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Abstract 
High-throughput amplicon sequencing of large genomic regions represents a challenge for 

existing short-read technologies. Long-read technologies can in theory sequence large 

genomic regions, but they currently suffer from high error rates. Here, we report a high-

throughput amplicon sequencing approach that combines unique molecular identifiers 

(UMIs) with Oxford Nanopore sequencing to generate single-molecule consensus 

sequences of large genomic regions. We demonstrate the approach by generating nearly 

10,000 full-length ribosomal RNA (rRNA) operons of roughly 4,400 bp in length from a mock 

microbial community consisting of eight bacterial species using a single Oxford Nanopore 

MinION flowcell. The mean error rate of the consensus sequences was 0.03%, with no 

detectable chimeras due to a rigorous UMI-barcode filtering strategy. The simplicity and 

accessibility of this method paves way for widespread use of high-accuracy amplicon 

sequencing in a variety of genomic applications.   

 
 
Introduction 

High throughput amplicon sequencing is a powerful method for analysing variation in 

defined genetic regions when sample amounts are limited, insights into low abundant 
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subpopulations are important, or samples need to be analysed in an economic manner. 

The method is therefore ideal for studying genetic populations with low abundant variants 

or high heterogeneity such as cancer driver genes1–3, virus populations4–6 and microbial 

communities7.  

 

For years, short-read Illumina sequencing has dominated amplicon related research due to 

its unprecedented throughput and low native error-rate of 0.1%, but with a limitation in 

maximum amplicon size of ~500 bp (merging of 2x300 bp PE reads)8. To enable a lower 

error-rate and sequencing of longer amplicons, unique molecular identifiers (UMI’s) have 

been applied extensively. Each template nucleotide sequence molecule in a sample is 

tagged with a UMI sequence consisting of 10-20 random bases. All derived products 

throughout processing and sequencing will contain the UMI tag, which can subsequently 

be used to sort and analyse reads based on their original template molecule. This concept 

has many applications in high-throughput sequencing, such as absolute quantification9, 

generating molecule-level consensus sequences with a low error rate10 , and assembly of 

synthetic long reads11. These applications have enabled key advances across diverse 

fields of research, such as absolute counting of transcripts in single cells12, detecting low-

frequency cancer mutations in plasma cell-free DNA13, and generating full-length microbial 

SSU ribosomal RNA (rRNA) sequences in a high throughput manner14, to mention a few. 

The lowest possible error rate of Illumina based consensus sequencing is impressive (< 

10-7 %), but the upper limit of target length for UMI synthetic long-reads remains 

approximately 2000 bp due to inefficient cluster generation of longer DNA fragments on 

the flowcells15. UMI-based protocols exist that can generate longer consensus sequences 

from short reads16, but they are not widely adopted due to complicated laboratory 
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protocols. Partitioning based methods such as 10x Genomics and TruSeq Synthetic Long-

Reads struggle resolve complex amplicon populations, as there is a high risk of >1 

amplicon ending up in the same partition which will result in a chimeric assembly8. Lastly, 

as synthetic long reads depend on de novo assembly of the short-reads, this approach will 

never be able to resolve internal molecule repeats larger than the read length.  

 

In order to analyse amplicons larger than 2000 bp in high throughput, the only feasible 

approach would be to use long-read sequencing technologies such as Oxford Nanopore 

Technologies (ONT) and Pacific Biosciences (PacBio). However, these methods are 

limited by a relatively high raw error-rate of 9 and 13% respectively17.  For PacBio, the 

circular consensus sequencing (CCS) approach, where a template molecule is circularized 

and read multiple times by the polymerase, can produce mean error rates to as low as 

0.2%18. Strategies also exist for reducing the error-rate of amplicon sequencing on the 

ONT platform with template circularization and rolling circle amplification before 

sequencing to generate single-molecule consensus sequences, but these methods suffer 

from insufficient molecule coverage to effectively reduce mean error rates below 2%19. In 

principle, lower error rates can be achieved with different clustering strategies19,20, but at 

the cost of missing variants, which are critical in many applications21.  

 

In principle, UMIs can be used in long-read amplicon sequencing to reduce sequencing 

error-rate, and eliminate PCR artefacts (e.g. chimeras), which are present irrespective of 

polymerase22 and can make up > 20% of the amplicons23. This is also true for PacBio 

CSS, where errors are introduced before sequencing during amplicon PCR amplification. 

Despite the benefits, UMIs and long-read sequencing is relatively unexplored, and only 
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recently has it been applied with PacBio sequencing, but without profiling the error of the 

generated consensus sequences24,25. For ONT sequencing the raw error rate of 5-25%26 

has, until now, made it difficult to efficiently extract UMI sequences and confidently 

determine the true UMI sequences necessary for read binning.  

 

Here, we created a UMI design containing recognizable internal patterns, which together 

with UMI length filtering now makes it possible to robustly determine true UMI sequences 

in raw nanopore data. We incorporated this patterned-UMI design into a simple, generally 

applicable laboratory and bioinformatics protocol that combines UMIs and ONT 

sequencing of long amplicons (>4500 bp) from low template amounts with high accuracy. 

As a proof of concept, we apply the method to sequence full-length ribosomal RNA (rRNA) 

operons in a mock microbial community of eight bacterial species (ZymoBIOMICS 

Microbial Community DNA Standard) and generate consensus sequences with a mean 

error rate of 0.03% and no detectable chimeras. 

