data file 1: Data sets used for analysis 

Supplementary tables: Supplementary tables 1-3. 

Supplementary methods: Supplementary methods. 
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