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ABSTRACT 

Parkinson’s disease (PD) is a well-known neurodegenerative disease. Recently, the role of 

gingipains from Porphyromonas gingivalis was implicated in Alzheimer’s disease.  Here we 

present evidence of systemic inflammation, accompanied by hypercoagulation; we also show 

that ginipains from P. gingivalis and its LPS may foster abnormal clotting, and that ginipains 

are present in PD blood, and thus that ginipain’s action on blood may be relevant to PD 

pathology.  Bloods from both PD and healthy blood samples were analysed using 

thromboelastography (TEG), confocal and electron microscopies, and for cytokine and other 

circulating biomarkers. We also probed PD and healthy plasma clots with a polyclonal antibody 

for the bacterial protease, gingipain R1, from P. gingivalis.  Low concentrations of recombinant 

gingipain R1 were also added to purified fluorescent fibrinogen. TEG, fibrin(ogen) amyloid 

formation and platelet ultrastructure analysis confirmed profound hypercoagulation, while the 

biomarker analysis confirmed significantly increased levels of circulating proinflammatory 

cytokines. We provide evidence for the presence of the protease, gingipain R1 in PD blood, 

implicating inflammatory microbial cell wall products in PD.  

 

KEYWORDS: Parkinson’s Disease; Systemic inflammation; Cytokines; LPS from 

Porphyromonas gingivalis; Gingipains; Amyloid formation 
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LIST OF ABBREVIATIONS 

 
 
 
 
 

IFN-a Interferon-alpha 

IL-10 Interleukin-10 

IL-13 Interleukin-13 

IL-4 Interleukin-4 

E-Selectin E-Selectin 

GM-CSF Granulocyte-macrophage colony-stimulating factor 

IFN-γ Interferon-gamma 

IL-1a Interleukin-1 alpha 

IL-1β Interleukin-1 beta 

IL-12p70 Interleukin-12p70 

IL-17A Interleukin-17A 

IL-6 Interleukin-6 

IL-8 Interleukin-8 

IP-10 Interferon gamma-induced protein-10  

MCP-1 Monocyte chemoattractant protein-1 

MIP-1a macrophage inflammatory protein-1 alpha 

MIP-1β macrophage inflammatory protein-1 beta 

P-Selectin P-Selectin 

sICAM-1 Soluble intercellular adhesion molecule-1 

TNF-a Tumor necrosis factor-alpha 

RgpA Recombinant gingipain R1 protease 

ERK2 Extracellular signal–regulated kinase 2 
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INTRODUCTION 

Parkinson’s disease (PD) is a neurodegenerative disease caused by the death of 

dopaminergic neurons in the substantia nigra pars compacta (SNpc), resulting in dopamine 

deficiency within the basal ganglia.  This can lead to a movement disorder with classical 

parkinsonian motor symptoms, as well as other symptoms. Although a number of Park genes 

have been identified (Funke et al., 2013), 90% of Parkinson's disease cases have no 

identifiable genetic cause (Klein and Westenberger, 2012; Ascherio and Schwarzschild, 

2016).  PD has a multitude of pathologies (Fujita et al., 2014), ranging from mis-folding of 

alpha-synuclein to neuro-inflammation, mitochondrial dysfunction, and neurotransmitter-

driven alteration of brain neuronal networks (Titova et al., 2017); it also affects all levels of the 

brain-gut axis (Mulak and Bonaz, 2015).   

 

Neuro-inflammation is an important and well-known feature of PD pathology (More et al., 2013; 

Nolan et al., 2013; Taylor et al., 2013), and converging evidence further supports the roles of 

(systemic) inflammation, oxidative stress (Kalia and Lang, 2015) and gut dysbiosis, although 

the mechanistic details and their full roles in PD pathogenesis are yet to be comprehensively 

elucidated.  It is also noted that there are higher levels of proinflammatory cytokines in brains 

of PD patients, and inflammation is thought to be a major contributor to the neurodegeneration 

(Reale et al., 2009).  See Figure 1 for an explanatory overview of PD aetiology and our 

interpretation of the role of systemic inflammation and (hyper)coagulation in this condition. PD 

patients suffer from a plethora of other (inflammatory) comorbidities (Kell and Pretorius, 

2018a), and both vascular risk (Cheng et al., 2017) and cardiovascular autonomic dysfunction 

are associated with arterial stiffness in these individuals (Kim et al., 2017).  Furthermore, 

heart disease is also associated with dementia in PD (Pilotto et al., 2016). While the interplay 

between inflammation and neuronal dysfunction is complex, there is mounting evidence that 

chronic inflammation (Pretorius et al., 2014) with the accompanying dysregulation of 

circulating inflammatory molecules and the innate immune response, play prominent roles in 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 24, 2019. ; https://doi.org/10.1101/646307doi: bioRxiv preprint 

https://doi.org/10.1101/646307
http://creativecommons.org/licenses/by/4.0/


   
 

 5 

PD (Kannarkat et al., 2013). It is also becoming recognised that peripheral, as well as brain 

inflammation, contribute to the onset and progression of the neurodegenerative processes 

seen in PD (Deleidi and Gasser, 2013; More et al., 2013; Nolan et al., 2013; Taylor et al., 

2013; Filiou et al., 2014; Pessoa Rocha et al., 2014).     

 

Evidence of systemic inflammation in PD includes the presence of increased levels of 

circulating cytokines such as IL-1β IL-2, IL-10, IL-6, IL-4, TNF-α, C-reactive protein, RANTES 

and interferon-gamma (INF-γ) (Brodacki et al., 2008; Qin et al., 2016).   These markers are 

accompanied by oxidative stress and might even provide early diagnosis of PD (Lotankar et 

al., 2017).   In addition to dysregulated circulating inflammatory molecules, one of the known 

hallmarks of systemic inflammation is hypercoagulability, or abnormal clotting potential.  In 

PD, changes in the normal clotting of blood have been described (Sato et al., 2003; 

Rosenbaum et al., 2013; Pretorius et al., 2014; Infante et al., 2016; de Waal et al., 2018; 

Pretorius et al., 2018c). Most of these circulating inflammatory biomarkers act as ligands to 

receptors on platelets (Olumuyiwa-Akeredolu et al., 2019), resulting in downstream signaling 

events with accompanying platelet hyperactivity and aggregation. RBCs also become 

eryptotic (programmed cell death in RBCs) due to ligand binding and oxidative stress 

(Pretorius et al., 2014).  