 

Results and discussion 

The method is simple and comprised of two PCR amplifications, Nanopore library 

preparation, Nanopore sequencing and custom data processing (Figure 1).  First, the DNA 

template is diluted according to the desired number of output sequences. The final yield is 

impacted by the initial dilution, as well as the amplicon length and PCR efficiency; thus, the 

dilution should be calibrated empirically for an amplicon target of interest. For rRNA 

operon sequencing, we found that 5 ng of template produced ~10,000 consensus 

sequences, and is a good general starting point for further optimization. The genetic region 

of interest is targeted using 2 cycles of PCR with a custom set of tailed primers, which 
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include a target-specific primer, a UMI sequence and a synthetic priming site used for 

downstream amplification (Figure 1A, step 1). Here we used the 27F (16S)27 and the 

2490R (23S)28 primers to target the bacterial rRNA operon. The result is a dsDNA 

amplicon copy of the genetic target with UMIs and synthetic primers in both ends. This 

template is subsequently amplified by PCR (Figure 1A, step 2) and prepared for long read 

sequencing, in this case using the using the ONT 1D ligation kit and ONT MinION (Figure 

1A, step 3) followed by base-calling. After sequencing, the data is trimmed, filtered and 

reads are binned according to both terminal UMIs (Figure 1B, steps 1 and 2). To overcome 

the obstacle of binning UMIs in raw nanapore data with a mean error rate ~9.5%, we 

designed `patterned` UMIs, with the structure “NNNYRNNNYRNNNYRNNN”. The YR 

[C/T][A/G] patterns limit the length of homopolymer in the UMIs to 4 bases, which mitigates 

the higher homopolymer error rate present in ONT sequencing8. UMI sequences that have 

a high probability of being correct are detected based on the presence of the above 

pattern, as well as an expected UMI length of 18 bp. The two terminal UMIs in the 

amplicons make up a combined UMI pair of 36 bases with a theoretical complexity of 

1.2x1018 combinations, which means it is extremely unlikely that two molecules contain the 

same UMI pairs if aiming for 10,000 – 1,000,000 molecules. Chimeric amplicons will form 

during the later cycles of PCR amplification step, especially if proof-reading polymerases 

are used22. UMI pairs from these chimeric sequences are de novo filtered by removing 

reads with UMI pairs in which either UMI has been observed before in a more abundant 

UMI pair (Figure 1B, step 2)29. The filtered, high-quality UMI pair sequences are used as a 

reference for binning of the raw dataset according to UMIs (Figure 1B, step 3).  

 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 24, 2019. ; https://doi.org/10.1101/645903doi: bioRxiv preprint 

https://doi.org/10.1101/645903
http://creativecommons.org/licenses/by-nd/4.0/


Sequencing of the mock community rRNA operon library resulted in 7.4 Gbp of base-

called raw data, of which 3.3 Gbp was binned based on UMIs. The mean read coverage 

per UMI bin was 67x. The consensus sequence for each UMI bin was generated by initially 

finding the centroid sequence in the bin, and polishing this centroid with all the data in the 

UMI bin using 5 rounds of racon30 followed by 2 rounds of Medaka (Figure 1B, step 4). 

 

Initially, we observed error-rates that were highly correlated with the individual rRNA 

operons in the Zymo mock (Supplementary figure 5), which indicated errors in the 

available reference genomes, as was also reported by others20. The reference genomes 

were generated using the Unicycler assembler with both Illumina and Nanopore reads and 

polished with pilon (personal communication with Zymo Research). As Unicycler uses a 

short-read assembly as starting point31 and short-read polishing has been used for final 

curation, repeat regions are bound to contain errors resulting from ambiguous assembly 

and mapping32. To generate improved rRNA operon references, we first used a long-read 

assembly approach, in which publicly available ONT sequence data of the Zymo mock 

community33 was assembled into individual reference genomes with miniasm34 followed by 

racon and Medaka polishing. rRNA operons were then extracted from the high-quality 

long-read assemblies, and SNPs with no Illumina short-read support were manually 

curated, which were mainly indel errors in homopolymers. In total, we found 49 bacterial 

rRNA operons with 4-10 copies/species, where 44 operons were unique and had 1-379 

intra-species difference (Supplementary Figure 2). The mean difference between the 

original references and our curated sequences was 0.063% (~2.8 SNP/operon), with a 

range of 0.13 – 0.47% (6 – 21 SNP/operon) (Supplementary Figure 3).  
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A total of 9759 amplicon UMI consensus sequences with an average length of 4372 bp 

were generated with a  read coverage of ≥ 30x, a mean error rate of 0.03% and no 

detected chimeras (Figure 2C). Of these sequences, 2570 were perfect with no errors. The 

error rate is markedly different in non-homopolymer regions compared to homopolymer 

regions (Figure 2B). The non-homopolymer error rate stabilizes above a coverage of 10x 

for all error types (deletions, inserts and mismatches), with mismatches contributing to a 

majority of the remaining error (Figure 2D). Within homopolymer regions, the error rate is 

higher and continues to drop beyond 100x coverage, which is primarily due to the indel 

errors (Figure 2B). The mismatch error rate is similar between non-homopolymer and 

homopolymer regions over all coverage values. This demonstrates that the major 

obstacles for achieving a lower error rate are generally mismatch errors, as well as indel 

errors specifically in the homopolymer regions. The mismatch error rate of 0.012-0.016% 

is most likely derived from the 2 cycles of initial PCR performed to target the rRNA operon. 

