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Abstract 

Non-genetic variability in human induced pluripotent stem cell (iPSC) lines impacts their differentiation 

outcome, limiting their utility for genetic studies and clinical applications. Despite the importance of 

understanding how non-genetic molecular variability influences iPSC differentiation outcome, large-scale 

studies capable of addressing this question have not yet been conducted. Here, we performed 258 directed 

differentiations of 191 iPSC lines using established protocols to generate iPSC-derived cardiovascular 

progenitor cells (iPSC-CVPCs). We observed cellular heterogeneity across the iPSC-CVPC samples due to 

varying fractions of two cell types: cardiomyocytes (CMs) and epicardium-derived cells (EPDCs). Analyzing 

the transcriptomes of CM-fated and EPDC-fated iPSCs discovered that 91 signature genes and X chromosome 

dosage differences influence WNT inhibition response during differentiation and are associated with cardiac 

fate. Analysis of an independent set of 39 iPSCs differentiated to the cardiac lineage confirmed shared sex and 

transcriptional differences that impact cardiac fate outcome. The scale and systematic approach of our study 

enabled novel insights into how iPSC transcriptional and X chromosome gene dosage differences influence 

WNT signaling during differentiation and hence cardiac cell fate. 
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Introduction 

Variability in human induced pluripotent stem cell (iPSC) lines compromises their utility for regenerative 

medicine and as a model system for genetic studies. This variability impacts iPSC differentiation outcome and 

despite using standardized differentiation protocols, large-scale applications result in the generation of samples 

with cellular heterogeneity (i.e. multiple cell types are present within a given sample and the proportions of cell 

types vary across samples) (Guzzo et al., 2013; Schwartzentruber et al., 2018; Zhao et al., 2017). Previous 

large-scale quantitative trait loci (QTL) studies in iPSCs (Carcamo-Orive et al., 2017; DeBoever et al., 2017; 

Kilpinen et al., 2017) have shown that genetic variation accounts for the majority of expression differences 

between iPSC lines, but non-genetic factors also contribute to these differences. Understanding how non-

genetic transcriptional differences between iPSC lines impact their differentiation outcome is necessary to 

improve the ability to generate cell types of interest. 

Well-established small molecule protocols for generating iPSC-derived cardiovascular progenitor cells (iPSC-

CVPCs) (Lian et al., 2013) produce fetal-like cardiomyocytes, which can undergo further specification as cells 

mature in culture into various cardiac subtypes (atrial, ventricular, or nodal) (Burridge et al., 2014). Based on 

variable cardiac troponin T (cTnT) staining, the derived samples are known to display cellular heterogeneity 

(Dubois et al., 2011; Kattman et al., 2011; Witty et al., 2014), but the origin of the cTnT-negative non-myocyte 

cells, and whether the same or different non-myocyte cell types are consistently derived alongside cTnT-

positive myocytes across samples has not previously been investigated. The differentiation protocol is 

dependent on manipulation of WNT signaling, initially through activation of the pathway by GSK3 inhibition, 

followed by inhibition of the pathway by Porcupine (PORCN) inhibition (Mo et al., 2013; Wang et al., 2013). 

An in-depth analysis of the outcomes of independent differentiations of hundreds of iPSC lines with different 

genetic backgrounds could provide insights into the origins of the non-myocyte cells, as well as the extent to 

which non-genetic transcriptional differences between iPSC lines contribute to the iPSC-CVPC cellular 

heterogeneity.  
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Here, we used a highly standardized and systematic approach to conduct 258 directed differentiations of 191 

iPSC lines (Panopoulos et al., 2017) into iPSC-CVPCs. We characterized the cellular heterogeneity of the iPSC-

CVPC samples and showed that only two distinct cell types were present, cardiomyocytes (CMs) and 

epicardium-derived cells (EPDCs), which varied in proportion across samples. As differentiation protocols to 

derive iPSC-CMs and iPSC-EPDCs primarily differ by a step involving WNT inhibition to derive the former, 

but not the later (Bao et al., 2016; Hartman et al., 2016; Iyer et al., 2015; Witty et al., 2014), we hypothesized 

that the observed cellular heterogeneity could result from suboptimal WNT inhibition in subsets of cells across 

iPSC lines.  To test this hypothesis, we analyzed transcriptional differences between iPSC lines that 

differentiated into CMs and those that differentiated into EPDCs (e.g. iPSCs with a CM-fate or EPDC-fate) and 

discovered 91 signature genes associated with cardiac fate differentiation outcome. These signature genes are 

involved in differentiation, including the Wnt/β-catenin pathway, muscle differentiation or cardiac-related 

functions, and the transition of epicardial cells to EPDCs by epithelial-mesenchymal transition (EMT). While 

the proportion of variance explained by each of the signature genes varied over three orders of magnitude, 

altogether they captured approximately half of the total variance underlying iPSC fate determination. 

Additionally, we show variability in X chromosome gene dosage (XactiveXactive vs XactiveXinactive vs XY) across 

iPSCs plays a role in cardiac fate determination. The association with X chromosome gene dosage could in part 

be due to higher expression in CM-fated iPSCs of chrXp11 genes, which encodes PORCN. Transcriptomic 

analysis of an independent set of 39 iPSCs differentiated to the cardiac lineage using a similar small molecule 

protocol (Banovich et al., 2018) confirmed our findings.  

Results 

iPSC-CVPCs show cellular heterogeneity across samples  
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To gain insights into molecular mechanisms that could influence variability in human iPSC differentiation 

outcome, we employed a highly systematic approach (Figures S1, S2) to differentiate 191 pluripotent lines from 

181 iPSCORE individuals (Panopoulos et al., 2017) (Figure 1A, B, Table S1) into iPSC-derived cardiovascular 

progenitor cells (iPSC-CVPCs). We used a small molecule cardiac differentiation protocol used to derive 

cardiomyocytes (Lian et al., 2015) followed on D15 by lactate selection to obtain pure cardiac cells (Tohyama 

et al., 2013). In total, we conducted 258 differentiations, of which 193 (80.6%, from 154 lines derived from 144 

subjects) were completed, i.e. reached Day 25 of differentiation, while 65 (from 37 lines derived from 37 

subjects) were terminated prior to Day 25, because they did not form a syncytial beating monolayer (Table S2, 

Table S3). The completed iPSC-CVPCs at D25 on average had a high fraction of cells that stained positive for 

cardiac troponin T (%cTnT, median = 89.2%; Figure 1C) and were positive by immunofluorescence (IF) for 

cardiac markers (Figure 1D-G, Figure S3, Table S4); however, 15 lines had %cTnT < 40%, indicating that 

despite lactate selection, there was substantial cellular heterogeneity within and across samples.  

Subset of cells show differential response to WNT inhibition during differentiation 

To examine the cellular heterogeneity in the iPSC-CVPCs, we performed single-cell RNA-seq (scRNA-seq) on 

eight samples with varying %cTnT values (42.2 to 95.8%, Table S5, Table S6) and combined these data with 

scRNA-seq from the H9 ESC line (total of 34,905 cells). We detected three distinct cell populations: 1) 

Population 1, 21,056 cells (60.3%); 2) Population 2, 11,044 cells (31.6%); and 3) Population 3, 2,805 cells 

(8.1%) (Figure 1H, Figure S4), (Table S7). While Populations 1 and 2 were comprised of the eight iPSC-

derived samples, Population 3 was almost exclusively included ESC cells (97.7% of the 2,870 ESC cells), 

(Figure 1I, Figure S5). The relative proportion of cells that each of the iPSC-CVPC samples contributed to 

Population 1 versus Population 2 was strongly correlated with its %cTnT value (r = 0.938, p = 1.89 x 10-4, t-

test; Figure 1J), suggesting that Population 1 was cardiomyocytes. 
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As cardiomyocytes (CMs) and epicardium lineage cells could both survive lactate purification (Friedman et al., 

2018; Iyer et al., 2015; Ng et al., 1997; Tohyama et al., 2013), we investigated if the non-myocyte cells 

composing Population 2 were iPSC-epicardium-derived cells (iPSC-EPDCs). We examined the expression 

levels of 16 marker genes (Figure 1A, B) specific for either CMs or EPDCs (including smooth muscle, 

fibroblasts and genes involved in epithelial-to-mesenchymal transition, Figure 1K) and two marker genes for 

stem cells. Consistent with having a high number of cTnT-positive cells, Population 1 expressed high levels of 