What is not immediately clear is the actual origin of the inflammation and how and why it is 

chronic. For this and other diseases (Potgieter et al., 2015; Kell and Kenny, 2016; Pretorius 

et al., 2016a; Pretorius et al., 2017a; de Waal et al., 2018; Kell and Pretorius, 2018a; Kell and 

Pretorius, 2018b) we have brought together evidence that a chief cause may be (dormant) 

microbes that upon stimulation, especially with unliganded iron (Kell, 2009), can briefly 

replicate and shed potent (and well known) inflammagens such as lipopolysaccharide (LPS) 

and lipoteichoic acid (LTA) (Kell and Pretorius, 2015; Kell and Pretorius, 2018a). These are 

well-known ligands for receptors such as Toll-like receptor 4 (TLR4) and can thus stimulate 

inflammation, as observed through a variety of inflammatory cytokines (Olumuyiwa-Akeredolu 

et al., 2019).  
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Another set of (novel) bacterial inflammagens that might cause damage to fibrin(ogen) 

proteins when present in circulation is represented by a group of proteases synthesized by 

Porphyromonas gingivalis. P. gingivalis is a Gram-negative anaerobic bacterium that is 

deemed a keystone pathogen in the oral cavity with the capacity to shift symbiotic homeostasis 

into a dysbiotic state characteristic of periodontal pathogenesis (Darveau et al., 2012; How et 

al., 2016). Accordingly, this bacterium is significantly associated with and demonstrated to be 

a cause and driver of chronic periodontitis – the most common oral disorder among adults 

(Nazir, 2017). The bacterium’s entry into the circulation has been well-documented (Silver et 

al., 1977; Parahitiyawa et al., 2009; Tomas et al., 2012; Ambrosio et al., 2019); and it enters 

through teeth care activities and oral ulcerations. Periodontal pathologies are known to be 

linked to systemic inflammation (Hajishengallis, 2015; Leira et al., 2018; Torrungruang et al., 

2018), and P. gingivalis in particular, is associated with a cohort of diseases including non-

insulin dependent diabetes mellitus (Makiura et al., 2008; Blasco-Baque et al., 2017), 

Alzheimer’s disease (Singhrao et al., 2015; Dominy et al., 2019), rheumatoid arthritis (Okada 

et al., 2013; Mikuls et al., 2014; Jung et al., 2017), cardiovascular disease (Deshpande et al., 

1998; Aarabi et al., 2015; Chistiakov et al., 2016; Leira et al., 2018) and atherosclerotic 

vascular tissue (Deshpande et al., 1998; Velsko et al., 2014; Olsen and Progulske-Fox, 2015).   

 

The bacterium uses oligopeptides as its main nutrients, that it obtains via protease activities. 

Recently, emphasis was placed on both the bacterium and its group of endogenous cysteine 

proteases called gingipains, in developing Alzheimer’s disease, where  gingipains were 

implicated in disease causation and suggested as possible disease intervention targets 

(Dominy et al., 2019). Gingipains are important protease of P. gingivalis and their proteolytic 

activity plays an important part of the functioning of the bacterium, as it is essential for 

obtaining nutrients via protein degradation, adherence to host surfaces and further 

colonisation  (Guo et al., 2010).  Gingipains are also known to play an important role in 

neutralizing the host defences by degrading of antibacterial peptides (Guo et al., 2010), and 
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interfering or evading the host complement system (Slaney and Curtis, 2008). These enzymes 

cleave proteins at the C-terminal after arginine or lysine residues and are classified 

accordingly: gingipain R is arginine-specific and gingipain K is lysine-specific.  

 

FIG 1 PLACEMENT 

There are two types of arginine-specific gingipains: RgpA which seems to be the more virulent 

(Imamura et al., 2000) and RgpB. Not only are gingipains found on the cell surface of P. 

gingivalis, but are also secreted from the bacterium and can thus enter the circulation, where 

it may interact with various circulating blood proteins, including clotting proteins. Studies have 

demonstrated fibrinogen-adhesive and fibrinogenolytic effects arising from each gingipain type 

(Lantz et al., 1986; Imamura et al., 1995; Pike et al., 1996; Ally et al., 2003). Further, the effect 

of gingipain proteases on fibrinogen increases the propensity for bleeding at periodontal sites 

(symptom of periodontitis) thereby enabling P. gingivalis access to nutrient sources (heme-

containing proteins) and inadvertently the circulation. The interference of these proteases in 

coagulation may not be exclusive to fibrinogen, and interactions have been shown with factor 

IX prothrombin (Imamura et al., 2001), factor X (Imamura et al., 1997) and prothrombin 

(Imamura et al., 2001), as well as the stimulation of the kallikrein/kinin pathway (Imamura et 

al., 1994).  Since periodontitis disposes an individual to an exaggerated risk of developing 

Parkinson’s disease (Kaur et al., 2016; Chen et al., 2017; Chen et al., 2018) and because the 

activity of P. gingivalis and gingipains have recently been highlighted in  Alzheimer’s patients 

(Dominy et al., 2019), we might expect the presence of this bacterium and its molecular 

products (e.g. proteases and LPS) to be found in the circulation of PD individuals too.   

In this paper, we therefore aim to offer further evidence of the significant role of systemic 

inflammation and circulating inflammagens in the development of PD.  Here we show the 

extent of the dysregulated systemic inflammatory biomarker profile, hypercoagulability and 

particularly platelet hyperactivity in PD patients compared to healthy individuals, and how 
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dysregulated inflammatory circulating molecules could, in part, be responsible for blood 

hypercoagulability and platelet dysfunction. We also study whole blood clot formation using 

thromboelastography, and look at platelet ultrastructure using scanning electron microscopy.  

Furthermore, we hypothesize how these dysregulated inflammatory molecules might act as 

ligands when they bind to platelet receptors, resulting in activation of platelet signaling 

cascades. We argue that the levels of inflammatory molecule dysregulation point to innate 

immune system activation, which is supportive of our previous published results regarding the 

presence of LPS in/near hypercoagulated blood clots (de Waal et al., 2018). We confirm the 

presence of amyloid fibrin(ogen) in the current sample, using amyloid-specific markers 

(previously we used only thioflavin T as a marker of aberrant clotting in PD (Pretorius et al., 

2018a)). To date, P. gingivalis and its molecular signatures are yet to be discovered in PD 

tissue (other than the oral cavity). We present evidence (using fluorescent antibodies against 

gingipains), that members of the gingipain protease family are present in clots from PD 

samples, but not significantly present in healthy plasma clots. We also add purified RgpA to 

purified fibrinogen marked with a fluorescent Alexa 488 marker, and show how it potentially 

can hydrolyze fibrinogen proteins  and that gingivalis  LPS may act together with gingipains to 

foster aberrant clot formation (see supplementary Figure A for a layout of our experiments).  

 

 

MATERIALS AND METHODS 

Ethical clearance and consent 

Ethical clearance was received for this study from the Health Research Ethics Committee 

(HREC) of Stellenbosch University (South Africa) (approval number HREC Reference #: 

S18/03/054) and the Health Department of Western Cape research number 

(WC_201805_023). Written informed consent was obtained from all participants followed by 

whole blood sampling in citrated tubes. All participants received a unique number that was 
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used to guarantee discretion throughout this study. All investigators were certified in Good 

Clinical Practice and ethical codes of conduct. 