For this PCR, Platinum Taq DNA high-fidelity polymerase (Thermo Fisher) was used, 

which should have an error rate in the range of 0.003 - 0.005% (6x lower than Taq) 35,36 

per duplication which theoretically would result in a cumulative error rate over 2 PCR 

cycles of up to 0.01%. Other high-fidelity polymerases with lower error rates were tested, 

but we were unable to consistently produce amplicons, which we might be due to 

unwanted intra- or inter-molecule annealing. The homopolymer indel error rate is a 

consequence of the nanopore read-head structure in the CsgG pore used in the current 

R9.4 chemistry8. Generally, the homopolymer indel rate depends on homopolymer length 

and specific nucleotide (Supplementary Table 2), i.e. A-homopolymers have markedly 

lower errors than G-homopolymers. Yet, a closer inspection of the homopolymer error 

rates reveals a more complicated picture. For example, some positions of 3xC 
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homopolymers contained more frequent insertions than longer C-homopolymers 

(Supplementary Figure 1). This problem is likely rooted within the calibration of the neural 

networks of the base-caller and consensus algorithms37, and is bound to change 

significantly in the future, and will probably be reduced with the introduction of the R10 

pores. Despite residual systematic errors, the error-rate presented here is the lowest 

documented for long read amplicons yet (Supplementary Table 4). We did not identify any 

chimera’s in the generated long-read amplicon data.  

 

An important application of high-accuracy amplicon sequencing is the ability to confidently 

call variants, even if they are present in low relative abundance. To test our method, we 

performed naive variant calling based on the consensus sequences. Consensus 

sequences initially were grouped via clustering, and SNPs within each cluster were 

phased and called as a variant if present ≥2x coverage. Subsequently, the consensus 

reads were binned according to variant, and a variant consensus sequence was 

generated. To reduce impact of systematic homopolymer errors, the homopolymers were 

masked before phasing and variant calling, and reintroduced before final consensus 

calling. Of 44 unique rRNA operons, 40 variant consensus sequences were found with no 

errors, and 4 with 1 error in homopolymer regions (Figure 3B, Supplementary table 3). An 

additional 26 spurious variants were detected with a mean error count of 1.4 (0.03% error 

rate) and a maximum of 3 (0.07% error rate). These spurious variants are supported by 

1.6% of the total data, and seem to occur due to systematic errors at specific positions 

outside homopolymer regions. 

The relative rRNA operon abundance within each species are very similar as is expected 

(Figure 3C). For some species the internal coverage variance is small (E. coli percent 
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sd=4.9) and for others it is higher (L. fermentum sd=12.8) (Supplementary figure 7 and 

supplementary table 5). By investigating the read coverage of the  mock community 

genomes within the publicly-available metagenomic nanopore data33, we found evidence 

of heavy coverage skew across the genome in some species, likely due to different growth 

rates of the cultures at the time of sampling (Figure 3D, Supplementary table 7). This skew 

can impact the relative template abundances of the operons up to +/- 50% (Supplemental 

table 5), depending on their distance to the origin of replication, and could to some degree 

explain the variance we see among inter-species operon abundances. The observed 

relative abundance between species did not match the theoretical abundance for all 

species reported by the vendor (Supplementary Table 6). Possible explanations are 

erroneous mixing of the mock community, species-dependent DNA fragment size, PCR 

primer mismatch, operon/genome GC content, and different amplification efficiencies. To 

our surprise, none of these potential causes could alone explain the observed discrepancy 

in relative abundance (Supplementary Tables 6-7 and Figures 8-10). However, it is evident 

that multiple factors have to be taken into account when interpreting this kind of data, 

especially template DNA size distribution impact on template availability (Supplementary 

figure 8), growth dependent coverage bias (Supplementary figure 7) and template 

amplification efficiency (Supplementary figure 10).  

 

The data presented here was generated in 48 hrs (6 hrs lab work, 24 hrs sequencing, 6 

hrs data processing) at a reagent cost of 1100 USD, which is ~0.1 USD/consensus 

sequence. Using this method on the PacBio Sequel system with the SMRT Cell 1m chips, 

we anticipate the output would be around 100,000 UMI consensus sequences at a cost of 

~0.02 USD/consensus sequence with a marginally better error rate as the PacBio errors 
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seem more random and therefore better suited for consensus calling38. The throughput will 

likely change by a factor of 10x with the roll-out of Sequel II and the SMRT Cell 8m chips. 

The turnaround for PacBio sequencing is theoretically < 24 hrs, but as most users would 

need sequencing out-of-house, this is more likely > 7 days. We predict the ease of use, 

fast turn-around time and accessibility will favour sequencing of high-accuracy amplicons 

on the ONT platform.  

 

Over the past several decades, the amplification and sequencing of ribosomal RNA 

(rRNA) genes, primarily 16S and 18S, has become an integral method used to study the 

diversity and taxonomic composition of microbial communities in a variety of 

environments39. With our method, it is now possible to effortless improve upon high-

throughput sequencing of environmental samples with databases based on full rRNA 

operon (SSU-ITS-LSU), which hasn’t been feasible before due to the length of the operon 

(≈ 5 kbp) and the method limitations described earlier. A database of full operon rRNA 

sequences will help improve upon rRNA phylogeny, allow higher phylogenetic resolution40–

43, especially critical if the method is applicable to eukaryotes44,45, and will present a wider 

range of target regions for short-read amplicon sequencing and FISH probes46,47.  

 

High-accuracy amplicon sequencing of long targets has many applications, and the ease 

and accessibility of this method now makes it possible for the wider scientific community to 

develop new solutions – all you need is a modified version your favourite primers, a few 

generic molecular laboratory instruments and Minion starter kit from Oxford Nanopore. 