CM-specific genes, while Population 2 expressed high levels of EPDC-specific genes, and Population 3 

expressed high levels of the stem cell markers POU5F1 and SOX2 (Figure S6). Of note, TNNT2 was expressed 

in some of the cells in Population 2 (Figure S6), which is consistent with the strong, but not absolute correlation 

between %cTnT value and fraction of Population 1 (Figure 1J), and previous studies showing that some EPDCs 

express TNNT2 (Witty et al., 2014). These results show that the small molecule differentiation protocol 

followed by lactate purification (Figure S1) resulted in the absence of undifferentiated cells at D25 and in the 

derivation of two distinct cell populations, one of which expresses high levels of CM markers, including 

TNNT2, NKX2-5 and MEF2C (Population 1), and the other which expresses EPDC markers, including SNAI2, 

DDR2, VIM and ACTA2 (Population 2). Of note, the protocols for generating iPSC-derived cardiomyocytes 

(iPSC-CMs) and iPSC-EPDCs both involve activating the WNT signaling pathway (Bao et al., 2016; Iyer et al., 

2015; Witty et al., 2014) and have a shared intermediate mesoderm progenitor, but subsequent WNT inhibition 

directs differentiating cells to iPSC-CMs and endogenous levels of WNT signaling direct differentiating cells to 

iPSC-EPDCs (Witty et al., 2014) (Figure 1A). Therefore, our results suggest that iPSC-CVPC cellular 

heterogeneity results from suboptimal WNT inhibition in a subset of cells during differentiation, which then 

give rise to EPDCs. 

iPSC-CVPCs are composed of immature CMs and EPDCs  
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To estimate the relative abundances of CM and EPDC cells across our collection of iPSC-CVPC samples, we 

selected the top 50 significantly overexpressed genes in each of the three scRNA-seq populations (150 genes in 

total, p < 10-13, edgeR, Table S8), obtained their expression levels in bulk RNA-seq from 180 iPSC-CVPCs 

(Table S5), and inputted these values into CIBERSORT (Newman et al., 2015). We observed that the 

proportions of each cell type varied across the samples, although the iPSC-CVPCs tended to have a greater 

fraction of CMs (84.8 ± 31.8%, Figure 2A) than EPDCs (14.7 ± 32.0%), and essentially no stem cells (0 ± 

0.8%). The estimated fraction of CMs and EPDCs in the iPSC-CVPCs was highly correlated with %cTnT 

values (r = 0.927, p  0; t-test Figure 2B), similar to that observed in the analysis of the scRNA-seq data (Figure 

1J). Finally, we showed that the iPSC-CVPCs with high estimated CM or EPDC cellular fractions respectively 

showed higher expression of CM markers (MEF2C, NKX2-5 and ACTN2) and EPDC markers (ACTA2, TAGLN, 

DDR2 and SNAI2) (Figure 2C). These results indicate that cellular heterogeneity across iPSC-CVPC samples 

largely reflects different proportions of CMs and EPDCs. 

To characterize the similarities between the iPSC-CVPC transcriptomes and those of adult heart and artery 

samples, we performed a PCA analysis using the transcriptomes of 184 iPSCORE iPSCs, 180 iPSC-CVPCs, 

and the 1,072 GTEx samples, including left ventricle, atrial appendage, coronary artery and aorta (Consortium 

et al., 2017). We found that principal component 1 (PC1) showed that iPSC-CVPCs correspond to an 

intermediate state between the iPSCs and adult samples, suggesting that the derived CMs and EPDCs are 

similar to immature cardiac cells (Figure 2D). PC2 divided the samples based on embryonic origins, namely the 

myocardium (left ventricles and atrial appendages) and epicardium (coronaries and aorta) (Moorman et al., 

2003; Perez-Pomares et al., 2016). This analysis shows that derived iPSC-CMs and iPSC-EPDCs lie on 

different developmental trajectories, with the CMs corresponding to immature myocardium and the EPDCs to 

immature epicardium.  

iPSC expression signatures impact cardiac fate differentiation  
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Although all iPSCORE iPSCs have previously been shown to be pluripotent (Panopoulos et al., 2017), we 

sought to determine if transcriptomic differences existed between the iPSC lines that derived CVPCs containing 

CMs versus those that gave rise to predominantly EPDCs (Figure 3A). For this analysis, iPSC-CVPCs that 

completed differentiation (harvested on D25) were defined by the ratio of CM:EPDC estimates from 

CIBERSORT (estimated %CM: estimated %EPDC), while the 65 iPSC-CVPC differentiations terminated prior 

to D25 for not forming a beating syncytium were assigned a CM:EPDC ratio of 0:100 (0% CM:100% EPDC). 

We tested varying CM:EPDC ratios and determined the 30:70 (CM:EPDC) threshold was best for grouping 

iPSC samples into those that were CM-fated (produced ≥30% CMs), and those that were EPDC-fated (produced 

>70% EPDCs) (Figures S7-S9, Tables S9, S10; see Methods). We identified 84 differentially expressed genes, 

35 of which were overexpressed in the CM-fated iPSC lines and 49 overexpressed in the EPDC-fated iPSCs 

(Figure 3B,C). These genes have functions associated with three differentiation signatures: 1) Wnt/β-catenin 

pathway (13 genes); 2) muscle and/or cardiac differentiation (six genes); and 3), EMT and/or mesenchymal 

tissue development (six genes, Figure 3D, Table S11). We noted that seven borderline significant genes were 

also involved in one of the three represented signatures, and therefore added them to the final list of 

differentially expressed genes (Table S11). We investigated the associations between the expression levels of 

the final list of 91 signature genes in the 184 iPSCs and the fraction of CMs in the resulting iPSC-CVPCs using 

linear regression, and found significant associations for all genes (Figure 3E, Table S12). These results show 

that, independently from the 30:70 (CM:EPDC) threshold used in the initial differential expression analysis, the 

expression levels of these signature genes in the 184 iPSCs were significantly associated with differentiation 

outcome (e.g. CM- or EPDC-fate).   

WNT and differentiation expression signatures contribute to cell fate determination 

While the signature genes likely impacted cardiac fate determination, we did not expect each gene to contribute 

equally. To explore the impact of each gene individually on differentiation outcome, we calculated how much 
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the 91 genes explained the variability underlying iPSC cell fate. To quantify the percent of variance explained 

by each gene (R2), we fit a generalized linear regression model with a logit link function to each gene 

individually. We found that the percent of variance explained by each individual gene varied over three orders 

of magnitude (1.73 x 10-3 < R2 < 8.97%; Figure 3F; Table S12, S13). 

We next asked how these signature genes altogether captured variability in differentiation fate. As several of the 

signature genes had correlated expression levels (Figure S10), to reduce overfitting in the regression analysis, 

we included an L1 norm penalty (i.e. LASSO regression) and used 10-fold cross validation. We identified 35 

genes that independently contributed to variance, and whose expression levels collectively explained more than 

half of the variability in differentiation outcome across iPSC lines (average R2 from the 10-fold cross validation 

= 0.512; Table S14). Together these data show that, while the proportion of variance explained by each of the 

signature genes varied widely, altogether they captured approximately half of the total variance underlying 

differential iPSC fate outcome. 