 

Study design, setting and study population 

A cross-sectional design was followed in collaboration with a neurologist, who provided whole 

blood (WB) from Parkinson’s Disease (PD) patients at Tygerberg Hospital in the Western 

Cape. Whole blood from healthy controls was collected by a Health Professions Council of 

South Africa (HPCSA) registered Medical Biological Scientist and phlebotomist (MW: 

0010782) at the Department of Physiological Sciences, Stellenbosch University. A total of 

n=81 volunteers were included (n=41 healthy controls, and n=40 PD patients) as part of the 

study population. PD volunteers were recruited with the following inclusion criteria: (i) a 

confirmed diagnosis by a neurologist and the diagnosis of these patients will included the use 

of the Unified Parkinson’s Disease Rating Scale (UPDRS), as well as the Hoehn and Yahr 

scale used to rate the relative level of the PD disability, (ii) males and females of any age, (iii) 

not on any anticoagulant medication. Participants who were unable to provide written consent 

were omitted from this study. To limit and exclude confounding factors, both healthy and PD 

volunteers were only included if they were not diagnosed with tuberculosis, HIV or any 

malignancies. The inclusion criteria for healthy age-matched volunteers included were also: 

(i) no use of chronic medication (ii) no prior history of thrombotic disease or inflammatory 

conditions (iii) non-smokers, (iv) not on any chronic antiplatelet therapy/ anticoagulant 

medication or any contraceptive/hormone replacement therapy (v) were not pregnant and/or 

lactating. PD is a progressive condition which tend to evolve from mild unilateral symptoms 

through to end-stage non-ambulatory state. See supplementary Table 1 and 2 for the 

milestones in the illness as accurately outlined in the Hoehn and Yahr staging system.  

 

Collection of whole blood (WB) and preparation of platelet poor plasma (PPP) samples 

from healthy controls and PD patients 
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Whole blood from PD patients and heathy controls were collected by sterile sampling 

techniques in citrate and ethylenediaminetetraacetic acid (EDTA) tubes, as well as serum 

separating tubes (SST) that were kept at room temperature (∼22°C) for 30 min. Platelet poor 

plasma (PPP) was prepared from citrate tubes that were centrifuged at 3000 x g for ten 

minutes at room temperature (∼22°C). The PPP was then aliquoted into labelled 1.5 mL 

Eppendorf tubes, and stored at -80˚C until cytokine analysis. EDTA whole blood and SST 

were analysed by the local PathCare laboratory (Stellenbosch) for glycosylated haemoglobin 

(HbA1c), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), high-density 

lipoprotein cholesterol (HDL-c), triglyceride (TG) and non-high-density lipoprotein (non-HDL);  

TC/HDL ratio was calculated as a marker of cardiovascular risk. 

 

Thromboelastography (TEG) of whole blood (WB) 

Clot kinetics/property analysis was completed by means of a Thromboelastography (TEG) 

(Thromboelastograph 5000 Hemostasis Analyzer System,Haemonetics S.A. Signy-Avenex, 

Switzerland), on both control and PD WB samples. 340 μL of WB samples were placed in a 

disposable TEG cup to which 20 μL of 0.2 mol/L CaCl2 was added. CaCl2 is necessary to 

reverse the effect of the sodium citrate anticoagulant in the collection tube (i.e. recalcification 

of blood) and consequently initiate coagulation.  

 

Scanning electron microscopy of whole blood (WB) smears 

WB smears were prepared by placing 10µL WB of each of the samples on cover slips. 

Samples were washed with Gibco™ PBS (phosphate-buffered saline), pH 7.4 (ThermoFisher 

Scientific, 11594516) before fixing with 4% paraformaldehyde for a minimum of 30 minutes. 

Once fixed, samples were washed  3 × 3 minute with PBS followed by a second 30-minute 

fixation step in 1% osmium tetroxide (Sigma-Aldrich, 75632). A final 3 x 3 minute PBS wash 

step was performed before samples were serially dehydrated in ethanol with a final 30-minute 

dehydration step using hexamethyldisilazane (HMDS) ReagentPlus® (Sigma-Aldrich, 
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379212). Samples were then carbon coated before being imaged on Zeiss MERLIN™ field 

emission scanning microscope and micrographs were captured using the high resolution 

InLens capabilities at 1 kV. 

 

20-Plex cytokine analysis using platelet poor plasma (PPP) 

Stored PPP samples of PD (n= 40) and healthy controls (n=41) participants were transferred 

from -80°C to -20°C 24 hours preceding the multiplex analysis. The samples were then 

analysed in duplicate by means of Invitrogen’s Inflammation 20-Plex Human ProcartaPlex™ 

Panel (#EPX200-12185-901) and read on the Bio-Plex® 200 system (Bio-Rad, 2016). The 

data is expressed in pg·mL−1.  20 anti- and pro-inflammatory molecules were measured in a 

multiplex analysis and biomarkers measured included 4 anti-inflammatory molecules (IFN-a, 

IL-4, IL-10, IL-13), and 16 pro-inflammatory molecules (for the full list of cytokines, see the 

table in results section).  

 

Recombinant gingipain R1 protease (RgpA) and Gingipain R1 antibody 

Platelet poor plasma (PPP) was used to prepare clots from PPP from 6 healthy and 10 PD 

samples. Thrombin was donated by the South African National Blood Service; it was 

solubilized in PBS containing 0.2% human serum albumin to obtain a concentration of 20 

U·mL-1  and was used at a 1:2 ratio to create extensive fibrin networks.  This was followed by 

fixation with 10% neutral buffered formalin (NBF). After phosphate-buffered saline (PBS) 

(pH=7.4) washing steps, samples were blocked with 5% goat serum (in PBS), and incubated 

with gingipain R1 polyclonal antibody (Abbexa, abx 107767) (1:100 in 5% goat serum) for one 

hour at room temperature in the dark. The samples were finally washed and a coverslip was 

mounted with a drop of Dako fluorescence mounting medium on a microscopy slide for 

confocal analysis. The prepared samples were viewed on a Zeiss LSM 780 with ELYRA PS1 

confocal microscope using a Plan-Apochromat 63x/1.4 Oil DIC objective. The gingipain R1 

FITC antibody was excited at 488 nm, with emission measured at 508 to 570 nm. As a positive 

control, we also incubated an exogenous aliquot of the protease, recombinant gingipain R1 
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protease (RgpA), with healthy PPP for 30 minutes, followed by exposure to its fluorescent 

antibody. RgpA (Abcam. ab225982) was added at a final concentration of 500 ng.L-1. 

 

Recombinant Gingipain R1 protease and Alexa 488-conjuagted  purified fibrinogen  

Purified (human) fibrinogen with Alexa 488 (ThermoFisher: F13191) was prepared to a final 

concentration of 2 mg·mL-1. Clots (with and without the protease, RgpA) were prepared by 

adding human thrombin as per the above protocol.  Clots were also viewed with the confocal 

microscope and fluorescent fibrinogen was excited at 488 nm, with emission measured at 508 

to 570 nm. As the gingipains antibody used above has the same excitation and emission as 

the purified fibrinogen, we could not trace the added gingipains with this antibody.   We also 

incubated purified fluorescent fibrinogen with LPS from P. gingivalis (10ng.L-1) with and 

without RgpA (both 100 and 500 ng.L-1 ).  Where we combined the LPS and the RgpA, we 

added it simultaneously and the incubation period was also 30 minutes. 