While the residual error rate in the Nanopore consensus data is negligible, the remaining 

systematic indel errors could still be an issue in some contexts, such as sensitive assays 
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where low abundant variants are important or if shifts in reading frames cannot be 

tolerated. This will hopefully be solved soon, and until then the method can be used with 

the PacBio platform for these specific purposes. By exchanging the initial PCR for a 

ligation step, high-accuracy amplicon sequencing could also be applied to fragmented 

DNA with tight size distributions (5-15 kbp) to produce long reads with low error rate, which 

holds great promise for human genome sequencing18 and resolving strain-diversity in 

metagenomes48. 
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Figure 1: Overview of laboratory (A) and bioinformatics workflow (B). 
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Figure 2: (A) Error rate as function of the number of reads in each UMI bin. The inlaid 
table shows the mean error rate of raw reads and UMI consensus sequences with a 
coverage >= 30. (B)  Error rate as function of the number of reads in each UMI bin split by 
error type and whether the error fell inside (Hp+) or outside (Hp-) a homopolymer region. 
The inlaid table gives the mean error rates summaries for all error and homopolymer types 
for bins with >= 30 coverage.  
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Figure 3: UMI sequencing results for the mock community. Note that the following 
operons are identical: B. subtilis 4 & 5; L. monocytogenes 2 & 5; P. aeruginosa 1-4. The S. 
enterica operon 2 & 4 differ by 1 bp within a 7 bp homopolymer. A) The number of errors in 
the UMI consensus sequences. Black bars represent the median number of errors. B) The 
number of errors in the variant consensus sequences. The size of the circles are scaled by 
the number of UMI consensus sequences in each variant. C) Number of UMI consensus 
sequences pr. operon. The count for identical operons have been divided evenly on each 
operon. D)  Coverage profile of the mock community based on shotgun Nanopore 
sequencing data. Each grey point is a 10 kbp average. Colored points represents the 
position of the individual rRNA operons.  
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Methods  
 
Sources of DNA 
 
The ZymoBIOMICS Microbial Community DNA Standard (D6305, lot no. ZRC190633) was 

obtained from Zymo Research (Irvine, California). The mock community DNA contained genomic 

material from 10 species (8 bacteria and 2 yeasts): Bacillus subtilis, Cryptococcus neoformans, 

Enterococcus faecalis, Escherichia coli, Lactobacillus fermentum, Listeria monocytogenes, 

Pseudomonas aeruginosa, Saccharomyces cerevisiae, Salmonella enterica, Staphylococcus 

aureus. Note, 2 of the yeast species were not targeted by PCR amplification of rRNA operons. The 

concentration of mock DNA was measured on a Qubit 3.0 fluorometer and Qubit dsDNA HS assay 

kit (Thermo Fisher Scientific) and the quality of the mock DNA was measured by gel 

electrophoresis on an Agilent 2200 Tapestation using Genomic screentapes (Agilent 

Technologies). 

 
DNA Sequence Library Preparation  
 
Target gene and add UMIs 
 
PCR was used to target the bacterial 16S-23S rRNA operon and simultaneously tag each 

template molecule with terminal unique molecular identifiers (UMIs).  

The following primers were used for the PCR. Forward primer (ncec_16S_8F_v7): 5’-

CAAGCAGAAGACGGCATACGAGAT NNNYRNNNYRNNNYRNNN 

AGRGTTYGATYMTGGCTCAG. Reverse primers (ncec_23S_2490R_v7): 5’- 

AATGATACGGCGACCACCGAGATC NNNYRNNNYRNNNYRNNN 

CGACATCGAGGTGCCAAAC. The first section of both primers is a specific priming site used 

for downstream amplification. The second section is the `patterned` UMI consisting of a total of 

12 random nucleotides (N) and 6 degenerate nucleotides (Y or R) which results in a total of 
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1.2x1018 possible UMI combinations if the UMIs in both ends of a molecule are concatenated 

(412*2 x 26*2 = 1.2x1018). The last section of the primers consists of the rRNA operon specific 

primer site for 27f1 and 2490r2, respectively. 

The PCR reaction contained 10 ng of ZymoBIOMICS Microbial Community DNA Standard, 0.5 

U Platinum Taq DNA Polymerase High Fidelity (Thermo Fisher Scientific, USA), and a final 

concentration of 1x High Fidelity PCR buffer, 100 mM of each dNTP, 1.5 mM MgSO4, 500 nM 

of each ncec_16S_8F_v7/ ncec_23S_2490R_v7 primers in 50 µL. The PCR program consisted 

of initial denaturation (3 minutes at 95◦C) and 2 cycles of denaturation (30 seconds at 95◦C), 

annealing (30 seconds at 55◦C) and extension (6 minutes at 72◦C). The PCR product was purified 

using CleanPCR (CleanNA, Netherlands) following the manufacturer’s instructions (CleanPCR, 

manual revision v1.02) with the exception of an EtOH concentration of 80%, post wash dry time 

of < 3 minutes and 0.6x bead solution/sample ratio. 