Inherited genetic variation does not influence differentiation outcome  

We investigated if genetic variation associated with the expression of any of the signature genes contributed to 

the differentiation outcome of iPSCs. We obtained 1,303 genetic variants that had significant associations with 

the expression levels of at least one of the 91 signature genes from either GTEx (Consortium et al., 2017) or an 

eQTL analysis using the same collection of iPSCs (DeBoever et al., 2017). We assessed the genotypes of these 

1,303 variants in each iPSC line and investigated the association between genotype and the fraction of CMs in 

the corresponding iPSC-CVPCs. We found that none of these variants were significantly associated with 

differentiation outcome upon adjustment for multiple testing hypothesis (Storey q-value < 0.1, Table S15, 

Figure S11). This analysis shows that inherited genetic variants did not contribute to the variance underlying 

iPSC differentiation outcome captured by the signature genes, indicating that non-genetic factors played a role 

in their differential expression. 
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The role of the X chromosome in cardiac fate differentiation outcome  

To understand whether the transcriptomic differences between CM-fated and EPDC-fated iPSCs were 

associated with alterations in specific pathways or cellular function, we performed a gene set enrichment 

analysis (GSEA) on 9,808 MSigDB gene sets (Liberzon et al., 2011; Subramanian et al., 2005) using the 15,228 

expressed autosomal genes in the 184 iPSCs (see Supplemental text). We identified 22 gene sets that were 

significantly associated with iPSC cell fate, including enrichment in the CM-fated iPSCs for transcription factor 

activity, ELK1 targets, and genes in two chromosome X loci (chrXp11 and chrXp22), whereas the EPDC-fated 

iPSCs were enriched for extracellular matrix (Figure 3A, Figure 4A, Table S16). Notably, the chrXp11 locus 

encodes both ELK1 and PORCN, whose protein product (Porcupine) is targeted for WNT inhibition during CM 

differentiation, but not EPDC differentiation (Mo et al., 2013; Wang et al., 2013) (Figure 4B). Supporting the 

involvement of the X chromosome in differentiation, we observed that sex was strongly associated with 

differentiation outcome, with female iPSCs being more likely CM-fated and male iPSCs being more likely 

EPDC-fated (p = 2.57x10-5, Z-test, Figure 3A, Figure 4C, Figure S12, Table S17).  

Given the observation that female iPSCs have a greater potential to differentiate to CMs and that differential 

expression of chrXp11 genes were associated with differentiation outcome, we asked if variation in X 

chromosome inactivation (Xi) and activation (Xa) state across female iPSC lines was associated with CM or 

EPDC-fate. Using RNA-seq data generated from the 113 female iPSCs, we evaluated allele specific effects 

(ASE) of X chromosome and autosomal genes (Table S18). We defined the strength of ASE for each gene as 

the fraction of RNA transcripts that were estimated to originate from the allele with higher expression (hereto 

referred to as “allelic imbalance fraction”, AIF). We observed that AIF in autosomal genes was close to 0.5, 

indicating that both alleles were equally expressed (Figure 4D), while AIF on the X chromosome in iPSCs 

tended to be bimodal, with some genes showing monoallelic expression (AIF ~1.0; XaXi) and others showing 

biallelic expression (AIF ~0.5; XaXa). We observed that AIF was significantly less in the CM-fated female 

iPSCs compared with the EPDC-fated female iPSCs (p = 0.011, Mann-Whitney U test, Figure 4E) and that this 
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difference in AIF became even more pronounced in the corresponding derived iPSC-CVPC samples (p = 

4.81x10-6, Mann-Whitney U test, Figure 4F, , Figure S13, see Supplemental text). These finding show that 

differential chromosome XaXi status, as well as altered gene expression in chrXp22 and chrXp11, in iPSCs 

contribute to differences in cardiac fate differentiation outcome.  

Independent iPSC-CM derivation study validates findings 

To assess the generalizability of our findings, we examined an independent collection of 39 iPSCs (Banovich et 

al., 2018) reprogrammed using an episomal plasmid from Yoruba lymphoblastoid cell lines, and thus were 

substantially different than the iPSCORE iPSCs (i.e. different reprogramming method, genetic backgrounds, 

and donor cell types) (Figure 5A, Table S19). Differentiation of these lines using a slightly different protocol 

resulted in the successful derivation of 15 iPSC-CMs (%cTnT range at D32: 40 to 96.9), whereas 24 were 

terminated on or before day 10 due to the fact that they did not form a beating syncytium. To examine if the 

successfully derived Yoruba iPSC-CMs showed the presence of EPDCs, we used RNA-seq data and 

CIBERSORT to estimate cellular compositions and observed variable relative distributions of CM and EPDC 

populations (Figure 5B). Consistent with our iPSCORE iPSC-CVPC samples, the estimated CM population 

fractions were significantly correlated with %cTnT values (r = 0.81, p = 7.94 x 10-4, t-test; Figure 5C). Finally, 

Yoruba iPSC-CMs derived from females tended to have an increased percentage of CMs compared with those 

derived from males (Figure 5D). These observations show that the Yoruba iPSCs and derived cardiac cells 

could be used to investigate the generalizability of the associations that we had observed between 

transcriptomic differences in iPSCs and cardiac fate differentiation outcome.  

As several factors (Figure 5A) were dissimilar between the iPSCORE iPSC and Yoruba iPSC sets, we expected 

that there would be significant differences between their transcriptional profiles. We initially analyzed how 

correlated gene expression was: 1) within iPSCORE iPSCs; 2) within Yoruba iPSCs; and 3) between all 

pairwise comparisons of the iPSCs in these two different collections (Figure 5E). We observed high correlations 
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of gene expression across iPSCs within each collection, however the correlation between samples from different 

studies was significantly decreased, indicating that the two sets have significant genome-wide gene expression 

differences. We next examined differential gene expression between the 125 CM-fated iPSCORE iPSC and 14 

Yoruba iPSC that successfully differentiated into iPSC-CMs (Figure 5F), and observed that the majority of 

genes (69.6% with q-value < .10) were significantly differentially expressed between the two iPSC sets. These 

results show that there are strong batch effects on gene expression between the iPSCORE and Yoruba iPSC 

lines. 

We investigated if, despite the strong batch effects on gene expression between iPSCORE and Yoruba iPSCs, 

we could detect inherent transcriptional differences impacting cardiac fate determination that were shared 

between the iPSC sets. Given the relatively small size of the Yoruba study there was insufficient power to 

detect transcriptional differences between the lines with different differentiation outcomes (Successfully 

completed versus Terminated). Therefore, for each gene, we compared the mean expression differences 

between iPSCs with different cardiac fate outcomes in iPSCORE (CM-fate – EPDC-fate) to the expression 

differences between iPSCs with different differentiation outcomes in the Yoruba set (Successfully completed – 

Terminated, Figure 5G). We observed a small, but significant correlation (r = 0.0299, p = 4.71 x 10-4, t-test) 

between genes that were differentially expressed in the iPSCORE iPSCs and those that were differentially 

expressed in the Yoruba iPSCs. Further, we specifically examined the 91 signature genes significantly 

associated with iPSCORE iPSC cardiac fate outcome and found eight with nominally significant expression 

differences in the same direction (e.g. overexpressed or downregulated) in the two sets of iPSCs (Figure 5G), 

which is 2.5 times more than random expectation (p = 0.012, Fisher’s exact test; Figure 5H). These data suggest 

that the iPSCORE iPSCs and Yoruba iPSCs shared transcriptional differences that impacted cardiac fate 

differentiation outcome. 
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Discussion 

The scale of the current study, 258 attempted differentiations of 191 iPSC lines into the cardiac lineage, 

provided the power to develop a framework to identify non-genetic transcriptional differences that influence 

cardiac differentiation outcome. Many of the signature genes whose differential expression were associated with 

differentiation outcome are involved in cardiac development, including the Wnt/β-catenin pathway, muscle 

differentiation or cardiac-related functions, and the transition of epicardial cells to EPDCs by EMT. We 

observed that variability across iPSCs on X chromosome gene dosage (XaXa vs XaXi vs XY) played a role in 

cell fate determination. While iPSCs are known to have only partial XaXa (Anguera et al., 2012; Barakat et al., 

2015; DeBoever et al., 2017; Kim et al., 2014; Patel et al., 2017; Sahakyan et al., 2017; Tomoda et al., 2012), 

we identified two loci (chrXp11 and chrXp22) encoding genes whose expression levels are associated with 

cardiac lineage fate. The higher expression of chrXp11 genes in CM-fated iPSCs may at least in part be due to 

fact that ELK1 and PORCN are both encoded in this interval, as the protein product of PORCN (Porcupine) is 

inhibited by IWP-2 during CM differentiation (Mo et al., 2013), but not during EPDC differentiation. 

Additionally, we found that ELK1 targets are overexpressed in CM-fated iPSCs, which is consistent with 

previous studies showing that knockdown of ELK1 in immortalized human bronchial epithelial cells, small 

airway epithelial cells, and luminal breast cancer cell line (MCF-7) is associated with increased EMT (Desai et 

al., 2017; Tatler et al., 2016).  