 

Confocal analysis of plasma clots to show amyloid fibrin(ogen)  

Three fluorescent amyloid markers were added to control and PD PPP to illuminate amyloid 

protein structure, and were used as follows: 5 µM thioflavin T (ThT), 0.1 µL (stock 

concentration as supplied) of AmyTracker 480 and 0.1 µL (stock concentration as supplied) 

of AmyTracker 680 were added to the sample to incubate for 30 minutes. A working solution 

of AmyTracker was made in PBS at a 1:20 ratio. Control and PD PPP clots were prepared by 

adding thrombin to activate fibrinogen and create extensive fibrin fibre networks. Using the 

same microscope and objective as above, three channels were setup to visualise the amyloid 

markers. Amytracker 480 was excited by the 405 nm laser, with emission measured at 478 to 

539 nm; Amytracker 680 was excited by the 561 nm laser, with emission measured at 597 to 

695 nm; and ThT was excited by the 488 nm laser, with emission measured at 508 to 570 nm. 

ThT may also be excited by the 405 laser, and has a wide spectra where fluorescence can be 

detected (Sulatskaya et al., 2017). We allowed these two stains, which both target amyloid 
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structures, to overlap in the microscope setup to produce a combination blue channel of 

amyloid signal, alongside the isolated signal from Amytracker 680 in the red channel and ThT 

in the green channel (Page et al., 2019). Micrographs of the prepared clots were captured as 

3×3 and 2×2 tile images, and 75 images from 25 PD patients and 39 images from 9 control 

donors were acquired. Gain settings were kept constant for all data acquisition and used for 

statistical analyses; however, brightness and contrast were adjusted for figure preparation. 

The mean and the standard deviation from the histogram of each image were recorded and 

used to calculate the coefficient of variance (CV), which is defined as SD ÷ mean. This metric 

was used to quantify and discriminate the signal present between control and PD PPP clots. 

CVs of the control and disease group were compared by the Mann-Whitney test in GraphPad 

Prism 7.04 with significance accepted at p<0.05. 

 

Statistical analyses  

Statistical analysis was performed using R version 3.5.1 with specific packages detailed 

below. Three variations of logistic regression modelling were investigated to determine the 

strength of association between measured parameters and Parkinson’s disease status. For 

all three models, Wald p-values are reported in a manner that allows inter-model comparison. 

Logistic regression, based on the glm from the built-in stats package, was performed between 

Parkinson’s status (binary) and all individual parameters both with no adjustment (Model 1) 

and with adjustment for age and gender (Model 2). Ordinal logistic regression, based on the 

clm method in the ordinal package, was performed between the Hoehn and Yahr severity 

scale and all individual parameters without adjustment due to sample size requirements 

(Model 3).   Mann Whitney non-parametric tests were also performed and contrasted with the 

results from logistic regression. Although the Mann Whitney test was found to be more 

sensitive (identifying a super-set of parameters as significant), upon inspection of the 

populations trends and outliers, the logistic regression model was deemed more appropriate 

due to (a) better aligned with the goal of identification of regressive trends, (b) being more 

conservative, especially in the presence of significant outliers and (c) easily extended to 
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adjustment and ordinal modelling scenarios. PCA analysis was performed using the prcomp 

method from the built-in stats package.  Our raw data files are accessible at: 

https://1drv.ms/f/s!AgoCOmY3bkKHibs-vg0EUq3N5SogfA. 

 
RESULTS 

Tables 1 shows summary statistics of markers from WB for healthy and PD populations along 

with statistical significance values between the populations for all three regression models. 

More specifically, the first part of Table 1 shows the 7 TEG clotting parameters as well as lipid 

profile, HbA1c and ultrasensitive CRP levels. The second part of Table 1 shows anti-

inflammatory and pro-inflammatory cytokine markers.  

 

The three regression models consistently identify the same parameters as significant (at level 

of 0.05) in most cases. The exception is IL-1β which was not significantly predictive in the 

ordinal logistic regression model (i.e. not predictive of the scale of the disease). One can also 

observe that significant differences exist across all groupings except anti-inflammatory 

markers. To summarize, the following parameters in each group can be identified as 

significantly different: 

• TEG parameters: R, Angle, TMRTG 

• Lipogram parameters: HbA1c, HDL  

• Anti-inflammatory markers: None 

• Pro-inflammatory markers: IL-1a, IL-17A, TNF-a, IL-1β 

Figure 2 shows box and whisker plots of these parameters, illustrating population differences 

and the presence of significant outliers. Figure 3 shows a lattice of parameter cross-plots along 

with correlation coefficients in the upper diagonal. One can observe correlations between the 

R, TMRTG and A Angle parameters. (Supplementary Figure B shows a visualization based 

on PCA analysis of the combined data). Ellipses for Parkinson’s disease status are overlaid 

but were not part of the analysis. Notice that the first two principal components capture around 

30% of the variance in the data.   
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Thromboelastography, cholesterol and HbA1c levels, and ultrasensitive CRP 

HbA1c levels were significantly increased in our PD sample and a slightly dysregulated lipid 

profile was also noted (see Table 1).  TEG results point to the fact that PD WB is 

hypercoagulable.  TEG analysis exhibited significant differences in five of the groups of the 

assessed parameters. The PD group presented a significant increase in the initial rate of clot 

formation (R-value). Significant elevation in alpha angle (A angle) suggests more cross-linking 

of fibrin fibres, and time to maximum rate of thrombus generation (TMRTG) was decreased. 

These results have significance to our RgpA results that we discuss later.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 1: Thromboelastography results showing seven viscoelastic parameters assessing 
coagulation properties of healthy control and Parkinson’s disease WB samples.  Whole blood 
lipid profiles, HbA1c and ultrasensitive CRP as well as anti-inflammatory and pro-inflammatory 
cytokine profiles of healthy and PD volunteers are also shown. 

 
Controls 

(n=39) 

PD 

(n=39) 

P-value for 
Logistic 

Coefficient 

w/o 
adjustment 

P-value for 
Logistic 

Coefficient 

w/ age & gender 
adjustment 

P-value for 
Ordinal 

Coefficient 

w/o 
adjustment 

TEG Clot Parameters  

R-value (min) 8.3 [7.15 - 9.85] 7.2 [6.35 - 8.35] 0.005 0.005 0.015 

K-value (min) 2.7 [2.2 - 3.05] 2.2 [1.8 - 3] 0.792 0.808 0.783 

A Angle (°) 59.7 [53.1 - 63.95] 64.9 [59.75 - 70.25] 0.013 0.042 0.020 

MA (mm)  59.8 [54.35 - 63.9] 56.8 [49 - 59.75] 0.062 0.107 0.100 
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MRTG 
(Dyn.cm−2.s−1) 4.7 [4.17 - 5.85] 5.49 [3.96 - 6.7] 0.454 0.415 0.620 

TMRTG (min) 12.3 [10.2 - 13.6] 9.7 [8.6 - 12] 0.001 0.002 0.004 

TTG (Dyn.cm−2) 745.5 [598 - 882] 658 [481 - 744] 0.063 0.083 0.099 

Lipogram Parameters  

TC (mmol.L-1) 5.6 [4.65 - 6.4] 5.2 [4.25 - 5.7] 0.391 0.669 0.229 

HDL (mmol.L-1) 1.5 [1.3 - 1.8] 1.3 [1.1 - 1.4] 0.010 0.036 0.014 

Trig (mmol.L-1)  1.08 [0.86 - 1.65] 1.32 [0.92 - 1.91] 0.332 0.142 0.617 

LDL (mmol.L-1) 3.2 [2.45 - 3.9] 3.2 [2.4 - 3.65] 0.627 0.477 0.355 

HbA1c (%) 5.3 [4.8 - 5.6] 5.8 [5.5 - 6.25] 0.0004 0.002 0.003 

U.S. CRP (mg.L-1) 1.63 [0.53 - 2.88] 1.49 [0.715 - 4.06] 0.221 0.092 0.545 

Cytokines 

(pg.mL-1) 