 

Amplification of UMI tagged amplicons 

A second PCR was used to amplify the UMI-tagged template molecules. All of the UMI-tagged 

template molecules were added along with a final concentration of 1x High Fidelity PCR buffer, 

100 mM of each dNTP, 1.5 mM MgSO4, 500 nM of each ncec_pcr_fw_v7 (5- 

CAAGCAGAAGACGGCATACGAGAT) and ncec_pcr_rv_v7 (5- 

AATGATACGGCGACCACCGAGATC) primers and 0.5 U Platinum Taq DNA Polymerase 

High Fidelity (Thermo Fisher Scientific, USA) in 100 µL. The PCR program consisted of initial 

denaturation (3 minutes at 95◦C) and then 25 cycles of denaturation (15 seconds at 95◦C), 

annealing (30 seconds at 60◦C) and extension (6 minutes at 72◦C) followed by final extension (5 

minutes at 72◦C). The PCR product was purified using a custom bead purification protocol 
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“SPRI size selection protocol for >1.5-2 kb DNA fragments” (Oxford Nanopore, England) based 

on: dx.doi.org/10.17504/protocols.io.idmca46. CleanPCR (CleanNA, Netherlands) bead solution 

was used for preparing the custom buffer. The purification was performed according to the 

custom protocol with the exception of an EtOH concentration of 80% and 0.9x bead 

solution/sample ratio. The concentration and quality of the PCR amplicons was measured as 

described before.  

 

To obtain sufficient PCR product for Oxford Nanopore sequencing, a third PCR was performed 

using amplicons from the second PCR and the same procedure as before, but with 4 x 100 µl 

reactions and 10 cycles of amplification. The final amount of amplicon generated was 10 µg in 

55 µL. 

 
DNA Sequencing 
 
2000 ng of the purified amplicon from the third PCR was used as template for library preparation 

using the protocol “1D amplicon/cDNA by ligation (SQK-LSK109)” (Oxford Nanopore, 

England) with omission of the AMPure purification after the end-prep step. A R9.4.1 FLO-

MIN106 flowcell was used for sequencing on a MinION and MinKNOW v18.12.9 (Oxford 

Nanopore, England). Basecalling was performed with Guppy v2.3.7 in GPU mode and the 

dna_r9.4.1_450bps_flipflop.cfg model (Oxford Nanopore, England).  

 
Data generation workflow 
 
Trimming and filtering of raw data 
 
Raw fastq sequence data was adaptor trimmed using porechop with the commands: --

min_split_read_size 3500 --adaptor_threshold 80 --extra_end_trim 0 --
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extra_middle_trim_good_side 0 --extra_middle_trim_bad_side 0 --middle_threshold 80 --

check_reads 1000 ( v0.2.4  https://github.com/rrwick/Porechop). Additionally, the adaptors.py 

file in porechop was modified to include possible end-to-end ligation combinations of the custom 

primers (ncec_pcr_fw_v7/ ncec_pcr_rv_v7 5-GTCTTCTGCTTGAATGATACGGCG; 

ncec_pcr_fw_v7/ ncec_pcr_fw_v7 5-GTCTTCTGCTTGCAAGCAGAAGAC; ncec_pcr_rv_v7/ 

ncec_pcr_rv_v7: 5-CGCCGTATCATTAATGATACGGCG). The custom settings and 

modifications to adaptors.py were necessary to correctly split amplicons concatenated in the 

ligation step of the library preparation, which made up a substantial amount of the data. 

The adaptor trimmed data was filtered using filtlong --min_length 3500 --min_mean_q 70 

(v0.2.0 https://github.com/rrwick/Filtlong) and cutadapt3 (v2.1)-m 3500 –M 6000. The final 

result from these pre-processing steps was trimmed and filtered raw read data. 

  

Extraction of UMI reference sequences 

To efficiently bin reads according to UMIs, it was critical to extract and validate true UMI 

sequences that could be used as references. UMI sequences of the correct length (18 bp) were 

extracted from the reads by locating the flanking sequences within the custom primers. The first 

200 bp from each terminal end of all reads were extracted using awk, and saved into individual 

files. UMI sequences were extracted from each terminal file with cutadapt3 (v2.1) in paired-end 

input mode, using the commands: -e 0.2 -O 11 -m 18 -M 18 --discard-untrimmed -g  

CAAGCAGAAGACGGCATACGAGAT…AGRGTTYGATYMTGGCTCAG -g 

AATGATACGGCGACCACCGAGATC…CGACATCGAGGTGCCAAAC -G 

GTTTGGCACCTCGATGTCG…GATCTCGGTGGTCGCCGTATCATT -G 

CTGAGCCAKRATCRAACYCT…ATCTCGTATGCCGTCTTCTGCTTG. This step insured that 
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only reads with UMIs of the correct length in both ends were extracted. UMI pairs were then 

concatenated and filtered to remove UMI pairs that did not follow the expected pattern 

(NNNYRNNNYRNNNYRNNNNNNYRNNNYRNNNYRNNN). Filtered UMI pairs were 

clustered using usearch4 (v11.0.667) with the commands: -fastx_uniques -minuniquesize 2 -

strand both and usearch -cluster_fast -id 0.85 -centroids -sizein -sizeout -strand both. Potential 

chimeras were removed by filtering all UMI pairs containing a single UMI that was observed in 

another UMI pair with a higher abundance. The final result from these steps was a list of trusted 

UMI pairs that could be used as references for binning reads.  

 

Binning reads according to UMI 

The first 55-65 bp of each terminal of the trimmed and filtered reads were extracted with awk 

and saved into individual files. The UMI pair reference sequences were split into their 

corresponding single UMIs and mapped to the read terminals using bwa5 (v0.7.17-r1198-dirty) 

with the commands: index, aln -n 3 –N, and samse –n 10000000. The mapping results were then 

filtered using samtools6 (v1.9) with the command view -F 20.  Mapping results from each end of 

the reads were merged, and a read was assigned to a specific UMI pair reference if either: A) the 

UMI was the best hit; B) the mapping difference between the query read and each sub UMI was 

≤ 3 bp. Based on these designations, the trimmed and filtered reads were divided into UMI bins. 