Examination of RNA expression in a collection of iPSCs generated from Yoruba individuals showed that 

female iPSCs tended to be more likely to have a CM-fate and identified shared gene expression differences 

between the iPSCORE and Yoruba iPSCs associated with cardiac lineage outcome. While some of the non-

genetic transcriptomic differences between iPSCs with CM-fates versus those with EPDC-fates observed in 

iPSCORE may be due to aberrant epigenetic landscapes resulting from the reprogramming method, our 

observations in the Yoruba iPSCs, which had different genetic backgrounds, donor cell types and 

reprogramming methods, suggest that our findings will likely be generalizable to other collections of iPSCs.  
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Overall, our study suggests that expression differences of 91 signature and X chromosome genes result in iPSC 

lines having differential propensities to respond to WNT inhibition during differentiation, and consequently are 

fated to produce iPSC-CVPC samples with different proportions of CMs and EPDCs. As iPSCs in both the 

iPSCORE and Yoruba collections have passed standard quality checks to confirm their pluripotency (Banovich 

et al., 2018; Panopoulos et al., 2017), these transcriptomic expression differences associated with cardiac 

lineage outcome are not detected using current quality metrics. In conclusion, our findings suggest that to derive 

human iPSC lines that respond similarly in differentiation protocols, it may be necessary to improve 

reprogramming methods such that the transcriptome and X chromosome activation state is fully reset to the 

naïve state, and incorporate inactivation of one of the X chromosomes in female lines as an early step in 

differentiation protocols. 

Methods 

iPSCORE subject information 

Fibroblasts obtained by skin biopsies from the 181 consented individuals used in this study were recruited as 

part of the iPSCORE project (Panopoulos et al., 2017). These individuals included seven monozygotic (MZ) 

twin pairs, members of 32 families (2-10 members/family) and 71 singletons (i.e. not related with any other 

individual in this study) and were of diverse ancestries: European (118), Asian (27), Hispanic (12), African 

American (4), Indian (3), Middle Eastern (2) and mix ethnicity (15). The recruitment of these individuals was 

approved by the Institutional Review Boards of the University of California, San Diego and The Salk Institute 

(Project no. 110776ZF). Subject descriptions including subject sex, age, family, and ethnicity were collected 

during recruitment (Table S1). The 181 subjects (108 female and 73 male) used in this study ranged from ages 9 

– 88 and include seven monozygotic (MZ) twin pairs, members of 32 families (2-10 members/family) and 71 

singletons (i.e. not related with any other individual in this study) and are of various ancestral backgrounds, 
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including 118 European, 27 Asian, 12 Hispanic, four African American, three Indian, two Middle Eastern, and 

15 with multiple ethnicities reported. In addition to fibroblast collection for iPSC reprogramming and 

differentiation, whole blood samples were obtained for whole genome sequencing. 

Whole genome sequencing 

As previously described (DeBoever et al., 2017), we generated whole genome sequences from the 181 subjects 

used for iPSC derivation. Genomic DNA was isolated from whole blood using DNEasy Blood & Tissue Kit 

(Qiagen) and Qubit quantified. DNA was then sheared using Covaris KE220 instrument and normalized to 1µg, 

where WGS libraries were prepared using TruSeq Nano DNA HT kit (Illumina) and normalized to 2 - 3.5nM in 

6-samples pools. Pooled libraries were clustered and sequenced on the HiSeqX (Illumina; 150 base paired-end) 

at Human Longevity, Inc. (HLI).   

iPSC derivation 

As previously described (Panopoulos et al., 2017), we reprogrammed fibroblast samples from the 181 

individuals in this study using non-integrative Cytotune Sendai virus (Life Technologies) (Ban et al., 2011) 

following the manufacturer’s protocol. The 191 iPSCs used in this study (7 subjects had 2 or more clones each; 

Table S2) were generated and shown to be pluripotent by analysis of RNA-seq by PluriTest (Muller et al., 2008) 

and for a subset based on >95% positive double staining for Tra-1-81and SEEA-4 (Panopoulos et al., 2017). 

They were also shown to have high genomic integrity based on analysis of genomic DNA by SNP arrays 

(Panopoulos et al., 2017). Cell lysates used for RNA-seq (Tables S5, S6) were collected for 184 of the iPSC 

samples between passages 12 to 40 (Figure 1A).  

Large-scale derivation of iPSC-CVPC samples 
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To generate iPSC-derived cardiovascular progenitors (iPSC-CVPCs) we used a small molecule cardiac 

differentiation protocol (Lian et al., 2013). The 25-day differentiation protocol consisted of five phases (Figure 

S1A), the optimizations for each step are described in detail below: 1) expansion: we developed the ccEstimate 

algorithm (Figure S2) to automate the detection of 80% confluency for iPSCs in T150 flasks (Figure S1B,C); 2) 

differentiation: we tested whether increasing the dosage of IWP-2 to induce to inhibit the WNT pathway 

improved differentiation efficiency and found that 7.5 µM at D3 of  the differentiation provided in a single dose 

for 48 hours results in the most efficient differentiation (Figure S1D, E, Table S20); 3) purification: since fetal 

cardiomyocytes use lactate as primary energy source and have a higher capacity for lactate uptake than other 

cell types (Fisher et al., 1981; Werner and Sicard, 1987), we incorporated lactate metabolic selection for five 

days to improve iPSC-CVPC purity (Tohyama et al., 2013) (Figure S1F); 4) recovery: after metabolic selection, 

iPSC-CVPCs were maintained in cell culture for five days; and 5) harvest: we collected iPSC-CVPCs at D25 

for downstream molecular assays and cryopreserved live cells. 

The 258 attempted differentiations of the 191 iPSC lines (Table S2) were performed as follows: 

Expansion of iPSC: One vial of each iPSC line was thawed into mTeSR1 medium containing 10 μM ROCK 

Inhibitor (Sigma) and plated on one well of a 6-well plate coated overnight with matrigel. During the expansion 

phase, all iPSC passaging was performed in mTeSR1 medium containing 5 μM ROCK inhibitor, when cells 

were visually estimated to be at 80% confluency. The iPSCs were passaged using Versene (Lonza) from one 

well into three wells of a 6-well plate. Next, the iPSCs were passaged using Versene onto three 10 cm dishes at 

2.54x104 per cm2 density. The iPSCs molonalyer was plated onto three T150 flasks at the density of 3.66 x 104 

per cm2 using Accutase (Innovative Cell Technologies Inc.). Prior to expansion with Versene, after thaw iPSCs 

were passaged 1-2 times using Dispase II (20mg/ml; Gibco/Life technologies). 

Differentiation: At 80% iPSC confluency (measured using ccEstimate, see section below “Estimation of optimal 

time for initiation of iPSC-CVPCs differentiation using ccEstimate”) cell lysates were collected from 32 lines 
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for RNA-seq data generation, where these iPSC and subsequent generated molecular data are referred to as D0 

iPSC (Table S5). After reaching 80% confluency (usually within 4-5 days), differentiation was initiated with the 

addition of the medium containing RPMI 1960 (gibco-life technologies) with Penicillin – Streptomycin 

(Gibco/Life Technologies) and B-27 Minus Insulin (Gibco/Life Technologies) (hereafter referred to as RPMI 

Minus supplemented with 12μM CHIR-99021 (D0). After 24h of exposure to CHIR-99021, medium was 

changed to RPMI Minus (D1). On D3 medium was changed to 1:1 mix of spent and fresh RPMI Minus 

supplemented with 7.5μM IWP-2 (Tocris). On D5, after 48h of exposure to IWP-2, the medium was change to 

RPMI Minus. On D7, medium was changed to RPMI 1960 with with Penicillin – Streptomycin (Gibco/Life 

Technologies) and B-27 Supplement 50X (hereafter referred to as RPMI Plus) (Gibco/Life Technologies). 

Between D7 and D13, RPMI Plus medium was changed every 48h.  