Controls 

(n=39) 

PD 

(n=39) 

P-value for 
Logistic 

Coefficient 

w/o adjustment 

P-value for Logistic 
Coefficient 

w/ age & gender 
adjustment 

P-value for 
Ordinal 

Coefficient  

w/o 
adjustment 

Anti-inflammatory markers 

IFN-a 0.61 [0.001 - 1.39] 0.001 [0.001 - 1.4] 0.330 0.503 0.298 

IL-10 3.44 [1.98 - 8.28] 4.52 [2.89 - 5.925] 0.384 0.584 0.472 

IL-13 2.51 [0.53 - 5.66] 3.61 [2.405 - 4.9] 0.764 0.911 0.766 

IL-4 14.88 [6.185 - 25.7] 11.62 [2.84-25.5] 0.091 0.199 0.086 

Pro-inflammatory markers 

E-Selectin 
27752  

[21085-38694]  

25801  

[19141-34851]  
0.429 0.344 NA 

GM-CSF 14.25 [0.001 – 52.] 26.23 [13.1 - 48.2] 0.584 0.662 0.581 

IFN-γ 7.4 [2.57 - 14.9] 9.39 [6.74 - 14.3] 0.634 0.676 0.683 

IL-1a 3.1 [1.44 - 4.065] 4.7 [2.52 - 11.76] 0.004 0.005 0.025 

IL-1β 15.99 [10.13 - 32.225] 24.42 [21.52 - 30.3] 0.026 0.038 0.073 

IL-12p70 17.39 [9.56 - 96.085] 72.12 [21.95-105.5] 0.168 0.194 0.192 

IL-17A 1.18 [0.001 - 11.69] 14.98 [11.5 - 18.7] 0.004 0.004 0.012 

IL-6 8.43 [0.86 - 27.18] 24.67 [20.29 - 34.82] 0.075 0.107 0.178 

IL-8 1.66 [0.001 - 10.135] 10.97 [6.98 - 23.415] 0.075 0.113 0.277 

IP-10 16.51 [12.635 - 23.505] 18.19 [15.49 - 21.12] 0.780 0.992 0.682 

MCP-1 39.26 [24.06 - 50.93] 32.01 [27.1 - 38.23] 0.333 0.244 0.565 

MIP-1a 16.04 [3.64 - 59.2] 28.32 [16.1 - 72.6] 0.165 0.235 0.325 

MIP-1β 39.9 [18.9 - 277] 131.06 [57.25-306.4] 0.615 0.677 0.937 

sP-
Selectin 13236 [7647-38887] 28241 [14132-62124] 0.594 0.783 NA 

sICAM-1 42392.75 [25290 - 64595] 46241 [31981 - 69231] 0.182 0.223 NA 

TNF-a 55.44 [31.5 - 98.8] 107.6 [72.6 - 137] 0.007 0.007 0.007 
Data expressed as median and [25% - 75% quartile range] 
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FIG 2 and 3 PLACEMENT 

Scanning electron microscopy of whole blood 

Figure 4 shows representative SEM micrographs of platelets seen in WB smears. SEM 

analysis of WB smears, of healthy individuals usually show platelets as roundish cellular 

structures, with only slight pseudopodia formation due to contact activation with glass cover 

slips. This has also previously been noted in various publications (Page et al., 2018; Pretorius 

et al., 2018d; Page et al., 2019).    In the PD sample, platelets showed substantial 

(hyper)activation, spreading, as well as aggregation (Figure 4).     

 

FIG 4 PLACEMENT 

The identification of gingipain R1 in Parkinson’s disease blood samples with its 

fluorescent antibody 

For each control and PD sample, we viewed unstained and antibody-stained clots (Figure 5A 

to F).  Unstained clots from both control (Figure 5A) and PD donors (Figure 5C and E) showed 

no fluorescent signal.  Antibody-stained control clots showed little to no detectable fluorescent 

signal (Figure 5B), whereas PD samples showed substantial fluorescent signal (Figure 5D and 

F). Thus, our results indicate the presence of RgpA, an arginine-specific variant of virulent 

gingipain proteases produced by P. gingivalis in the blood of PD patients.   As positive control, 

we exposed controls to a tiny concentration of exogenous recombinant RgpA. followed by 

polyclonal antibody staining against RgpA (Figure 5G). A distinct but minimal signal was now 

present.  This was expected, as the concentration of RgpA added to healthy PPP was very 

low (500 ng.L-1 final exposure). 

 

The analysis of clots formed from fibrinogen incubated with recombinant gingipain R1 

Confocal microscopy was used to visualize the clot structure of purified fibrin(ogen) marked 

with Alexa 488, with and without exposure to recombinant gingipain R1 (500 ng.L-1), and  with 

and without exposure to P gingivalis LPS (Figure 5H to L).  Note that fibrinogen was pre-

incubated with the inflammagens, followed by clot formation due to the addition of thrombin.  

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 24, 2019. ; https://doi.org/10.1101/646307doi: bioRxiv preprint 

https://doi.org/10.1101/646307
http://creativecommons.org/licenses/by/4.0/


   
 

 18 

Figure 5H is a representative purified fluorescent fibrin(ogen) clot, showing a fibrin network 

with distinctive fibres. Figure 5I shows a representative fibrin(ogen) clot after fluorescent 

fibrinogen was incubated with P. gingivalis LPS.  Fibrin networks display a denser and more 

matted network.  Purified fibrinogen was also exposed to  two concentration of  RgpA 

(100ng.L-1) (Figure 5J) and 500ng.L-1 (Figure 5K). RgpA greatly inhibited fibrin formation 

synthesis in a concentration-dependent manner. A combination of both the LPS and RgpA 

(500ng.L-1) was also added simultaneously to purified fibrinogen, and the resulting clot is 

shown in Figure 5L. Interestingly, this clot appeared similar to the clot where only LPS was 

added (Figure 5I).  We suggest that the LPS and the protease might function together, where 

the protease might hydrolyze the fibrin(ogen) peptides but the LPS might simultaneously 

cause aberrant coagulation. 

 

FIG 5 PLACEMENT 

Confocal analysis of plasma clots  

Confocal analysis, as well as raw data of the clot analysis are shown in the Supplementary 

material and in Figure 6.  Control and Parkinson’s Disease platelet poor plasma clots, with 

markers illuminate amyloid fibrin(ogen) protein structure were imaged on a confocal 

microscope. Control clots display disperse signal. PD samples contain significantly greater 

amyloid-specific signal than control donors in all three channels: blue (p=0.0002), red (p=0.02) 

and green (<0.0001).  