 

Generation of UMI consensus sequences 

For each individual UMI bin, a consensus sequences was initially generated using usearch 

(v11.0.667) with the commands -cluster_fast -id 0.75 -strand both -centroids, and picking the 

most abundant centroid. The centroid sequence was used as template for three rounds of 
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polishing using all the UMI bin reads with minimap27 (v2.16-r922) with the command -x ava-ont 

and racon8 (v1.3.1) with the command -m 8 -x -6 -g -8 -w 800. The racon-polished consensus 

sequence was further polished using all of the reads in that UMI bin using two rounds of Medaka 

(v0.6.5) with the commands -m r941_flip235_model.hdf5 

(https://github.com/nanoporetech/medaka). The polished consensus sequences from all UMI bins 

were then pooled and trimmed and filtered using cutadapt with the commands -m 3000 -M 6000 

–g AGRGTTYGATYMTGGCTCAG…GTTTGGCACCTCGATGTCG. Consensus sequences not 

containing both primers were discarded. 

 

Phasing of consensus sequences 

Consensus sequences were phased and used to call variants using a custom workflow. The 

homopolymers were masked in the consensus sequences by converting homopolymers of length 

≥3 into length 2 to prevent them from impacting the phasing. The masked consensus sequences 

were clustered using two rounds of usearch with the commands -cluster_fast -id 0.995 -strand 

both -consout -clusters -sort length -sizeout, and removing clusters of size < 3. The reads 

belonging to each cluster were mapped back to the consensus sequence of the cluster using 

minimap2 with the command –ax asm5. Genotype likelihoods were estimated from the mappings 

with bcftools9 (v1.9)  with the command mpileup –Ov –d 1000000 –L 1000000 –a 

“FORMAT/AD,FORMATDP”, and the results were filtered to show positions of SNPs present in 

≥2x coverage using bcftools view -i ‘AD[0:1-]>2’ for each cluster. The list of SNP positions 

were used to phase the reads within a cluster, and a variant was called if ≥3 reads supported a 

combination of SNPs. Consensus reads were then grouped according to called variants, and 

consensus sequences were generated for each variant group. First, the homopolymers were 
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unmasked in the consensus reads and a crude variant consensus was generated using usearch 

with commands -cluster_fast -id 0.99 -strand both -consout –sizeout. The crude variant 

consensus was polished with workflow using minimap2 with commands –ax map-ont, bcftools 

mpileup –Ov –d 1000000 –L 1000000 –a “FORMAT/AD,FORMAT/DP”, bcftools norm –Ov, 

bcftools view -i ‘AD[0:1]/FORMAT/DP>0.5’ –Oz and bcftools consensus.  

 

Pipeline parallelization 

Many steps in the pipeline has been parallelized using GNU parallel10.  

Generation of Reference Sequences for Mock Community 
 
We obtained raw fast5 files from a previously-reported sequencing effort of the ZymoBIOMICS 

Microbial Community DNA Standard using Oxford Nanopore Technologies GridION flowcells 

(available from: https://github.com/LomanLab/mockcommunity). The fast5 data was basecalled 

using the GPU-basecaller guppy v. 2.2.3 with “flipflop” mode. The basecalled reads mapped to 

the existing reference sequences using minimap2 (v.2.12) using default settings. The mapped reads 

were assembled separately for each reference using minimap2 (v.2.12) to create overlaps and 

miniasm (v.0.3) to perform the assembly using default settings. The reads were mapped to the 

assembled genomes using minimap2 (v.2.12) using default settings and racon (v.1.3.1) was used 

to retrieve corrected consensus sequences using default settings. The corrected sequences were 

subsequently polished with medaka (v.0.6.0, https://github.com/nanoporetech/medaka) with the 

“r941_flip_model” model. Ribosomal RNA operons were extracted from the draft reference 

genome assemblies using in silico PCR with our forward and reverse primers using the ipcress 

command from the package exonerate (v.2.2), and were verified with genome coordinates for 

rRNA operons predicted by barrnap (v.0.9) (available from: https://github.com/tseemann/barrnap). 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 24, 2019. ; https://doi.org/10.1101/645903doi: bioRxiv preprint 

https://github.com/LomanLab/mockcommunity
https://github.com/nanoporetech/medaka
https://github.com/tseemann/barrnap
https://doi.org/10.1101/645903
http://creativecommons.org/licenses/by-nd/4.0/


 

To further remove any residual errors from the rRNA operon reference sequences after assembly 

and polishing, high-quality short reads generated from Illumina sequencing were downloaded from 

NCBI for each bacterial strain in the mock community (accessions: ERR2935851, ERR2935850, 

ERR2935852, ERR2935857, ERR2935854, ERR2935853, ERR2935848, ERR2935849) and used 

for final polishing. The Illumina reads were randomly subsampled to an expected average coverage 

of 100 for each bacterial strain using the sample command in seqtk (v.1.0) (available from: 

https://github.com/lh3/seqtk). The subsampled Illumina reads were mapped to the draft rRNA 

operon sequences using minimap2 with the settings: -ax sr. The BAM files were sorted and 

indexed by samtools. We performed variant calling using bcftools (v1.9) with the commands 

mpileup and call using the settings: ploidy =1. Variant calls were filtered using bcftools filter with 

the settings: quality > 200. Variant calls were manually inspected and corrected, if needed, by 

visualizing mapping profiles in CLC Workbench. Polished consensus sequences were generated 

with bcftools consensus to generate high-quality references for use in benchmarking error rates in 

this study.  