Purification: On D15 the cells were collected from the flask using Accutase and plated onto fresh T150 flasks at 

confluency 1-1.3 x 106 per cm2. On D16, cells were washed with PBS without Ca2+ and Mg2+ (Gibco/Life 

Technologies) and medium was changed for RPMI 1960 no glucose (Gibco/Life Technologies) supplemented 

with Non-Essential Amino Acids (Gibco/Life Technologies), L-Glutamine (Gibco/Life Technologies), 

Penicillin-Streptomycin 10,000U (Gibco/Life Technologies) and 4mM Sodium L-Lactate (Sigma) in 1M 

HEPES (Gibco/Life Technologies). Medium supplemented with lactate was changed on D17 and D19.  

Recovery: On D21 cells were washed with PBS and medium was changed for RPMI Plus. On D23 medium was 

again changed for RPMI Plus. The first beating cells were usually observed between D7 and D9 and as early as 

D7 (immediately after the media change) and robust beating was usually observed between D8 and D11. During 

the lactate selection iPSC-CVPC were beating robustly less than 16 hours after reseeding. For all successfully 

derived iPSC-CVPCs on D25, total-cell lysate material was collected and frozen for downstream RNA-seq 

assays. 
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Harvest: On D25 cells were collected using Accuase and processed for the following molecular material for 

downstream assays: 1) cell lysates (RNA-Seq); 2) permeabilized cells (ATAC-Seq); 3) live frozen cells 

(scRNA-seq); 4) cross-linked cells (ChIP-Seq, median number of vials/iPSC line = 3; ~1.0 x 107 cells/vial), and 

5) dry cell pellets (methylation and protein). RNA-seq was generated from 180 iPSC-CVPC differentiations 

(149 lines from 139 subjects) that successfully reached D25 (Table S5). 

Estimation of optimal time for initiation of iPSC-CVPCs differentiation using ccEstimate 

We developed an automatic pipeline that analyzes images of monolayer-grown cells and determines their 

confluence (Figures S1C, S2). Cell confluency estimates (ccEstimate) are performed by first dividing each T150 

flask into 10 sections (Figure S1C) and acquiring images for each section every 24 hours after cells are plated as 

a monolayer. The final image is acquired immediately after treatment with CHIR, which occurs when their 

confluence is at least 80% (Day 0). The time required for cells to reach 80% confluence is estimated on the 

basis of the confluence curve derived for each section in each flask. To digitally measure iPSC confluency, 

ccEstimate performs image analysis using the EBImage package in R (Pau et al., 2010). Images are read using 

the readImage function. As lighting may be different between the center and the border of an image, only the 

central part of the image is retained. To separate cells from the background and calculate confluence (i.e. the 

fraction of the surface of the flask that is covered by cells) the following operations are performed (Figure S2): 

1. The image is transformed to monochromatic by determining the intensity of each pixel as the average of 

the intensities of the red, green and blue channels. 

2. Edges are sharpened using high-pass filter. The matrix used for this filter is 15x15 with values -1 on the 

diagonals and +28 in the center.  

3. Contrasts are enhanced by multiplying the pixel intensities by 2. 
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4. Mean and standard deviation of the pixel intensities are calculated. The image is transformed from 

monochromatic to binary by setting all pixels with intensity more than two standard deviations higher 

than the mean to white (intensity = 1) and all other pixels to black (intensity = 0).  

5. The resulting binary image is dilated using a disc-shaped structuring element with diameter 5 pixels. 

6. 1,000 50x50 pixels sub-images are randomly selected. For each sub-image, the number of white pixels is 

calculated. Confluence is estimated as the fraction of the randomly selected sub-images with at least 

50% of white pixels.  

Confluency measurement data is collected for at least the first three days after plating as monolayer to train a 

generalized linear model (GLM) using the function glm in R to estimate when cells must be treated with CHIR. 

Estimation is performed separately for each flask section and CHIR is added to all three flasks associated to a 

given line when at least 75% of sections have confluence 80% (Figure S1C). 

Optimization of IWP-2 concentration by visual estimation of iPSC-CVPCs structure and beating 

quality 

To optimize the IWP-2 concentration, one iPSC line (2_3) was differentiated under four different IWP-2 

conditions (Figure S1D, E): 1) 5µM IWP-2 added on D3, 2) 7.5µM IWP-2 added on D3, 3) 5µM IWP-2 added 

on D3 and D4, or 4) 7.5µM IWP-2 added on D3 and D4. In all four conditions cells were exposed to IWP-2 for 

48 hours. At D15 of differentiation, the quality of generated iPSC-CVPC structures and beating were estimated 

by visual evaluation using two metrics that we established in the lab: 1) structure score; and 2) beat score. Both 

structure score and beat score were evaluated at 10 spots on each 150T flask that had also been used for digital 

measurement of cell confluency (Table S20). Structure score and beat score had 4-point scales where 0 was the 

lowest and 3 was the highest grade. For structure score 0 = less than 10% of cells were cardiomyocyte-like with 

thick structures; 1 = 10-25% of cells were cardiomyocyte-like with thick structures; 2 = over 50% of cells were 

cardiomyocyte-like with thick structures; 3 = over 90% of cells were cardiomyocyte-like with thick structures. 
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For beat score 0 = less than 10% of cells were cardiomyocyte-like beating robustly as a sheet; 1= 10-25% of 

cells were cardiomyocyte-like beating robustly; 2 = over 50 of cells were cardiomyocyte-like beating robustly; 

3 = over 90% of cells were cardiomyocyte-like beating robustly. In cases of uncertainty or intermediate results, 

cells were assigned a lower grade. Grade 3 was assigned only for the iPSCs with thick, robustly beating sheets 

of cells.  

Comparison of lactate and glucose treated iPSC-CVPCs  

To examine the effects of lactate purification, three iPSC-CVPC lines derived from unrelated individuals (2_3, 

8_2, and 3_2) were differentiated to D15 (Figure S1F). At D16, medium supplemented with either 4mM 

Sodium L-Lactate (Sigma) or 2mg/mL D-glucose (Gibco/Life Technologies). Medium was changed on D17 and 

D19. On D21 cells were washed with PBS and medium was changed for RPMI Plus. Lactate and glucose 

treated cells were harvested on D25. 

Flow cytometry  

On D25 of differentiation, 5x105 iPSC-CVPCs were permeabilized and blocked in 0.5% BSA, 0.2% TX-100 

and 5% goat serum in PBS for 30 minutes at room temperature. Cells were stained with Troponin T, Cardiac 

Isoform Ab-1, Mouse Monoclonal Antibody (Thermo Scientific, MS-295-P0) at 4°C for 45 minutes, followed 

by Alexa Fluor 488 secondary antibody (Life Technologies, A11001). Stained cells were acquired using BD 

FACSCanto II system (BD Biosciences) and analyzed using FlowJo V10.2. 

Immunofluorescence analysis of iPSC-CVPCs 

Immunofluorescence (IF) was assessed in 5 iPSC-CVPC lines (13_1, 14_2, 29_1, 2_1, and 42_1). Cells for IF 

were obtained by thawing live frozen iPSC-CVPC harvested on D25 and plating them directly on 0.1% gelatin-

coated glass-bottom plates for five days (D30). Cells were then fixed using 4% paraformaldehyde (PFA) in PBS 

or 20 min at room temperature (RT). Fixed cells were permeabilized for 8 min at RT with 0.1% Triton X-100 in 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 24, 2019. ; https://doi.org/10.1101/644633doi: bioRxiv preprint 

https://doi.org/10.1101/644633
http://creativecommons.org/licenses/by/4.0/


21 

 

 

 

PBS, blocked in 5% bovine serum albumin for 30 min at RT and incubated overnight at 4°C with a primary 

antibody. Cells were incubated with rabbit polyclonal anti-connexin 43 (Cx43) antibody (Invitrogen, 710700) 

and with mouse monoclonal anti-sarcomeric alpha-actinin antibody (Sigma, A7811), or with rabbit polyclonal 

anti-MLC2V (Proteintech, 10906-1-AP) and/or mouse monoclonal anti-MLC2A (Synaptic Systems, 311011). 

All antibodies are described in Table S4. 

After overnight incubation cells were washed three times with PBS and incubated with appropriate secondary 

antibodies: donkey anti-rabbit Alexa Fluor 488 (Invitrogen, A-21206) and goat anti-mouse Alexa Fluor 568 

(Invitrogen, A-11004) secondary antibodies for 45 mins at RT. Cells were washed three times with PBS and 

nuclei were counterstained with DAPI and mounted. Slides were imaged using Olympus FluoView FV1000 

confocal microscope at UCSD Microscopy Core. 