FIG 6 PLACEMENT 

DISCUSSION 

In this paper, we show that in PD, there is a dysregulated systemic inflammatory biomarker 

profile, and that whole blood of these individuals are hypercoagulable (as seen with our TEG 

analysis), while platelets are hyperactivated (SEM analysis). The most significant differences 

were noted in  the HbA1c, R-value, Alpha angle, TMRTG (TEG parameters), IL-1a, IL-17A, 

TNF-a, IL-1β (pro-inflammatory markers) and HDL (note that they were not significantly 
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predictive of PD severity from Hoehn & Yahr). Taken together, these results point to ainter-

linked  relationship between the hypercoagulability, inflammatory molecule presence, and 

platelet activation.  

 

The pro-inflammatory profile may relate to blood clotting in various ways. These molecules 

may all act as outside-in signaling ligands (Durrant et al., 2017) that bind to platelet receptors, 

followed by inside-out signaling (Faull and Ginsberg, 1996)  and ultimately platelet 

dysfunction. The consequence after inflammatory molecule receptor binding, is platelet 

activation, visible as platelet (hyper)activation, spreading and aggregation (or clumping).  The 

subsequent platelet pathology, together with other changes in the haematological system such 

as anomalous fibrin(ogen) protein structure (discussed below) and RBC eryptosis (previously 

noted (Pretorius et al., 2018c)), all point to inflammation profile of systemic change. Here, the 

inflammatory molecules in our panel that showed the most significance in PD, and particularly 

IL-1a, IL-1β, IL-17A, and TNF-a are all known to be dysregulated in cardiovascular disease 

and their presence in circulation might be linked to atherosclerosis (Libby, 2017; Wang et al., 

2017).  

 

 

 

 

 

 

Platelet (hyper)activation in Parkinson’s disease and why they might be targets for 

circulating of cytokines that are increased  

We seek to provide a possible explanation for the significant platelet activation that we have 

noted by closely looking at our cytokine results, and particularly some of the most prominent 

dysregulated inflammatory markers.   We focus here mainly on IL-1a, IL-1 β, IL-17A and TNF-
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α and rehearse literature that has previously linked upregulation of these molecules to platelet 

activation. They are all also known to act as ligands to platelet receptors, which cause outside-

in and inside-out platelet signaling See Figure 7 for a  simplified diagram of such pathways 

receptor binding, as well as signaling.  

 

FIG 7 PLACEMENT 

IL-1a, IL-1β, IL17A and TNF-α are all significantly upregulated in our PD sample, and 

circulating TNF-α, IL-1and IL-17 are also known to stimulate vWF release from damaged 

endothelial cells (Domingueti et al., 2016; Meiring et al., 2016; Owczarczyk-Saczonek and 

Placek, 2017). The IL-1 family of ligands and receptors are associated with both acute and 

chronic inflammation (Gabay et al., 2010; Dinarello, 2011), and IL-1α is an intracellular 

cytokine involved in various immune responses and inflammatory processes (Schett et al., 

2016), and is also known to be upregulated  in cardiovascular diseases (Pfeiler et al., 2017). 

IL-1α has properties of both a cytokine and a transcription factor (Dinarello, 2006), and both 

IL-1α and IL-1β bind to the IL-1 receptor type 1 (IL-1RI), followed by recruitment of the co-

receptor chain, the accessory protein, IL-1RAcP. A complex is formed consisting of IL-1RI, 

the ligand, IL-1α and the co-receptor (IL-1RAcP).  This results in downstream signaling, 

involving the recruitment of the adaptor protein MyD88 to the Toll-IL-1 receptor domain.  

Platelets express IL-1R1, as well as Toll-like receptors, and these two receptors are known to 

be involved in platelet activation, platelet-leucocyte reciprocal activation, and 

immunopathology (Anselmo et al., 2016). Platelets also signal through the TLR4/MyD88- and 

cGMP/PKG-dependent pathway (Zhang et al., 2009), causing  granule secretion followed by 

platelet activation and aggregation (Vallance et al., 2017).   TNF-α, which is also significantly 

upregulated in our PD sample, binds to two TNFα receptors that are found on platelets, TNFR1 

and TNFR2, resulting in inside-out signaling and platelet (hyper)activation (Pignatelli et al., 

2008).  Platelets express a receptor for IL-17A, the IL-17R receptor and the cytokine might 

facilitate their adhesion to damaged endothelium, as well as to other circulating leukocytes, 

ultimately leading to thrombus formation (Maione et al., 2011).  Furthermore, IL-17A 
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facilitates platelet function through the extracellular signal–regulated kinase 2 (ERK2) 

signaling pathway (part of the MAPK pathway) and causes platelet aggregation  (Zhang et al., 

2012). IL-17A also promotes the exposure of αIIbβ3 integrin, which provides more ligand 

binding site for fibrinogen via conformational change, and crosslinks the neighboring activated 

platelets which results in platelet aggregation (Zhang et al., 2012).  These upregulated 

cytokines in our PD sample therefore could in part be the cause of their hyperactivated platelet 

ultrastructure shown in Figure 4. 

 

Amyloid nature of Parkinson’s disease fibrin(ogen)  

Previously, we have shown with Thioflavin T that the fibrin(ogen) protein structure in PD can 

become amyloid in nature, due to mis-folding of the protein (Pretorius et al., 2018c).  It is also 

known that fibrinogen levels in PD is higher than in controls (Wong et al., 2010; Ton et al., 

2012). In the current paper, we now include two additional amyloid markers.  Our results show 

enhanced amyloid-fluorescence as assessed by both AmyTracker 480 and 680 and this is 

confirmed by enhanced Thioflavin T fluorescent in our current PD  samples.  Our results 

suggest that in PD clots, fibrinogen polymerises into a form with a greatly increased amount 

of ß-sheets, reflecting amyloid formation. This reinforces previous data that observed fibrin 

amyloid in PD using Airyscan (confocal analysis) and Thioflavin T (Pretorius et al., 2018c).  

This important finding may describe a possible mechanism underlying some of the anomalous 

clotting formation and coagulopathies occurring in PD. It further emphasizes the systemic 

nature of PD, demonstrating pathological changes beyond the brain and extending to the 

circulation. Amyloid fibrin has also been observed in other diseases associated with 

inflammation and with known hematological abnormalities, including Type 2 Diabetes 

(Pretorius et al., 2017b; Pretorius et al., 2017c) and Alzheimer’s Disease (Pretorius et al., 

2018a).  Further, an amyloid state may be induced experimentally by the addition of bacterial 

membrane products and iron (Pretorius et al., 2018b), as well as products of the acute phase 

response such as serum amyloid A (Page et al., 2019). These findings imply that the presence 

of (bacterial) inflammagen molecules, and the inflammatory state more broadly, are conditions 
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that divert fibrinogen polymerization to an amyloid form, and indeed may be overarching 

(general) features of many chronic, inflammatory diseases (Kell and Pretorius, 2018a).  