 

Data analysis 

Chimera detection 

Chimeras in the consensus sequences were detected by usearch12 with the commands -

uchime2_ref -strand plus -mode sensitive, using our curated rRNA operon reference sequences 

from the ZymoBIOMICS Microbial Community DNA Standard (see above).  

 

Error profiling 
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Detection of error was based on a mapping of the sequence data (raw reads, consensus 

sequences, variant consensus sequences) to our curated rRNA operon reference sequences from 

the ZymoBIOMICS Microbial Community DNA Standard (see above). Mapping was performed 

with minimap2 -ax map-ont --cs and filtered using samtools view -F 256. The references and 

mappings were imported into R software environment13 (v3.5.1), where errors in the sequences 

were profiled using mainly the tidyverse (v1.2.1 https://www.tidyverse.org/) and Biostrings14 

(v2.48.0) R-packages and custom scripts (see Code availability). In brief, errors and their type 

(mismatch, deletion, insert) were detected from the SAM --cs tags. The relative positions of the 

errors was determine in respect to the reference and this was used to categorize the errors as 

being homopolymers errors (hp+) or no (hp-). The error information was combined with 

metadata (UMI bin sizes, most similar reference etc.) and used to explore and visualize error as 

function of different parameters.  

 
Exploration of relative abundance inconsistencies 
 
We observed a difference between the relative abundance estimated with our UMI consensus 

data and the theoretical abundance for the rRNA operons of the mock community. We 

investigated several different potential causes of this discrepancy by importing relevant data and 

metadata into the R software environment13 (v3.5.1), using mainly the tidyverse (v1.2.1 

https://www.tidyverse.org/) and Biostrings14 (v2.48.0) R-packages and custom scripts (see Code 

availability). 

 

Validate content of ZymoBIOMICS mock. Oxford Nanopore data from the ZymoBIOMICS 

Microbial Community DNA Standard described above was used for the analysis. The data was 

divided per species and imported into R. Based on read lengths, the total bp count was estimated 
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for each species, and used together with the theoretical genome sizes and rRNA operon copy 

numbers to estimate the theoretical relative abundance of 16S (equal to rRNA operons). The read 

length data was used to estimate the amount of DNA theoretically available for rRNA operon 

PCR. A DNA fragment has to be equal to or larger than the rRNA operon to be a valid PCR 

template. Furthermore, DNA fragments are generated randomly and break points introduced 

within the operon will also render the DNA fragment useless as a template for PCR. Hence, all 

fragments below 4500 bp were discarded and fragments 4500 bp were subtracted from all 

lengths > 4500 bp to take broken operons into account. Based on the adjusted read lengths we 

estimated an adjusted theoretical relative abundance of 16S rRNA. 

 

Investigate impact of GC and operon length. Possible impact of GC content (genome/rRNA 

operon) and operon read lengths was investigated by plotting relative difference between 

observed abundance and theoretical abundances. 

 

Investigate PCR primer match. A bias in relative abundance can be introduced in the first PCR 

where the rRNA operon is targeted with region specific primers. If there are mismatches between 

primers and template, we would expect a lower annealing/amplification efficiency. 

Primer/template mismatches were estimated using ipcress as described above. 

 

Investigate PCR amplification bias. A bias in relative abundance can also be introduced in the 

second PCR where the UMI tagged amplicons are amplified with > 25 cycles of PCR. If a 

specific template has a relatively poor amplification efficiency we would expect this to impact 
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the general bin size of this template. To investigate this, we imported UMI bin size statistics and 

UMI classifications into R and plotted bin sizes as function of species, operon and operon size. 

 

Analysis of genomic coverage skew due to growth. A bias in relative abundance could also occur 

due to the mock species being in different growth phases at the time of sampling. To investigate 

the potential contribution of growth to coverage bias, we used the previously genomes of the 

mock community species. Nanopore data was mapped to each species genome using minimap2 -

ax map-ont and calculated genome position depth using samtools. Ribosomal RNA operon 

genome coordinates were predicted by barrnap as described before. The data was imported into 

R, and used to create read coverage plots. 

 
Code Availability  
 
Source code and analysis scriptes are freely available at https://github.com/SorenKarst/longread-

UMI-pipeline 

 

Data Availability 
 
Raw and assembled sequencing data is available at the European Nucleotide Archive 

(https://www.ebi.ac.uk/ena) under the project number PRJEB32674 and a complete data 