Generation of RNA-seq data 

For gene expression profiling of iPSCs, we used RNA-seq data from 184 samples that we previously published 

(DeBoever et al., 2017). We generated additional 180 RNA-seq samples from iPSC-CVPC samples at D25 

differentiation (Table S6). All RNA-seq samples were generated and analyzed using the same pipeline 

(DeBoever et al., 2017). Briefly, we isolated total RNA from total-cell lysates using the Quick-RNA™ 

MiniPrep Kit (Zymo Research) from frozen total-cell lysate, including on-column DNAse treatment steps and 

eluted in 48 µl RNAse-free water. RNA elutions were run on a Bioanalyzer (Agilent) to determine integrity and 

all samples had RNA integrity number (RIN) values greater than 9. Illumina Truseq Stranded mRNA libraries 

were prepared and sequenced on HiSeq4000, to an average of 28 M 125 bp paired-end reads per sample. RNA-

Seq reads were aligned using STAR60 with a splice junction database built from the Gencode v19 gene 

annotation. RNA-Seq data with percent uniquely mapped reads greater than 70% and percent duplication less 

than 50% were considered to be good quality. Transcript and gene-based expression values were quantified 

using the RSEM package (1.2.20) (Li and Dewey, 2011) and normalized to transcript per million bp (TPM).  
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Generation of scRNA-seq data 

Generation: For eight iPSC-CVPCs sample and one H9 ESC line, single cells were captured using the 

10x Chromium controller (10x Genomics) according to the manufacturer’s specifications and manual (Manual 

CG00052, Rev C). Cells for each sample were loaded on the individual lane of a Chromium Single Cell A Chip. 

Libraries were generated using Chromium Single Cell 3’ Library Gel Bead Kit v2 (10x Genomics) following 

manufactures manual. Libraries were sequenced using a custom program (26-8-98 Pair End) on HiSeq 4000. 

Each library was sequenced on an individual lane. In total we captured 36,839 cells. We retrieved FASTQ files 

and used CellRanger V2.1 (https://support.10xgenomics.com/) with default parameters using Gencode V19 

gene annotation to generate single-cell gene counts for each individual sample.  

Processing: To combine the scRNA-seq from each individual sample, we used cellranger aggr and obtained a 

total of 36,839 cells from 8 iPSC-CVPCs and 1 ESC sample. We removed 1,934 cells because they were not in 

G0 phase, as they expressed the proliferation marker MKI67 (Scholzen and Gerdes, 2000) at high levels (UMI 

> 2, Figure S4A-D). We also removed doublets (i.e. sequenced droplets containing more than one cell)(Kang et 

al., 2018) by visual inspection of the t-SNE plots (Figure S4). There were 34,905 cells remaining after 

proliferating cells and doublets were removed. K-means clustering was performed on the 34,905 cells using k 

values 3, 4, and 9 (Figure S4E-G). k = 3 was determined to be the most suitable value, as visual inspection of 

the principal component analysis showed 3 distinct clusters (Figure S4E). 

Differential expression: Differential expression across the three scRNA-seq clusters was performed by 

comparing the distribution of unique molecular identifiers (UMI) for a given gene from all the cells specific to 

one cluster (k-means; k = 3) with all the cells specific to the other two clusters using edgeR asymptotic beta test 

(Robinson and Smyth, 2008) (Table S8). Differentially genes that had a total UMI ≥ 1 and FDR < 0.05 were 

considered to be significantly overexpressed in a given cluster. For visualization of gene expression in the t-
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SNE plots, transcript levels for each gene were normalized using the calcNormFactors function in edgeR 

(Robinson et al., 2010). 

CIBERSORT 

The expression levels of the top 50 genes overexpressed in each of the three cell populations (total 150 genes), 

with nominal p-value < 1.0 x 10-13 and mean UMI > 1 (Table S7), were used as input for CIBERSORT 

(Newman et al., 2015) to calculate the relative distribution of the three cell populations for all the 180 iPSC-

CVPC samples at D25. CIBERSORT (https://cibersort.stanford.edu/) was run with default parameters using the 

TPM values for the 150 genes in all 180 iPSC-CVPC samples. 

Characterizing transcriptional similarities of iPSCs, iPSC-CVPCs and GTEx adult tissues by 

principal component analysis 

We performed principal component analysis (PCA) on RNA-seq using R prcomp function on 184 iPSCs, 180 

iPSC-CVPCs and 1,072 RNA-seq samples from GTEx, including 303 left ventricle samples, 297 atrial 

appendage samples, 173 coronary artery samples and 299 aorta samples.  

Identifying differentially expressed genes between iPSCs with different cardiac fates  

For differential expression analysis, for each line that had more than one iPSC-CVPC differentiation, we used 

the sample with the highest Population 1 fraction.  

To calculate differential expression between CM-fated iPSCs and EPDC-fated iPSCs, we first retained all genes 

with TPM ≥ 2 in at least 10 samples and then transformed the RNA-seq TPM data to standard normal 

distributions by quantile normalization using the function normalize.quantiles from R package preprocessCore 

(Bolstad et al., 2003). Quantile normalized expression levels were then corrected for the first 10 factors 

calculated by PEER (Stegle et al., 2012).  
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To obtain a cutoff, we used the RNA-seq data to conduct a series of differential expression analyses on 15,228 

autosomal genes in the 184 iPSC lines (147 completed and 37 terminated) with RNA-seq data considering the 

ratio of population frequencies in the corresponding derived iPSC-CVPCs (0:100, 10:90, 20:80, 30:70, 40:60, 

50:50, 60:40, 70:30, 80:20 and 90:10) (Table S9, Figure S7); for example, for the 90:10 ratio we compared gene 

expression in the 184 iPSCs that differentiated into iPSC-CVPCs with >= 90% Population 1 to iPSCs that 

differentiated into iPSC-CVPCs with less than 90% Population 1. Across the thresholds, the top differentially 

expressed autosomal genes (t-test) were always the same (Table S9); however, the 30:70 (Population 

1:Population 2) ratio resulted in the highest number of differentially expressed genes (93 genes with Storey q-

value < 0.1, t-test, Figures 4A and S7, Table S10). Thus, we grouped the 184 iPSC lines into: 1) those that have 

CM fates, i.e. produced iPSC-CVPC with >= 30% Population 1 (125 lines), and 2) those that have EPDC fates, 

i.e. produced iPSC-CVPC with > 70% Population 2 (22 lines differentiated to D25 and 37 terminated lines). To 

remove any biases resulting from the fact that the ratio of male to female iPSCs was 71:113, we filtered the 93 

genes removing those that were significantly (q-value < 0.1, t-test) differentially expressed between female and 

male iPSCs, resulting in a set of 84 genes, which is substantially greater than random expectation (Figure S8). 

To determine if the number of significantly differentially expressed genes was higher than expected by chance, 

we shuffled the assignments of the 184 iPSC RNA-seq samples to differentiation fate (125 CM and 59 EPDC) 

100 times. For each shuffle, we performed differential expression analysis and obtained the number of genes 

that were significantly differentially expressed. In Figure S9 we show a QQ plot that demonstrates that the 

observed p-value distribution was substantially different than random expectation.  

Contribution of 91 signature genes in iPSCs to determination of cardiac fate  

Individual contributions: For each of the 91 signature genes, we built a generalized linear model (GLM) with 

the expression of the gene as input and the differentiation outcome (e.g. % Population 1) as output using the 

LinearRegression function from sklearn. To model the continuous property of the % Population 1 distributions, 
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but maintain their boundary from 0-100, we used a logit link function to transform measurements of % 

cardiomyocyte to ln(OR) of % Population 1, calculated as ln( % Population 1/ (1 - % Population 1) and capped 

the percentages at 0.99 and 0.01 to avoid infinite or undefined odds ratios. For each gene, the percent of 

variance explained is defined as the model’s R2. 