 

These results are of particular importance when it is noted that bacterial involvement might 

play a role in both the development and progression of PD, and specifically, circulating 

bacterial inflammagens such as LPS have been implicated (Tufekci et al., 2011; De Chiara et 

al., 2012; Potgieter et al., 2015; Friedland and Chapman, 2017). We have also suggested that 

LPS may both maintain systemic inflammation, as well as the disease aetiology itself in PD 

(but also in other inflammatory diseases like type 2 diabetes, pre-eclampsia, sepsis, 

rheumatoid arthritis and Alzheimer’s disease, where LPS presence has been implicated in the 

aetiology of the condition) (Kell and Kenny, 2016; Pretorius et al., 2016a; Pretorius et al., 

2016b; Pretorius et al., 2017a; Pretorius et al., 2017b; Pretorius et al., 2017c; Kell and 

Pretorius, 2018b).  Indeed in 2018, we  showed that LPS from E. coli could be identified with 

fluorescent LPS E. coli antibodies in clots of PD, type 2 diabetes and AD (de Waal et al., 

2018).   There is therefore mounting evidence that PD might have a bacterial involvement, 

that in part drives the aetiology of the condition.   It is recognised that endotoxins (and 

exotoxins) are among the most potent bacterial inducers of cytokines (Cavaillon, 2018).  

 

The presence of bacterial inflammagens in Parkinson’s disease 

In the current paper, we further investigate the causative agents of the amyloid nature of PD 

fibrin(ogen) and we turned our attention to another prominent bacterium and its inflammagens.  

P gingivalis has long been implicated in PD and periodontitis, and recently its protease 

(gingipain) was interrogated as a causative agent in AD, where the gingipain proteases was 

found in brain tissue from patients with AD (Dominy et al., 2019). These researchers also 

correlated these gingipain quantities within the brain tissue to the extent of tau and amyloid-ẞ 

pathology. Furthermore, P. gingivalis has been found within atherosclerotic tissue of 

cardiovascular disease patients (Velsko et al., 2014; Olsen and Progulske-Fox, 2015; 
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Atarbashi-Moghadam et al., 2018). Periodontal diseases are a well-known accompaniment to 

PD (Schwarz et al., 2006; Zlotnik et al., 2015; Kaur et al., 2016; Chen et al., 2017; Chen et al., 

2018); however, the direct identification of P. gingivalis or its molecular signatures in circulation 

and/or brain tissue of PD patients has not previously been made.  

 

Previous studies conducted on fibrinogen and plasma have shown that Rgp and Kgp increase 

thrombin time when compared to control samples (Imamura et al., 1995). Furthermore, the 

activation of other coagulation factors by gingipains have been established, including factor 

IX, X and prothrombin prothrombin (Imamura et al., 1997; Imamura et al., 2001). Based on 

these observations, there seems to be a major disruption in the homeostatic control of the 

coagulation system/cascade when gingipain proteases are present.  Here, we show that RgpA 

protease produced by P. gingivalis is present in PPP clots from our PD sample blood using 

polyclonal antibodies.  We also confirmed that in control PPP clots, little to no signal was 

noted, but that we could detect RgpA with its fluorescent antibody in control clots after addition 

of the recombinant protease to healthy PPP.   In addition, we used a fluorescent purified 

fibrinogen model to show that LPS from P. gingivalis can cause hypercoagulability and that 

RgpA could hydrolyse fibrin(ogen) to such an extent that healthy clot formation is impaired.  

However, when both P. gingivalis LPS and RgpA are co-incubated, abnormal (hyperclottable) 

fibrin(ogen) is still visible.  These results are in line with our finding that in PD clots are more 

dense and hyperclottable (Pretorius et al., 2018c).  It also supports our current TEG results 

that showed a hyperclottable clot phenotype. 

 

We conclude by suggesting that our results strongly support a systemic inflammatory and 

hypercoagulable aetiology fueled by a bacterial presence, and serves as a preliminary study 

showing a role of P. gingivalis LPS  and gingipain protease in abnormal blood clotting 

observed in our PD sample. The next step would be to identify the extent to which this 

bacterium might contribute to Parkinson’s pathology or if there are any specific links, e.g. a 
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link with the presence of α-synuclein and auto/xenophagy (El-Awady et al., 2015; Cerri and 

Blandini, 2018). Furthermore, our finding that gingipain antibody signal was detected in clots 

from our PD samples but not the control emphasizes the possibility of this bacterium having a 

role in PD pathology. We have discussed research that pointed to the fact that  bacteria,  more 

generally, are implicated in PD aetiology, and here we note the possible involvement of  P. 

gingivalis, specifically. Taking these findings in both a neurological and cardiovascular context, 

it is plausible to believe that the entry, dissemination and infection of this bacterium and its 

virulent machinery in a systemic manner may be an aetiological and/or driving factor for 

disease worth investigating.  
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Figure 1: A simplified diagram showing contributing factors in systemic inflammation 

and hypercoagulation in Parkinson’s disease. (1)  Parkinson’s Disease is characterized by 

the presence of PARK genes, and driven by environmental factors with (2), 

neurodegeneration, and accompanied by (3) heart and vascular dysfunction, and also (4) gut-

brain dysfunction.  In PD, dysregulated inflammatory biomarkers and increased circulating 

bacterial inflammagens (e.g. LPS and LTA), point to (5) the presence of systemic inflammation 

and a dysfunctional innate immune system.  Systemic inflammation is usually accompanied 

by oxidative stress that typically causes a general hypercoagulable state (6), visible as platelet 

hyperactivity, RBC eryptosis and fibrin(ogen) amyloid formation. Diagram created 

using  BioRender (https://biorender.com/). 

 

Figure 2:  Box and whisker plots showing the distribution of parameters for control (left box) 

and PD (right box) populations for parameters determined to be significantly different.  

 

Figure 3:  Lattice of cross-plots of statistically significant parameters colored by Parkinson’s 

disease status (Green = Control). The upper diagonal shows correlation coefficients. 

 

Figure 4: (A and B) Scanning electron microscopy of whole blood smears showing 

representative platelets from healthy individuals.  (C to H) Whole blood smears from 

Parkinson’s disease (PD) individuals showing hyperactivated platelets. (C to H) PD platelets 

agglutinating to RBCs; (D and H) PD platelet spreading (G) and PD platelet aggregation (C, 

E and F). 

 

Figure 5: (A TO G) Confocal microscopy images of PPP clots stained with the RgpA 

polyclonal antibody (1:100) from healthy individuals and individuals suffering from Parkinson’s 

disease. The unstained (A) and stained (B) control exhibits no fluorescent signal as well as 

both the unstained Parkinson’s disease PPP clots (C & E). Fluorescent signal of the RgpA 

antibody is prominently detected in stained Parkinson’s disease PPP clots (D & F). (G) 
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represents a positive control in which a control sample that is absent of fluorescent signal 

received an exogenous load of RgpA. (H TO L) Confocal microscopy images of fibrin networks 

formed from purified fibrinogen (with added Alexa488 fluorophore) incubated with and without 

RgpA, and LPS from P. gingivalis, followed by addition of thrombin to create extensive 

fibrin(ogen) clots. (H) Representative purified fibrin(ogen) clot. (I) A representative clot formed 

after purified fibrinogen was incubated with 10ng.L-1 P. gingivalis LPS. (J) A representative 

clot formed after purified fibrinogen was incubated with 100ng.L-1 RgpA and (K)  500ng.L-1 

RgpA.  (L) A representative clot after purified fibrinogen was simultaneously exposed to a 

combination of  P. gingivalis LPS (10ng.L-1) and RgpA (500ng.L-1) . 