overview can be found in supplementary table XXX. 
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Figure S1: Error as function of homopolymers in reference sequences. All homopolymers in the 
reference sequences (44 unique curated rRNA operons from the ZymoBIOMICS Microbial 
Community DNA Standard) have been categorized according to nucleotide (four boxes) and length 
of homopolymer (x-axis). Each dot represents a specific homopolymer in a specific reference 
operon. The y-axis denotes the fraction of sequences with a specific operon that either has a 
deletion, insertion or is perfect. The numbers at the top of the boxes show the total number of 
homopolymers in each category. 
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Figure S2: Difference between intra species rRNA operons. Each table show intra species difference 
between rRNA operons. Below the diagonal is total differences and above is total indels. The analysis 
was performed on the curated rRNA operons from the ZymoBIOMICS Microbial Community DNA 
Standard using CLC genomics workbench v9.5.5 (Qiagen) using the ´Create Alignment´ tool (Gap 
open cost = 10.0, Gap extension cost = 1.0, End gap cost = Free, Alignment mode = Very accurate 
(slow), Redo alignments = No, Use fixpoints = No) and the ̀ Create pairwise comparison` tool (default 
settings). 
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Figure S3: Comparison between none-curated and curated rRNA reference sequences. 
Comparison between curated and none-curated reference sequences at species level. Left is an 
overview table, which lists Zymo references, their closest curated reference, differences between 
the two divided by type (deletion, insert and mismatch) and total error rate. Right is a combined 
phylogenetic tree of curated and none-curated references. 
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Figure S4: Comparison between none-curated and curated rRNA reference sequences. 
Comparison between curated and none-curated reference sequences at species level. Left is an 
overview table, which lists Zymo references, their closest curated reference, differences between 
the two divided by type (deletion, insert and mismatch) and total error rate. Right is a combined 
phylogenetic tree of curated and none-curated references. 
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Figure S5: Number of errors in UMI consensus using none-curated references. The number of 
errors in the UMI consensus sequences estimated based on none-curated rRNA reference 
sequences. Black bars represent the median number of errors.  
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Figure S6: Validation of chimera detection. Chimera detection is notoriously difficult when 
sequencing errors are present and uchime2_ref, which we used, will only call a chimera if a 
sequence is an error-free combination of the references40. We estimate that approximately ~10% 
of our consensus sequences are error-free, and hence the chimera detection only works as 
intended on that fraction of the data. To validate that closely related chimeras would be identified 
with uchime2_ref, we generated a mock chimera dataset from the references sequences, which 
had from 1 to 842 bp differences to the closest matching references. 99.98% of the inter species 
chimeras (n = 5000) were detected and 11.6% of the intra species chimeras (n = 3123). The plot 
shows the test results; the data is divided by inter and intra species chimeras and the x-axis shows 
number of differences between chimera and closest matching reference and the y-axis shows 
number of chimeras. It is mainly chimeras with few SNPs that an not classified.  
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Figure S7: Mock community metagenome read coverage across genomes. Coverage profile of the 
mock community based on shotgun Nanopore sequencing data. Each grey point is a 10 kbp 
average. Colored points represents the position of the individual rRNA operons. 

 

 

Figure S8: Read size distribution of mock community metagenome data.  Each line plot 
represents the read size distribution from each mock community species estimated from the 

Nanopore metagenome data. Some species have significantly more high molecular DNA over 5000 
bp compared to some of the other species, which is important for effective template availability in 
PCR. The distributions seem to be gram+/- dependent. Were different DNA extraction kits used? 

 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 24, 2019. ; https://doi.org/10.1101/645903doi: bioRxiv preprint 

https://doi.org/10.1101/645903
http://creativecommons.org/licenses/by-nd/4.0/


 

Figure S9: Correlation between GC content and difference in observed and theoretical relative 
abundance. 
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Figure S10: Correlation between operon length and difference in observed and theoretical 
relative abundance.  
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Table S1: Error rate and types depending on UMI read coverage. 

 

Table S2: Error rate (%) divided by homopolymer type and length.  
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Table S3: List of called variants from UMI consensus data. 
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Table S4: Overview of high-accuracy long amplicon sequencing from the literature. 

Sequencing 
Platform 

Average length 
of sequences Yield (Mbp) 

Error Rate of 
Consensus 

Sequences (%) 

Error Rate of 
Clustered 
Consensus 
Sequences 

(%) 

Reference 

PacBio 

1,460 a 90 b 0.21 c 0.027 d (Schloss et al., 
2016) 

1,400 e 16 e - 0.50 (Singer et al., 
2016) 

1,500 a 16 - 0.0073 d (Wagner et al., 
2016) 

1,500 14.7 2.5 - (Jiao et al., 
2013) 

5,000 1,170 1.1 - (Volden et al., 
2018) 

13,500 89,000 0.20 - (Wenger et al., 
2019) 

Nanopore 

1,386 f 7.8 g 2.0 h 0.50 i (Calus et al., 
2018) 

5,000 2,180 6.0 - (Volden et al., 
2018) 

730 0.87 3.0 - (Li et al., 2016) 

Illumina 
1,530 16 0.17 - (Karst et al., 

2018) 

6,000 17.3 0.04 - (Stapleton et 
al., 2016) 

a Actual length was not provided for V1-V9 amplicon after filtering. This value is based on expected amplicon length.  
b Based on 61,721 sequences, and 51.33% of sequences remaining after filtering. 

c Sequence accuracy following de-novo 
d Consensus sequence accuracy after pre-clustering sequences at 99% similarity. 
e Based on mock community dataset 
f With 1D2 sequencing 
g Based on 5,622 reads passing filters 
h Sequence accuracy following de-novo correction and size selection 
i Consensus sequence accuracy after clustering into OTUs at 97% similarity with nanoclust algorithm 
 

Table S5: Overview of metagenome read coverage stats. 
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Table S6: Overview of different estimates of relative abundance in mock community. 
‘Theoretical 16S relative abundance’ is the abundance provided by the vendor. ‘Theoretical 16S 
relative abundance based on metagenome’ is estimated based on the Nanopore metagenome 
data and the number of rRNA operons per genome. ‘Observed 16S relative abundance UMI 
consensus data’ is based on the UMI consensus data. GC content is estimated from the genome 
and rRNA operon reference sequences. 

 

 

Table S7: Estimation of mismatches between primers and rRNA operon sequences 
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