Cumulative impact: To understand the cumulative contribution of all 91 signature genes on cardiac 

differentiation fate, we built a generalized linear model (GLM) with an L1 norm penalty (ie LASSO) using the 

expression of all 91 genes as input and the differentiation outcome (e.g. % Population 1) as output using the 

LassoLarsCV function from sklearn. To model the continuous property of the % Population 1 distributions, but 

maintain their boundary from 0-100, we used a logit link function to transform measurements of % 

cardiomyocyte to ln(OR) of % Population 1, calculated as ln( % Population 1/ (1 - % Population 1) and capped 

the percentages at 0.99 and 0.01 to avoid infinite or undefined odds ratios. To avoid overfitting the model, we 

used10-fold cross validation implemented in sci-kit learn v0.19.1 with 10,000 max iterations (Pedregosa et al., 

2011).  

Detecting associations between genetic variation and differentiation outcome 

eQTL data was retrieved for all GTEx V.7 tissues(Consortium et al., 2017) and for iPSCs (DeBoever et al., 

2017). We obtained 1,795 variants that were eQTLs for any of the 91 signature genes, of which 1,303 had 

minor allelic frequency (MAF) > 1% in the 181 individuals from whom iPSCs were derived. Genotypes were 

obtained for each SNP in all individuals using bcftools view (Li, 2011) and multiallelic variants were 

decomposed to monoallelic using vt decompose (Tan et al., 2015). Linear regression was used to calculate the 

associations between the genotype of each variant and differentiation outcome (% CM population in the iPSC-

CVPCs). 

Gene set enrichment analysis using the MSigDB collection 
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We performed gene set enrichment analysis (GSEA) using the R gage package (V 2.20.1) (Luo et al., 2009) on 

all MSigDB gene sets (Liberzon et al., 2011; Subramanian et al., 2005) from the 8 collections, including 

Hallmark gene sets (H), positional gene sets (C1), curated gene sets (C2), motif gene sets (C3), computational 

gene sets (C4), Gene Ontology (GO, C5), oncogenic signatures (C6), and immunologic signatures (C7). FDR 

correction was performed independently for each collection (see Supplemental text). The normalized mean 

expression difference between iPSCs that differentiated to CMs and iPSCs that differentiated to EPDCs (Table 

S10) was used as input for GSEA. Gene lists that were significant after multiple testing correction (FDR p < 

0.05) were considered significant.  

Associations between iPSC and subject features and differentiation outcome 

A generalized linear model (GLM) was built in R using age, sex, ethnicity, age, and passage of the iPSCs at D0 

of differentiation as input and differentiation outcome as output (0 = EPDCs; and 1 = CMs). The model was 

built using the function glm(outcome ~ age + sex + ethnicity + passage, family=binomial(link=’logit’)).  

Identifying X chromosome inactivation in female iPSCs and iPSC-CVPCs 

To analyze X chromosome inactivation, we used 113 female iPSCs, of which 87 where CM-fated and 26 were 

EPDC-fated (see Supplemental text). To call allele specific effects (ASE) in RNA-Seq from iPSC and iPSC-

CVPCs, we used the method previously described in DeBoever et al. (DeBoever et al., 2017). Genes lying in X 

chromosome pseudoautosomal (PAR) regions (PAR1: 60001- 2699520, PAR2: 154931044 – 155260560) were 

removed from the analysis. We defined the strength of ASE for each gene as the fraction of RNA transcripts 

that were estimated to originate from the allele with higher expression (referred to as allelic imbalance fraction, 

AIF).  

Validation of findings in Yoruba iPSC set 
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Generation of iPSCs: The Yoruba iPSCs in the Banovich et al. study (Banovich et al., 2018) were generated 

from lymphoblastoid cell lines (LCLs) using an episomal reprogramming strategy. Briefly, this included 

transfecting LCLs with the episomal plasmids and then culturing for seven days in hESC media (DMEM/F12 

supplemented with 20% KOSR, 0.1 mM NEAA, 2mM GlutaMAX, 1% Pen/Strep, 0.1# 2-Mercaptoethanol, 

25ng/µl of bFGF, and 0.5mM NaB). On day eight, the transfected cells were plated in a 6-well plates. After four 

days, NaB was removed from the hESC media. Colonies were observed within 21 days and passaging continued 

for an additional 10 weeks (1 passage / week), where cells were collected for cryopreservation. Material 

collected for RNA-seq of the iPSC were collected after an additional minimum of three passages.   

Differentiation protocol: The Yoruba iPSC-CM derivation (Banovich et al., 2018) was performed using a small 

molecular method similar to iPSCORE iPSC differentiation protocol (see above: Large-scale iPSC-CVPC 

deviation). Briefly, 39 iPSCs were expanded until 70-100% confluency (three to five days). On D0, 

differentiation was initiated by the supplementation of media with 12μM of GSK3 inhibitor CHIR-99021 for 

WNT pathway activation. On D3 of differentiation, 2µM of Wnt-C59 was added (PORCN inhibitor). On D5 of 

differentiation, Wnt-C59 was removed from culturing media and differentiating cells were grown with regular 

media exchanges from D5 to D14. On D14, D16, and D18 cultures were exposed to 5mM Sodium L-lactate for 

cardiomyocyte purification. On D20-D25, differentiating cells were exposed to 1.7 mg/mL galactose daily to 

force aerobic metabolism and thus aid in cardiomyocyte maturation. On D25-D27, cells were incubated at 

physiological oxygen levels (10%). On D27 cells were electrically stimulated with 6.6 V/cm, 2ms and 1Hz for 

further aid in cardiomyocyte maturation. Finally, iPSC-CMs were harvested on D31 or D32. Purity of iPSC-CM 

Yoruba lines were measured by cTnT marker and flow cytometry. Out of the 39 iPSCs for which differentiation 

was attempted, 15 lines successfully generated iPSC-CMs and 24 were terminated on or before day 10 due to 

the fact that they did not form a beating syncytium (Table S19). 

RNA-seq: We downloaded RNA-seq for 34 iPSC (five iPSCs did not have RNA-seq) and 13 iPSC-CM samples 

(two iPSC-CMs did not have RNA-seq) from Gene Expression Omnibus (GEO; GSE89895) (Banovich et al., 
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2018). Briefly, these Yoruba RNA-seq data were generated from Illumina TrueSeq prepared libraries and 

sequenced at 50bp single-end reads on an Illumina 2500. As iPSCORE RNA-seq was 125 bp paired-end reads, 

for comparative analyses, we trimmed all iPSCORE iPSC and iPSC-CM data to 50 bp and treated the paired-

end reads as single-end reads. Both iPSCORE and Yoruba 50 bp RNA-seq was then processed as described 

above (Methods: Generation of RNA-seq data). Briefly, RNA-seq was aligned using STAR60, then gene 

expression was quantified using the RSEM package and normalized to TPM.  

Estimation of cellular composition: The RNA-seq for the 13 Yoruba iPSC-CMs were analyzed using 

CIBERSORT similar to the iPSCORE samples (see CIBERSORT section above). Briefly, the TPM values of 

the 150 overexpressed genes (50 from each of the three single cell populations; Table S8) in the 13 Yoruba 

iPSC-CM were used as input to CIBERSORT to calculate the relative distribution of the three populations. 

Data and software availability 

The accession numbers for the RNA-seq data, scRNA-seq, and whole-genome sequence genotypes reported in 

this paper are dbGaP: phs00924 and phs001325. The 191 iPSC lines are available through WiCell Research 

Institute: https://www.wicell.org/; NHLBI Next Gen Collection. 
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Figures 

Figure 1: Characterization of cellular heterogeneity in iPSC-CVPC samples 
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(A, B) Overview of the study design. (A) Skin fibroblasts from 181 subjects were reprogrammed to iPSCs and 

differentiated to iPSC-CVPCs (191 lines, 258 differentiations). After WNT pathway activation at day 0 (D0) 

and its inactivation by IWP-2 at D3-5, cells differentiate to cardiomyocytes (CMs) if the WNT signaling is 

successfully inhibited. If WNT signaling is not sufficiently inhibited, cells differentiate to EPDCs. (B) 193 of 

the 258 differentiations were completed (D25), and we observed that different CVPC samples had different 

proportions of CMs and EPDCs. 

(C) Distribution of %cTnT. Dashed red line represents the median value.  

(D-F) Immunofluorescence staining of (D) iPSC-CVPCs, (E) human atrium, and (F) ventricle with IF markers 

DAPI (blue), ACTN1 (red), and CX43 (green). 