 

Figure 6:  Examples of clots created with platelet poor plasma (PPP) for a representative 

control and two representative  Parkinson’s disease individuals to show amyloid fibrin(ogen) 

protein structure. Three fluorescent markers that bind amyloid protein were used, Amytracker 

480, 680 and Thioflavin T (as previously used for amyloid fibrin structure (Pretorius et al., 

2017c; de Waal et al., 2018).  

 

Figure 7:  Simplified platelet signaling and receptor activation with main dysregulated 

molecules IL-1a, IL-1 β, TNF-α, and IL17A. Diagram created 

using  BioRender (https://biorender.com/). 

 

When inflammatory molecules are upregulated in circulation, they either cause direct 

endothelial damage (by binding to receptors on endothelial cells), or they may act as ligands 

that bind directly to platelet membrane receptors (Olumuyiwa-Akeredolu et al., 2019). When 

these inflammatory molecules disrupt endothelial cell structure, the endothelial cells release 

collagen and von Willebrand (vWF).  vWF is also a mediator of vascular inflammation 

(Gragnano et al., 2017), and it binds to exposed collagen and anchors platelets to the 

subendothelium (Du, 2007), causing platelet aggregation (Xu et al., 2016), and formation of a 

platelet plug (Jagadapillai et al., 2016).  Both collagen and vWF act as platelet receptor 
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ligands, causing platelet outside-in signaling, followed by inside-out signaling. Furthermore, 

collagen and vWB binding also result in signaling processes that cause a release of stored 

molecules that are present inside a- and dense granules of platelets, and may also include 

stored interleukins (e.g. IL-6 and IL-1β); further increasing the concentration of these 

inflammatory molecules in circulation (Olumuyiwa-Akeredolu et al., 2019).    vWF binding is 

mediated by GpIbα (which is part of the GPIb-IX-V) and integrin αIIbβ3 complex (Bryckaert et 

al., 2015). This αIIbβ3 receptor also binds fibrinogen and thrombin, and both these molecules 

and vWF work together to play critical roles in platelet activation and aggregation (Estevez 

and Du, 2017).   

 

Table 1: Thromboelastography results showing seven viscoelastic parameters assessing 

coagulation properties of healthy control and Parkinson’s disease WB samples.  Whole blood 

lipid profiles, HbA1c and ultrasensitive CRP as well as anti-inflammatory and pro-inflammatory 

cytokine profiles of healthy and PD volunteers are also shown. 
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Figure 1: A simplified diagram showing contributing factors in systemic inflammation 
and hypercoagulation in Parkinson’s disease. (1)  Parkinson’s Disease is characterized by 
the presence of PARK genes, and driven by environmental factors with (2), 
neurodegeneration, and accompanied by (3) heart and vascular dysfunction, and also (4) gut-
brain dysfunction.  In PD, dysregulated inflammatory biomarkers and increased circulating 
bacterial inflammagens (e.g. LPS and LTA), point to (5) the presence of systemic inflammation 
and a dysfunctional innate immune system.  Systemic inflammation is usually accompanied 
by oxidative stress that typically causes a general hypercoagulable state (6), visible as platelet 
hyperactivity, RBC eryptosis and fibrin(ogen) amyloid formation. Diagram created 
using  BioRender (https://biorender.com/). 
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Figure 2:  Box and whisker plots showing the distribution of parameters for control (left box) 
and PD (right box) populations for parameters determined to be significantly different.  
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Figure 3:  Lattice of cross-plots of statistically significant parameters colored by Parkinson’s 
disease status (Green = Control). The upper diagonal shows correlation coefficients. 
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Figure 4: (A and B) Scanning electron microscopy of whole blood smears showing 
representative platelets from healthy individuals.  (C to H) Whole blood smears from 
Parkinson’s disease (PD) individuals showing hyperactivated platelets. (C to H) PD platelets 
agglutinating to RBCs; (D and H) PD platelet spreading (G) and PD platelet aggregation (C, 
E and F). 
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Figure 5: (A TO G) Confocal microscopy images of PPP clots stained with the RgpA 
polyclonal antibody (1:100) from healthy individuals and individuals suffering from Parkinson’s 
disease. The unstained (A) and stained (B) control exhibits no fluorescent signal as well as 
both the unstained Parkinson’s disease PPP clots (C & E). Fluorescent signal of the RgpA 
antibody is prominently detected in stained Parkinson’s disease PPP clots (D & F). (G) 
represents a positive control in which a control sample that is absent of fluorescent signal 
received an exogenous load of RgpA. (H TO L) Confocal microscopy images of fibrin networks 
formed from purified fibrinogen (with added Alexa488 fluorophore) incubated with and without 
RgpA, and LPS from P. gingivalis, followed by addition of thrombin to create extensive 
fibrin(ogen) clots. (H) Representative purified fibrin(ogen) clot. (I) A representative clot formed 
after purified fibrinogen was incubated with 10ng.L-1 P. gingivalis LPS. (J) A representative 
clot formed after purified fibrinogen was incubated with 100ng.L-1 RgpA and (K)  500ng.L-1 
RgpA.  (L) A representative clot after purified fibrinogen was simultaneously exposed to a 
combination of  P. gingivalis LPS (10ng.L-1) and RgpA (500ng.L-1) . 
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Figure 6:  Examples of clots created with platelet poor plasma (PPP) for a representative 
control and two representative  Parkinson’s disease individuals to show amyloid fibrin(ogen) 
protein structure. Three fluorescent markers that bind amyloid protein were used, Amytracker 
480, 680 and Thioflavin T (as previously used for amyloid fibrin structure (Pretorius et al., 
2017c; de Waal et al., 2018).  
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Figure 7:  Simplified platelet signaling and receptor activation with main dysregulated 
molecules IL-1a, IL-1 β, TNF-α, and IL17A. Diagram created 
using  BioRender (https://biorender.com/). 

 
When inflammatory molecules are upregulated in circulation, they either cause direct 
endothelial damage (by binding to receptors on endothelial cells), or they may act as ligands 
that bind directly to platelet membrane receptors (Olumuyiwa-Akeredolu et al., 2019). When 
these inflammatory molecules disrupt endothelial cell structure, the endothelial cells release 
collagen and von Willebrand (vWF).  vWF is also a mediator of vascular inflammation 
(Gragnano et al., 2017), and it binds to exposed collagen and anchors platelets to the 
subendothelium (Du, 2007), causing platelet aggregation (Xu et al., 2016), and formation of a 
platelet plug (Jagadapillai et al., 2016).  Both collagen and vWF act as platelet receptor 
ligands, causing platelet outside-in signaling, followed by inside-out signaling. Furthermore, 
collagen and vWB binding also result in signaling processes that cause a release of stored 
molecules that are present inside a- and dense granules of platelets, and may also include 
stored interleukins (e.g. IL-6 and IL-1β); further increasing the concentration of these 
inflammatory molecules in circulation (Olumuyiwa-Akeredolu et al., 2019).    vWF binding is 
mediated by GpIbα (which is part of the GPIb-IX-V) and integrin αIIbβ3 complex (Bryckaert et 
al., 2015). This αIIbβ3 receptor also binds fibrinogen and thrombin, and both these molecules 
and vWF work together to play critical roles in platelet activation and aggregation (Estevez 
and Du, 2017).
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