(G) Immunofluorescence staining iPSC-CVPCs with IF markers DAPI (blue), MLCa+ (red) and MLCv+ 

(green).  

(H) scRNA-seq UMAP plot showing the presence of three populations: CMs (orange), EPDCs (blue) and ESCs 

(green). 

(I) scRNA-seq UMAP plot showing the distribution of the nine analyzed samples (8 iPSC-CVPC lines and one 

ESC line) across the different clusters.  

(J) Scatterplot showing the correlation between the %cTnT and the fraction of cells in Population 1 (CMs) for 

each of the nine samples. 

(K) Heatmap showing across all 34,905 single cells the expression markers for: 1) stem cells (POU5F1; SOX2); 

2) CMs (GATA4, MEF2C, SIRPA, TNNT2, MYL7, ACTN2, NKX2-5, MYL2); 3) EMT (SNAI2, POSTN); 4) 

fibroblasts (DDR2); and 5) smooth muscle (TAGLN2, CNN1, ACTA2, VIM, TAGLN).  
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Figure 2: Transcriptomic features of 180 iPSC-CVPC samples 

 

(A) Relative distributions of cell populations estimated using CIBERSORT across 180 iPSC-CVPC samples. 

(B) Scatterplot showing the correlation between %cTnT (X axis) and the fraction of Population 1 in the iPSC-

CVPCs calculated using CIBERSORT (Y axis). 

(C) Heatmap showing the expression levels of CM and EPDC marker genes (Figure 1K) in 180 iPSC-CVPC 

samples at D25. 

(D) PCA on the 1,000 genes with highest variability from 184 iPSC samples, 180 iPSC-CVPC samples 

(triangles colored according to their % Population 1), and samples from GTEx (squares, left ventricle, right 

ventricles, coronary artery and aorta).  
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Figure 3: iPSC gene signatures associated with cardiac differentiation fate  

 

(A) Cartoon showing iPSC characteristics that influence their cardiac fate determination, including: 1) the 

expression levels of 91 genes grouped into three gene signature classes (WNT/B-catenin pathway, cardiac 

development genes and genes involved in EMT); 2) sex, female iPSCs are more likely to differentiate to CMs 

than males (see Figure 4); and 3) X chromosome activation state, female iPSCs that have activated both X 

chromosomes (XaXa) are more likely to differentiate to CMs (see Figure 4). 
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(B) Volcano plot showing mean difference in expression levels for all autosomal genes between CM-fated iPSC 

lines (their corresponding derived samples have CM population > 30%) and EPDC-fated iPSC lines (X axis) 

and p-value (Y axis, t-test). A positive difference indicates over-expression in CM-fated iPSCs, whereas a 

negative difference indicates over-expression in EPDC-fated iPSCs. Significant genes are indicated in red. 

(C) Expression levels of the 91 signature genes in iPSCs as a function of the % CM population in their 

corresponding iPSC-CVPC samples. Thick lines represent the average for 36 genes overexpressed in CM-fated 

iPSCs (orange) and for 55 genes overexpressed in EPDC-fated iPSCs (blue). 

(D) WNT/ß-catenin pathway, muscle/cardiac related, or EMT/mesenchymal development signature genes 

(those differentially expressed with nominal p-values (p < 0.0015) indicated with an asterisk).  

(E) GLM estimate (% CM population ~ expression) calculated for each signature gene. Mean and 95% 

confidence interval are shown. 

(F) Bar plot showing the percentage of variability in iPSC fate that is explained by each of the 91 signature 

genes. Bars highlighted in red show the 35 signature genes identified by L1 normalization that independently 

contributed to variance.   
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Figure 4: X chromosome gene dosage plays a role in cardiac differentiation fate  

 

(A) GSEA results: For each gene set, -log10(q-value) is shown. Positive values correspond to gene sets enriched 

in CM-fated iPSCs, whereas negative values correspond to EPDC-fated iPSCs. For autosomes all iPSCs were 

included (top), for the chromosome X only the 113 female iPSCs were analyzed (bottom).  

(B) Cartoon showing the differentially expressed loci on chromosome X and the position of ELK1 and PORCN. 
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(C) Barplot showing the associations between sex and differentiation outcome (orange: iPSC-CVPC samples 

with CM fraction > 30%; blue: with EPDC fraction > 70%). P-values were calculated using Z-test (glm function 

in R). 

(D-F) Density plots showing the differences in allelic imbalance fraction between (D) autosomal genes (pink) 

and chrX genes outside of the pseudoautosomal region (maroon) in female iPSCs; (E) chrX genes in female 

CM-fated (light orange) and EPDC-fated (light blue) iPSCs; and (F) chrX genes in female D25 iPSC-CVPC 

samples with CM fraction > 30% (orange) and EPDC fraction > 70% (blue). P-values were calculated using 

Mann Whitney U test.  
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Figure 5: Validation of association between iPSC gene signatures, sex and differentiation 

outcome  
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(A) Schematic depicting differences (subject ethnicities, donor cell type, reprogramming method) between the 

iPSCORE iPSC and Yoruba iPSC as well as differences in the cardiac differentiation protocol 

(B) Estimated fractions of CMs and EPDCs for 13 Yoruba iPSC-CM samples from RNA-seq using 

CIBERSORT.  

(C) Scatterplot showing the correlation between %cTnT (X axis) and the fraction of cells in population 1 (% 

CMs) calculated using CIBERSORT (Y axis) for 13 Yoruba iPSC-CM samples. 

(D) Boxplots showing the distribution of estimated fraction of cells in population 1 (% CMs) for 9 female 

Yoruba iPSC-CM and 4 male Yoruba iPSC-CM. P-value was calculated using Mann-Whitney U test. 

(E) Box plots showing correlation of gene expression in all 184 iPSCORE iPSCs with RNA-seq (purple), 34 

Yoruba iPSCs with RNA-seq used for differentiation (yellow; 14 successful and 20 terminated), and the 

pairwise comparison of the Yoruba iPSC against the iPSCORE iPSC (grey). 

(F) Volcano plot showing mean difference in expression levels for all autosomal genes between 14 Yoruba 

iPSC lines that were successfully differentiated and 125 iPSCORE iPSC lines that differentiated to >30% 

Population 1 (CMs) (X axis) and p-value (Y axis, t-test). A positive difference between mean expressions 

indicate iPSCORE-specific over-expression, whereas a negative difference between mean expressions indicate 

Yoruba-specific over-expression. Significant genes are indicated in red.  

(G) Smooth color density scatterplot showing gene expression differences between iPSCs with different fates in 

184 iPSCORE iPSC (125 CM-fated vs 59 EPDC-fated) (X-axis) to the expression differences between iPSCs 

with different outcomes in Yoruba iPSC (14 successful vs 20 terminated) (Y-axis). A positive difference 

indicates shared over-expression of genes between CM-fated iPSC in iPSCORE and successfully differentiated 

iPSC in the Yoruba set, whereas a negative difference indicates shared over-expression of genes between 

EPDC-fated iPSC in iPSCORE and terminated iPSC in the Yoruba set. Of the 91 signature genes that were 
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differentially expressed in the iPSCORE iPSCs based on cell fate, eight had nominally significant expression 

differences in the same direction in the Yoruba iPSC set (shown in red).  

(H) Barplot showing that the eight iPSCORE differentially expressed genes (panel G) with nominal significant 

expression differences in the same direction (e.g. over-expressed or down regulated) in the Yoruba iPSCs is 

greater than random expectation. Of 13,704 genes expressed both in the iPSCORE and Yoruba iPSCs, we 

obtained 6,909 for which the average normalized expression differences had either the same positive (CM 

fate/successful differentiation) or negative (EPDC fate/terminated differentiation) direction. The 6,909 genes 

included 47 of the 91 iPSCORE signature genes. We found that 466 (6.7%) of the 6,909 genes were nominally 

significant for being differentially expressed between the 14 successful and 20 terminated differentiations in the 

Yoruba samples, while 8 of the 47 iPSCORE differentially expressed genes (17.0%) had a nominal p < 0.05. 

This analysis shows that the 91 iPSCORE signature genes are 2.5 times more likely than expected (17.0% vs. 

6.7%, p = 0.012, Fisher’s exact test) to be differentially expressed in the Yoruba samples based on cardiac 

differentiation fate. 
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